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Introduction

IMSL C/Stat/Library

The IMSL C/Stat/Library is a library of C functions useful in scientific
programming. Each function is designed and documented to be used in research
activities as well as by technical specialists. A number of the example programs
also show graphs of resulting output.

Getting Started

To use any of the C/Stat/Library functions, you must first write a program in C to
call the function. Each function conforms to established conventions in
programming and documentation. First priority in development is given to
efficient algorithms, clear documentation, and accurate results. The uniform
design of the functions makes it easy to use more than one function in a given
application. Also, you will find that the design consistency enables you to apply
your experience with one C/Stat/Library function to all other C functions that you
use.

ANSI C vs. Non-ANSI C

All of the examples in this documentation conform to ANSI C. If you are not
using ANSI C, you will need to modify your examples in functions that are
declared or in those arrays that are initialized as type float.

Non-ANSI C does not allow for automatic aggregate initialization, and thus, all
auto arrays that are initialized as type float in ANSI C must be initialized as type
static float in non-ANSI C. The following program contains arrays that are
initialized as type float and also a user-defined function:

1 #include <insls.h>

2

3 float

4

5 main()

6 {

7 i nt
8

9

10 fl oat

fen(int, float[], int, float[]);

n_observations = 3,
n_paraneters = 1,
n_i ndependent = 1;
*t het a_hat;
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11 fl oat

x[3] = {1.0, 2.0, 3.0}
12 float y[3] ={2.0, 4.0, 3.0

* Evaluate the integral */

[EnY
w
=un

14 theta_hat = insls_f_nonlinear_regression(fcn, n_paraneters,

15 n_observations, n_independent, x, y, 0);

16 /* Print the result and the exact answer */

17 inmsls_ f wite _matrix("estimted coefficient”, 1, 1, theta_hat, 0);
18 }

19 float fcn(int n_independent, float x[], int n_paraneters,
20 float theta[])

21 {
22 return exp(theta[0]*x[0]);
23 }
If using non-ANSI C, you will need to modify lines 3, 11, 12, 19, and 20 as
follows:
3 float fcn(); /* Function is not prototyped */
11 static float x[3] = {1.0, 2.0, 3.0}:
= {2.0, 4.0, 3.0};

12 static float y[ 3]

19 float fcn(n_independent, x, n_paraneters,

20 t het a) /*Decl aration of variabl e names*/
20a int n_i ndependent;

20b float x[];

20c int n_paraneters;

20d float theta[]; /*Type definitions of variabl es*/

The imsls.h File

The include file <i nmsl s. h> is used in all the examples in this manual. This file
contains prototypes for all IMSL-defined functions; the structures,

Imsls_f regression, Imsls_d_regression, Imsls_f poly regression,

Imsls_d poly regression, Imsls_f arma, and Imsls_d _arma; and the enumerated
data types, Imsls_arma_method, Imsls_permute, Imsls_dummy method,

Imsls write_options, Imsls_page options, and Imsls_error.

Thread Safe Usage

On systems that support either POSIX threads or WIN32 threads, IMSL
C/Stat/Library can be safely called from a multithreaded application. When
IMSL C/Stat/Library is used in a multithreaded application, the calling program
must adhere to a few important guidelines. In particular, IMSL C/Stat/Library's
implementation of signal handling, error handling, and I/O must be understood.

Signal Handling

When calling C/Stat/Library from a multithreaded application it is necessary to
turn C/Stat/Library 's signal-handling capability off. This is accomplished by
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making a single call toi msl s_error_options before any calls are made to
C/Stat/Library. For an example of turning off C/Stat/Library's internal-signal
handling , see Example 3 of imsls_error_options.

C/Stat/Library 's error handling in a multithreaded application behaves similarly
to how it behaves in a single-threaded application. The major difference is that
an error stack exists for each thread calling C/Stat/Library functions. The result
of separate error stacks for each thread is greater control of the error handler
options for each thread. Each thread can set its own options for the
C/Stat/Library error handler using i nsl s_error _opti ons. For an example of
setting error handler options for separate threads, see Example 3 of
imsls_error_options.

Routines that Produce Output

A number of routines in C/Stat/Library can be used to produce output. The
function i msl s_out put _fi | e can be used to control which file the output is
directed. In an application with a single thread of execution, a single call to

i mel s_out put _fil e can be used to set the file to which the output will be
directed. In a multithreaded application each thread must call

i msl s_out put _fi | e to change the default setting of where output will be
directed. See Example 2 of i nsl s_out put _ fi | e for more details.

Input Arguments

In a multithreaded application attention must be given to the data sent to
C/Stat/Library. Some arguments that may appear to be input-only are temporarily
modified during the call and restored before returning to the caller. Care must be
used to avoid usage of the same data space in separate threads calling functions in
C/Stat/Library.

Matrix Storage Modes

In this section, the word matrix is used to refer to a mathematical object and the
word array is used to refer to its representation as a C data structure. In the
following list of array types, the C/Stat/Library functions require input consisting
of matrix dimension values and all values for the matrix entries. These values are
stored in row-major order in the arrays.

Each function processes the input array and typically returns a pointer to a
“result.” For example, in solving linear regression, the pointer points to the
estimated coefficients. Normally, the input array values are not changed by the
functions.

In the C/Stat/Library, an array is a pointer to a contiguous block of data. An array
is not a pointer to a pointer to the rows of the matrix. Typical declarations are as
follows:
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float *a = {1, 2, 3, 4};
float b[2][2] = {1, 2, 3, 4};
float c[] = {1, 2, 3, 4};

Note: If you are using non-ANSI C and the variables are of type auto, the above
declarations would need to be declared as type static float.

General Mode

A general matrix is a square n X n matrix. The data type of a general array can be
int, float, or double.

Rectangular Mode

A rectangular matrix is an m X n matrix. The data type of a rectangular array can
be int, float, or double.

Symmetric Mode

A symmetric matrix is a square n X n matrix 4, such that 4 T=4. (The matrix

AT s the transpose of A4.) The data type of a symmetric array can be int, float, or
double.

Memory Allocation for Output Arrays

Many functions return a pointer to an array containing the computed answers. If
the function invocation uses the optional arguments

| MSLS_RETURN USER, float a[ ]

then the computed answers are stored in the user-provided array a, and the
pointer returned by the function is set to point to the user-provided array a. If an
invocation does not use | MSLS_RETURN_USER, then a pointer to the function is
internally initialized (through a memory allocation request to mal | oc) and stores
the answers there. (To release this space, f r ee can be used. Both mal | oc and

f r ee are standard C library functions declared in the header.) In this way, the
allocation of space for the computed answers can be made either by the user or
internally by the function.

Similarly, other optional arguments specify whether additional computed output
arrays are allocated by the user or are to be allocated internally by the function.
For example, in many functions, the optional arguments

| MSBLS_ANOVA_TABLE, float **anova_t abl e (Output)
| MSLS_ANOVA TABLE USER, float anova_tabl e[] (Output)

specify two mutually exclusive optional arguments. If the first option is chosen,
float **anova_t abl e refers to the address of a pointer to an internally allocated
array containing the analysis of variance statistics. On return, the pointer is
initialized (through a memory allocation request to mal | oc), and the array is
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stored there. Typically, float *anova_t abl e is declared, &anova_t abl e is used
as an argument to this function, and f r ee( anova_t abl e) is used to release the
space. In the second option, the analysis of variance statistics are stored in the
user-provided array anova_t abl e.

Finding the Right Function

The C/Stat/Library documentation is organized into chapters; each chapter
contains functions with similar computational or analytical capabilities. To locate
the right function for a given problem, use either the table of contents located in
each chapter introduction or the alphabetical summary at the end of this manual.

Often, the quickest way to use the C/Stat/Library is to find an example similar to
your problem, then mimic the example. Each function documented has at least
one example demonstrating its application.

Organization of the Documentation

This manual contains a concise description of each function with at least one
example demonstrating the use of each function, including sample input and
results. All information pertaining to a particular function is in one place within a
chapter.

Each chapter begins with an introduction followed by a table of contents listing
the functions included in the chapter. Documentation of the functions consists of
the following information:

¢ Section Name: Usually, the common root for the type float and type double
versions of the function.

e Purpose: A statement of the purpose of the function.

e Synopsis: The form for referencing the subprogram with required arguments
listed.

e Required Arguments: A description of the required arguments in the order of
their occurrence.

Input: Argument must be initialized; it is not changed by the function.

Input/Output: Argument must be initialized; the function returns output
through this argument. The argument cannot be a constant or an expression.

Output: No initialization is necessary. The argument cannot be a constant
or an expression; the function returns output through this argument.

e Return Value: The value returned by the function.

e Synopsis with Optional Arguments: The form for referencing the function
with both required and optional arguments listed.
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e Optional Arguments: A description of the optional arguments in the order of
their occurrence.

e Description: A description of the algorithm and references to detailed
information. In many cases, other IMSL functions with similar or
complementary functions are noted.

e Examples: At least one application of this function showing input and
optional arguments.

e Errors: Listing of any errors that may occur with a particular function. A
discussion on error types is given in the “User Errors” section of the Reference
Material. The errors are listed by their type as follows:

Informational Errors: List of informational errors that may occur with the
function.

Alert Errors: List of alert errors that may occur with the function.
Warning Errors: List of warning errors that may occur with the function.
Fatal Errors: List of fatal errors that may occur with the function.

References: References are listed alphabetically by author.

Naming Conventions

Most functions are available in both a type float and a type double version, with
names of the two versions sharing a common root. Some functions are also
available in type int. The following list is of each type and the corresponding
prefix of the function name in which multiple type versions exist:

Type Prefix

float inmsls_f_

double insls_d_
int imsls_i_

The section names for the functions contain only the common root to make
finding the functions easier. For example, the functions
imsls_f_sinple_statisticsandinsls_d_sinple_statistics canbe
found in Chapter 1 in the “simple_statistics” section.

Where appropriate, the same variable name is used consistently throughout the
C/Stat/Library. For example, anova_t abl e denotes the array containing the
analysis of variance statistics and y denotes a vector of responses for a dependent
variable.

When writing programs accessing the C/Stat/Library, choose C names that do not
conflict with IMSL external names. The careful user can avoid any conflicts with
IMSL names if, in choosing names, the following rule is observed:
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. Do not choose a name beginning with “i msl s_" in any combination of
uppercase or lowercase characters.

Error Handling, Underflow, and Overflow

The functions in the C/Stat/Library attempt to detect and report errors and invalid
input. This error-handling capability provides automatic protection for the user
without requiring the user to make any specific provisions for the treatment of
error conditions. Errors are classified according to severity and are assigned a
code number. By default, errors of moderate or higher severity result in messages
being automatically printed by the function. Moreover, errors of highest severity
cause program execution to stop. The severity level, as well as the general nature
of the error, is designated by an “error type” with symbolic names | MSLS_FATAL,
I MBLS_WARNI NG, etc. See the section “User Errors” in the Reference Material for
further details.

In general, the C/Stat/Library codes are written so that computations are not
affected by underflow, provided the system (hardware or software) replaces an
underflow with the value 0. Normally, system error messages indicating
underflow can be ignored.

IMSL codes also are written to avoid overflow. A program that produces system
error messages indicating overflow should be examined for programming errors
such as incorrect input data, mismatch of argument types, or improper
dimensions.

In many cases, the documentation for a function points out common pitfalls that
can lead to failure of the algorithm.

Printing Results

Most functions in the C/Stat/Library do not print any of the results; the output is
returned in C variables. The C/Stat/Library does contain some special functions
just for printing arrays. For example, IMSL functioni nsl s_f_write_matri x
is convenient for printing matrices of type float. See Chapter 13, “Printing
Functions,” for detailed descriptions of these functions.

Missing Values

Some of the functions in the C/Stat/Library allow the data to contain missing
values. These functions recognize as a missing value the special value referred to
as “Not a Number” or NaN. The actual value is different on different computers,
but it can be obtained by reference to the function i nsl s_f _nachi ne, described
in Chapter 14, “Utilities”.

The way that missing values are treated depends on the individual function and is
described in the documentation for the function.

Introduction
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Chapter 1: Basic Statistics

Routines
1.1 Simple Summary Statistics
Univariate summary statistics ............cccccceviinnnn simple_statistics 2
Mean and variance inference
for a single normal population.......................... normal_one_sample 7
Inferences for two normal populations ............ normal_two_sample 11

1.2 Tabulate, Sort, and Rank

Tally observations into a one-way frequency table.....table_oneway 18
Tally observations into a two-way frequency table..... table_twoway 23
Sort data with options to tally cases

into a multi-way frequency table............ccccccociiiiiis sort_data 28
Ranks, normal scores, or exponential scores .............cc.vuvunee. ranks 36

Usage Notes

The functions for computations of basic statistics generally have relatively simple
arguments. In most cases, the first required argument is the number of
observations. The data are input in either a one- or two-dimensional array. As
usual, when a two-dimensional array is used, the rows contain observations and
the columns represent variables. Most of the functions in this chapter allow for
missing values. Missing value codes can be set by using function

i msl s_f _machi ne, described in Chapter 14.

Several functions in this chapter perform statistical tests. These functions
generally return a “p-value” for the test, often as the return value for the C
function. The p-value is between 0 and 1 and is the probability of observing data
that would yield a test statistic as extreme or more extreme under the assumption
of the null hypothesis. Hence, a small p-value is evidence for the rejection of the
null hypothesis.
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simple_statistics

Computes basic univariate statistics.

Synopsis

#include <i nsl s. h>

float *inmsls_f_sinple_statistics (int n_observati ons,
int n_vari abl es, float x[], ..., 0)

The type double function isi nsl s_d_si npl e_stati sti cs.

Required Arguments

int n_observations (Input)
Number of observations.

int n_vari abl es (Input)
Number of variables.

float x[] (Input)
Array of size n_obser vati ons X n_vari abl es containing the data

matrix.

Return Value

A pointer to an array containing some simple statistics for each of the columns in
x. If I MSLS_MEDI ANand | MSLS_MEDI AN_AND_SCALE are not used as optional
arguments, the size of the matrix is 14 X n_vari abl es. The columns of this
matrix correspond to the columns of x, and the rows contain the following
statistics:

Row Statistic
0 mean
1 variance
2 standard deviation
3 coefficient of skewness
4 coefficient of excess (kurtosis)
5 minimum value
6 maximum value
7 range
8 coefficient of variation (when defined)
If the coefficient of variation is not defined, 0 is returned.
9 number of observations (the counts)

2 « simple_statistics
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Row Statistic
10 lower confidence limit for the mean (assuming normality)
The default is a 95-percent confidence interval.
11 upper confidence limit for the mean (assuming normality)
12 lower confidence limit for the variance (assuming normality)
The default is a 95-percent confidence interval.
13 upper confidence limit for the variance (assuming normality))

Synopsis with Optional Arguments

#include <insls. h>

float *insls_f_sinple_statistics (int n_observations,

int n_vari abl es, float x[],

| MBLS_CONFI DENCE_MEANS, float confi dence_neans,
| MSLS_CONFI DENCE_VARI ANCES, float confi dence_vari ances,
| MBLS X COL_DIM int x_col _dim

| MBLS_STAT _COL_DI'M int stat_col _dim

| MSLS_MEDI AN, or

| MBLS_MEDI AN_AND_SCALE,

| MBLS_M SSI NG LI STW SE, or

| MSLS_M SSI NG_ELEMENTW SE,

| MBLS_FREQUENCI ES, float frequencies[],

| MBLS_ WEI GHTS, float wei ghts[],

| MBLS_RETURN_USER, float sinple_statistics[],
0)

Optional Arguments
| MSLS_CONFI DENCE_MEANS, float confi dence_neans (Input)

Confidence level for a two-sided interval estimate of the means
(assuming normality) in percent. Argumentconf i dence_nmeans must

be between 0.0 and 100.0 and is often 90.0, 95.0, or 99.0. For a one-

sided confidence interval with confidence level ¢, set

confi dence_neans =100.0 —2(100 —¢). If

| MBLS_CONFI DENCE_MEANS is not specified, a 95-percent confidence
interval is computed.

| MSLS_CONFI DENCE_VARI ANCES, float confi dence_variances (Input)
The confidence level for a two-sided interval estimate of the variances
(assuming normality) in percent. The confidence intervals are symmetric
in probability (rather than in length). For a one-sided confidence interval
with confidence level ¢, set confi dence_nmeans = 100.0 —2(100 - ¢).
If | MBLS_CONFI DENCE_VARI ANCES is not specified, a 95-percent
confidence interval is computed.

Chapter 1: Basic Statistics
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| MSBLS X _COL_DI'M int x_col _di m (Input)
Column dimension of array x.
Default: x_col _di m=n_vari abl es

| MSLS_STAT COL_DIM int stat_col _di m (Input)
Column dimension of the returned value array, or if
| MBLS_RETURN_USER is specified, the column dimension of array
sinpl e_statistics.
Default: st at _col _di m=n_vari abl es

| MSLS_MEDI AN, or

| MSLS_MEDI AN_AND_SCALE
Exactly one of these optional arguments can be specified in order to
indicate the additional simple robust statistics to be computed. If
| MSLS_MEDI AN s specified, the medians are computed and stored in
one additional row (row number 14) in the returned matrix of simple
statistics. If | MSLS_MEDI AN_AND_SCALE is specified, the medians, the
medians of the absolute deviations from the medians, and a simple
robust estimate of scale are computed, then stored in three additional
rows (rows 14, 15, and 16) in the returned matrix of simple statistics.

| MSLS_M SSI NG _LI STW SE, or

| MSLS_M SSI NG_ELEMENTW SE
If I MSLS_M SSI NG_ELEMENTW SE is specified, all non missing data for
any variable is used in computing the statistics for that variable. If
| MSLS_M SSI NG _LI STW SE is specified and if an observation (row of x)
contains a missing value, the observation is excluded from computations
for all variables. The default is | MSLS_M SSI NG_LI STW SE. In either
case, if weights and/or frequencies are specified and the value of the
weight and/or frequency is missing, the observation is excluded from
computations for all variables.

| MBLS_FREQUENCI ES, float frequenci es[] (Input)
Array of length n_obser vat i ons containing the frequency for each
observation.
Default: Each observation has a frequency of 1

| MBLS_VEI GHTS, float wei ghts[] (Input)
Array of length n_obser vat i ons containing the weight for each
observation.
Default: Each observation has a weight of 1

| MSLS_RETURN_USER, float sinple_statistics[] (Output)
User-supplied array containing the matrix of statistics. If neither
| MSLS_MEDI ANnor | MSLS_MEDI AN_AND_SCALE is specified, the
matrix is 14 x n_vari abl es. If | MSLS_MEDI AN s specified, the matrix
is 15 x n_vari abl es. If | MSLS_MEDI AN_AND_SCALE is specified, the
matrix is 17 x n_vari abl es.
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Description

For the data in each column of x, i nsl s_f _si npl e_st ati sti cs computes the
sample mean, variance, minimum, maximum, and other basic statistics. This
function also computes confidence intervals for the mean and variance (under the
hypothesis that the sample is from a normal population).

Frequencies are interpreted as multiple occurrences of the other values in the
observations. In other words, a row of x with a frequency variable having a value
of 2 has the same effect as two rows with frequencies of 1. The total of the
frequencies is used in computing all the statistics based on moments (mean,
variance, skewness, and kurtosis). Weights are not viewed as replication factors.
The sum of the weights is used only in computing the mean (the weighted mean is
used in computing the central moments). Both weights and frequencies can be 0,
but neither can be negative. In general, a 0 frequency means that the row is to be
eliminated from the analysis; no further processing or error checking is done on
the row. A weight of 0 results in the row being counted, and updates are made of
the statistics.

The definitions of some of the statistics are given below in terms of a single
variable x of which the i-th datum is x;.

Mean
_ Zfiwixi
X, "~
pWAL
Variance
— \2
) Zfiwi(xi -x,)
s, =
n—1
Skewness

Z_}?wi(xi —fw)3 /'n
[Zfiwi (x; —fw)z /nr/2

Excess or Kurtosis
Zfiwi(xi _)?w)4 /n
_ v, PP
[Zfiwi(xi -x,) /”]

-3

Minimum

Xin = min(xi )

Maximum
o = max(x;)

Xm
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Range

Coefficient of Variation

Median
) middle x; after sorting if # is odd
median{x; } = , o
average of middle two x;'s if n is even
Median Absolute Deviation
MAD = median {}r; — median {x;}|}

Simple Robust Estimate of Scale

MAD/® ' (3/4)
where @' (3/4) = 0.6745 is the inverse of the standard normal distribution
function evaluated at 3/4. This standardizes MAD in order to make the scale

estimate consistent at the normal distribution for estimating the standard deviation
(Huber 1981, pp. 107-108).

Example

Data from Draper and Smith (1981) are used in this example, which includes
5 variables and 13 observations.

#i ncl ude <i sl s. h>

#define N_VARI ABLES 5
#defi ne N_OBSERVATI ONS 13
mai n()
fl oat *sinmple_statistics;
fl oat x[] ={
7., 26., 6., 60., 78.5,
1., 29., 15., 52., 74.3,
11., 56., 8., 20., 104.3,
11., 31., 8., 47., 87.6,
7., 52., 6., 33., 95.9,
11., 55., 9., 22., 109.2,
3., 71., 17., 6., 102.7,
1., 31., 22., 44., 72.5,
2., 54., 18., 22., 93.1,
21., 47., 4., 26., 115.9,
1., 40., 23., 34., 83.8,
11., 66., 9., 12., 113.3,
10., 68., 8., 12., 109.4};
char *row_| abel s[] = {
"means", "variances", "std. dev", "skewness", "kurtosis",
"mnim", "maxi ma", "ranges", "C. V.", "counts", "lower mean",
"upper mean", "lower var", "upper var"};
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sinple_statistics =
N_VARI ABLES, x

inmsls_f_sinple_statistics(N_OBSERVATI ONS,

0);

imsls f wite matrix("* * * Statistics
sinple_statistics,

| MSLS_ROW LABELS,

| MBLS_WRI TE_FORMAT,

nmeans
vari ances
std. dev
skewness
kurtosis
m ni ma
maxi ma
ranges
C. V.
counts

| ower nean
upper nean
| ower var
upper var

* * % Statistics * * *

Output
1
. 462 48
. 603 242
. 882 15.
. 688 - 0.
. 075 - 1.
. 000 26.
. 000 71.
. 000 45
. 788 0.
. 000 13.
. 907 38.
. 016 57
. 793 124
.289 659

2
. 154
. 141
561
047
323
000
000
. 000
323
000
750
557
. 512
. 817

11.
41.
6.
0.
-1.
4.
23.
19.
0.
13.
7.
15.
21.
111.

row_| abel s,
"oy, 3f",

3
769
026
405
611
079
000
000
000
544
000
899
640
096
792

0);

* * *\ n"’
4
000 95
167 226
738 15
330 -0
014 -1
000 72
000 115
000 43
558 0
000 13
885 86
115 104
.065 116
.434 616

14, N_VARI ABLES,

. 423
. 314
. 044
. 195

. 500
. 900
. 400
. 158
. 000
. 332
. 514
. 373
. 688

normal_one_sample

Computes statistics for mean and variance inferences using a sample from a

normal population.

Synopsis

#include <i sl s. h>

float i msl s_f_normal _one_sanpl e (int n_observations, float x[], ..,

0)

The type double function isi nsl s_d_nor nal _one_sanpl e.

Required Arguments

int n_observations (Input)
Number of observations.

float x[]

(Input)

Array of length n_obser vati ons.

Return Value

The mean of the sample.
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Synopsis with Optional Arguments

#include <i sl s. h>

float i msl s_f_normal _one_sanpl e (int n_observations, float x[],

| MSLS_CONFI DENCE_MEAN, float confi dence_nean,
| MSLS_CI _MEAN, float *1ower _limt, float *upper_linit,
| MBLS_STD DEV, float *std_dev,
| MSLS_T_TEST, int *df, float *t, float *p_val ue,
| MSLS_T_TEST_NULL, float nmean_hypot hesi s_val ue,
| MSLS_CONFI DENCE_VARI ANCE, float confi dence_vari ance,
| MBLS_Cl _VARI ANCE, float *| ower _linit,
float *upper _limt,
| MSBLS_CHI _SQUARED TEST, int *df, float *chi _squared,
float *p_val ue,
| MBLS_CH _SQUARED TEST NULL,
float vari ance_hypot hesi s_val ue,
0)

Optional Arguments

| MSLS_CONFI DENCE_MEAN, float confi dence_nean (Input)

Confidence level (in percent) for two-sided interval estimate of the
mean. Argument conf i dence_mean must be between 0.0 and 100.0
and is often 90.0, 95.0, or 99.0. For a one-sided confidence interval with
confidence level ¢ (at least 50 percent), set

confi dence_mean =100.0 — 2.0 x (100.0 —¢). If

| MSLS_CONFI DENCE_MEAN is not specified, a 95-percent confidence
interval is computed.

| MSLS_CI _MEAN, float *1ower _limt, float *upper_linmit (Output)

Argument | ower _| i mi t contains the lower confidence limit for the
mean, and argumentupper _| i mi t contains the upper confidence limit
for the mean.

| MBLS_STD DEV, float *std_dev (Output)

Standard deviation of the sample.

| MSLS_T_TEST, int *df, float *t, float *p_val ue (Output)

Argument df is the degrees of freedom associated with the ¢ test for the
mean, t is the test statistic, and p_val ue is the probability of a larger

¢ in absolute value. The ¢ test is a test, against a two-sided alternative, of
the hypothesis P = [y, where |, is the null hypothesis value as described
in1 MBLS T_TEST NULL.

| MSLS_T_TEST_NULL, float mean_hypot hesi s_val ue (Input)

Null hypothesis value for ¢ test for the mean.
Default: mean_hypot hesi s_val ue = 0.0
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| MSLS_CONFI DENCE_VARI ANCE, float confi dence_variance (Input)
Confidence level (in percent) for two-sided interval estimate of the
variances. Argumentconf i dence_vari ance must be between 0.0 and
100.0 and is often 90.0, 95.0, 99.0. For a one-sided confidence interval
with confidence level ¢ (at least 50 percent), set
confi dence_variance =100.0 — 2.0 x (100.0 — ¢). If this option is
not used, a 95-percent confidence interval is computed.

| MSLS_CI _VARI ANCE, float *| ower _limt, float *upper _linit (Output)
Contains the lower and upper confidence limits for the variance.

| MSLS_CH _SQUARED TEST, int *df, float *chi _squar ed,
float *p_val ue (Output)
Argument df is the degrees of freedom associated with the chi-squared
test for variances, chi _squar ed is the test statistic, and p_val ue is the
probability of a larger chi-squared. The chi-squared test is a test of the

hypothesis 0° = 0 where 0 is the null hypothesis value as described
in1 MBLS CHI _SQUARED TEST NULL.

| MSLS_CHI _SQUARED TEST_NULL, float vari ance_hypot hesi s_val ue
(Input)
Null hypothesis value for the chi-squared test.
Default: vari ance_hypot hesi s_val ue =1.0

Description

Statistics for mean and variance inferences using a sample from a normal
population are computed, including confidence intervals and tests for both mean
and variance. The definitions of mean and variance are given below. The
summation in each case is over the set of valid observations, based on the
presence of missing values in the data.

Mean, return value

Standard deviation, std_dev

The ¢ statistic for the two-sided test concerning the population mean is given by

_X—H

s/\/;

where s and X are given above. This quantity has a T distribution withn — 1
degrees of freedom.

t
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The chi-squared statistic for the two-sided test concerning the population variance
is given by

n—1)s?
oo
Gy

where s is given above. This quantity has a )(2 distribution with n — 1 degrees of
freedom.

Examples

Example 1

This example uses data from Devore (1982, p. 335), which is based on data
published in the Journal of Materials. There are 15 observations; the mean is the
only output.

#i ncl ude <insls. h>
mai n()
{
#defi ne N_OBSERVATI ONS 15
float nean;
float x[ N_OBSERVATI ONS] = {
26.7, 25.8, 24.0, 24.9, 26.4,
25.9, 24.4, 21.7, 24.1, 25.9,
27.3, 26.9, 27.3, 24.8, 23.6};

/* Perform anal ysis */
nmean = insls_f_nornal _one_sanpl e(N_OBSERVATI ONS, x, 0);

/* Print results */
printf("Sanple Mean = 9. 2f", nean);

Output
Sanpl e Mean = 25.3

Example 2

This example uses the same data as the initial example. The hypothesis
Hp: L= 20.0 is tested. The extremely large ¢ value and the correspondingly
small p-value provide strong evidence to reject the null hypothesis.

#i ncl ude <insls. h>

mai n()

#defi ne N_OBSERVATI ONS 15
i nt df ;

float nmean, s, lower_limt, upper_limt, t, p_value;
static float x[ N_OBSERVATIONS] = {
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26.7, 25.8, 24.0, 24.9, 26.4,
25.9, 24.4, 21.7, 24.1, 25.9,
27.3, 26.9, 27.3, 24.8, 23.6};

/* Perform anal ysis +*/

nmean = i nsls_f_normal _one_sanpl e( N_OBSERVATI ONS, X,
| MBLS_STD DEV, &s,
| MBLS CI _MEAN, & ower _limt, &upper_limt,
| MBLS_T_TEST_NULL, 20.0,
| MBLS T _TEST, &df, &, &p_val ue,
0);

/* Print results */
printf("Sanple Mean = 9. 2f\n", nean);
printf("Sanple Standard Deviation = 9. 2f\n", s);
printf("95%6 Cl for the nean is (%.2f,9%.2f)\n", lower_limt,

upper _limt);

printf("df = 9@d\n", df);
printf("t = 9%.2f\n", t);
printf("p-value = 98.5f\n", p_value);

}

Output
Sanpl e Mean = 25.31
Sanpl e Standard Deviation = 1.58

95% Cl for the nmean is (24. 44, 26.19)
df = 14

t = 13.03

p-val ue = 0.00000

normal_two_sample

Computes statistics for mean and variance inferences using samples from two
normal populations.

Synopsis

#include <i msls. h>

float inmsls_f_normal _two_sanpl e (int nl_observations, float x1[],
int n2_observations, float x2[], .., 0)

The type double function isi nsl s_d_nor mal _t wo_sanpl e.

Required Arguments

int n1_observations (Input)
Number of observations in the first sample, x1.

float x1[]1 (Input)
Array of length n1_obser vat i ons containing the first sample.

int n2_observations (Input)
Number of observations in the second sample, x2.
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float x2[] (Input)
Array of length n2_obser vat i ons containing the second sample.

Return Value

Difference in means, x1_nean — x2_nean.

Synopsis with Optional Arguments
#include <i nsls. h>

float i nsl s_f_nornal _two_sanpl e (int nl1_observations, float x1[],

int n2_observations, float x2[],

| MSBLS_MEANS, float *x1_mean, float *x2_nean,

| MSLS_CONFI DENCE_MEAN, float confi dence_nean,

| MSBLS_Cl _DI FF_FOR_EQUAL_VARS, float *| ower _linit,
float *upper _limt,

| MSBLS_Cl _DI FF_FOR_UNEQUAL_VARS, float *| ower _|imt,
float *upper _limt

| MBLS_T_TEST_FOR EQUAL_VARS, int *df, float *t,
float *p_val ue,

| MSBLS_T_TEST_FOR _UNEQUAL_VARS, float *df , float *t,
float *p_val ue,

| MBLS_T_TEST_NULL, float mean_hypot hesi s_val ue,

| MSLS_POOLED VARI ANCE, float * pool ed_vari ance,

| MBLS_CONFI DENCE_VARI ANCE, float confi dence_vari ance,

| MBLS_Cl _COMMON_VARI ANCE, float *lower linit,
float *upper _limt,

| MBLS_CHI _SQUARED TEST, int *df, float *chi _squar ed,
float *p_val ue,

| MBLS_CHI _SQUARED TEST_NULL,
float vari ance_hypot hesi s_val ue,

| MSLS_STD DEVS, float *x1_std_dev, float *x2_std_dev,

| MBLS_Cl _RATI O VARI ANCES, float *| ower _linit,
float *upper _limt,

| MSLS_F_TEST, int *df _nunerator, int *df _denom nator,
float *F, float *p_val ue,

0)

Optional Arguments

| MSLS_MEANS, float *x1_nean, float *x2_mean (Output)
Means of the first and second samples.

| MSLS_CONFI DENCE_MEAN, float confi dence_nean (Input)
Confidence level for two-sided interval estimate of the mean ofx1
minus the mean ofx2, in percent. Argument conf i dence_nmean must
be between 0.0 and 100.0 and is often 90.0, 95.0, or 99.0. For a one-
sided confidence interval with confidence level ¢ (at least 50 percent),
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set confi dence_nean =100.0 — 2.0 x (100.0 — ¢).
Default: confi dence_nean =95.0

I MSLS_Cl DI FF_FOR EQUAL_VARS, float *| ower |init,
float *upper_linmt (Output)
Argument | ower _| i mi t contains the lower confidence limit, and
upper _| i mi t contains the upper limit for the mean of the first
population minus the mean of the second, assuming equal variances.

| MBLS_Cl DI FF_FOR UNEQUAL_VARS, float *| ower linit,
float *upper_linmt (Output)
Argument | ower _| i mi t contains the approximate lower confidence
limit, and upper _| i mi t contains the approximate upper limit for the
mean of the first population minus the mean of the second, assuming
unequal variances.

| MBLS_T_TEST _FOR EQUAL_VARS, int *df, float *t, float *p_val ue
(Output)
A t test for [ — [, = ¢, where c is the null hypothesis value. (See the
description of | MSLS_T_TEST_NULL.) Argument df contains the
degrees of freedom, argumentt contains the ¢ value, and argument
p_val ue contains the probability of a larger ¢ in absolute value,
assuming equal means. This test assumes equal variances.

| MBLS_T_TEST_FOR UNEQUAL_VARS, float *df , float *t, float *p_val ue
(Output)
At test for [ — [, = ¢, where c is the null hypothesis value. (See the
description of | MSLS_T_TEST_NULL.) Argument df contains the
degrees of freedom for Satterthwaite’s approximation, argumentt
contains the ¢ value, and argument p_val ue contains the approximate
probability of a larger ¢ in absolute value, assuming equal means. This
test does not assume unequal variances.

| MSLS_T_TEST_NULL, float mean_hypot hesi s_val ue (Input)
Null hypothesis value for the ¢ test.
Default: mean_hypot hesi s_val ue =0.0

| MSLS_POOLED VARI ANCE, float *pool ed_vari ance (Output)
Pooled variance for the two samples.

| MSLS_CONFI DENCE_VARI ANCE, float confi dence_variance (Input)
Confidence level for inference on variances. Under the assumption of
equal variances, the pooled variance is used to obtain a two-sided
confi dence_vari ance percent confidence interval for the common
variance if | MSLS_Cl _ COMMON_VARI ANCE is specified. Without
making the assumption of equal variances, the ratio of the variances is of
interest. A two-sided conf i dence_vari ance percent confidence
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interval for the ratio of the variance of the first sample to that of the
second sample is computed and is returned if

| MSLS_CI _RATI O VARI ANCES is specified. The confidence intervals
are symmetric in probability.

Default: confi dence_vari ance =95.0

| MSLS_CI _COVMON_VARI ANCE, float *| ower _limt, float *upper_limt

(Output)
Argument | ower _| i mi t contains the lower confidence limit, and
upper _| i mi t contains the upper limit for the common, or pooled,
variance.

| MSLS_CH _SQUARED TEST, int *df, float *chi _squar ed,
float *p_val ue (Output)
The chi-squared test for 0 = 0 where 0“ is the common, or pooled,
variance, and 0y is the null hypothesis value. (See description of
| MSLS_CHI _SQUARED TEST_NULL.) Argument df contains the degrees
of freedom, argument chi _squar ed contains the chi-squared value, and

argument p_val ue contains the probability of a larger chi-squared in
absolute value, assuming equal means.

MSLS_CHI _SQUARED TEST_NULL, float vari ance_hypot hesi s_val ue
(Input)
Null hypothesis value for the chi-squared test.
Default: vari ance_hypot hesi s_val ue =1.0

MSLS_STD DEVS, float *x1_std_dev, float *x2_std_dev (Output)
Standard deviations of the first and second samples.

MSLS_Cl _RATI O_VARI ANCES, float *| ower _limt, float *upper_limt
(Output)
Argument | ower _| i mi t contains the approximate lower confidence
limit, and upper _| i mi t contains the approximate upper limit for the
ratio of the variance of the first population to the second.

MSLS_F_TEST, int *df _nunerator, int *df _denom nat or, float *F,
float *p_val ue (Output)
The F test for equality of variances. Argumentdf _nurer at or and
df _denomi nat or contain the numerator degrees of freedom, argument
F contains the F test value, and argument p_val ue contains the
probability of a larger F in absolute value, assuming equal variances.

Description

Functioni nmsl s_f _nor nal _t wo_sanpl e computes statistics for making
inferences about the means and variances of two normal populations, using
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independent samples in x1 and x2. For inferences concerning parameters of a
single normal population, see function i msl s_nor mal _one_sanpl e on page 7.

Lety and O 12 be the mean and variance of the first population, and let [I, and
05 be the corresponding quantities of the second population. The function
contains test confidence intervals for difference in means, equality of variances,
and the pooled variance.

The means and variances for the two samples are as follows:

F = xm), % =(Q %) Iy

and
B 2
=3 =5 (=), 3= (e —) /()

Inferences about the Means

The test that the difference in means equals a certain value, for example, [,
depends on whether or not the variances of the two populations can be considered
equal. If the variances are equal and nean_hypot hesi s_val ue equals 0, the
test is the two-sample ¢ test, which is equivalent to an analysis-of-variance test.
The pooled variance for the difference-in-means test is as follows:

2= (my =1)s; +(ny —1)s,

The ¢ statistic is as follows:
f=_ %17% “Ho
s\/(l/nl) +(1/ny)

Also, the confidence interval for the difference in means can be obtained by
specifying | MSLS_CI _Dl FF_FOR_EQUAL_VARS.

If the population variances are not equal, the ordinary 7 statistic does not have a

t distribution and several approximate tests for the equality of means have been
proposed. (See, for example, Anderson and Bancroft 1952, and

Kendall and Stuart 1979.) One of the earliest tests devised for this situation is the
Fisher-Behrens test, based on Fisher’s concept of fiducial probability. A
procedure used if | MSLS_T_TEST_FOR_UNEQUAL_VARS and/or

| MSBLS_CI _DI FF_FOR_UNEQUAL _VARS are specified is the Satterthwaite’s
procedure, as suggested by H.F. Smith and modified by F.E. Satterthwaite
(Anderson and Bancroft 1952, p. 83).

The test statistic is

t'= (¥ —% ~Ho)/ 54

where
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Sy = \/(slz /n1)+(s§ /nz)

Under the null hypothesis of | — [, = ¢, this quantity has an approximate ¢
distribution with degrees of freedom df (in| MSLS T_TEST_FOR UNEQUAL_VARS),
given by the following equation:

4
df = %

(sl2 /n1)2 . (s% /n2)2

}’ll_l n2_1

Inferences about Variances

The F statistic for testing the equality of variances is given by F = s2 o /s?

max min >

where s2__ is the larger of s7 and s . If the variances are equal, this quantity

X

has an F'distribution with n; — 1 and n, — 1 degrees of freedom.

It is generally not recommended that the results of the F test be used to decide
whether to use the regular ¢ test or the modified ¢ on a single set of data. The
modified # (Satterthwaite’s procedure) is the more conservative approach to use
if there is doubt about the equality of the variances.

Examples

Example 1

This example, taken from Conover and Iman (1983, p. 294), involves scores on
arithmetic tests of two grade-school classes. The question is whether a group
taught by an experimental method has a higher mean score. Only the difference in
means is output. The data are shown below.

Scores for Standard Group Scores for Experimental Group
72 111
75 118
77 128
80 138
104 140
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Scores for Standard Group Scores for Experimental Group
110 150
125 163
164
169

#i ncl ude <i sl s. h>
mai n()

{
#defi ne N1_OBSERVATI ONS 7
#defi ne N2_OBSERVATI ONS 9

float diff_neans;

fl oat x1[ NL_OBSERVATI ONS] = {
72.0, 75.0, 77.0, 80.0, 104.0, 110.0, 125.0};

fl oat x2[ N2_OBSERVATI ONS] = {
111.0, 118.0, 128.0, 138.0, 140.0, 150.0, 163.0,
164.0, 169.0};

/* Perform anal ysis */
di ff_nmeans = insls_f_normal _two_sanpl e( N1_OBSERVATI ONS, x1,
N2_OBSERVATI ONS, x2, 0);

/* Print results */
printf("\nx1l_mean - x2_mean = 9%.2f\n", diff_means);

}
Output
x1_mean - x2_mean = -50.48
Example 2

The same data is used for this example as for the initial example. Here, the results
of the ¢ test are output. The variances of the two populations are assumed to be
equal. It is seen from the output that there is strong reason to believe that the two
means are different (f value of —4.804). Since the lower 97.5-percent confidence
limit does not include 0, the null hypothesis is that [, < W, would be rejected at
the 0.05 significance level. (The closeness of the values of the sample variances
provides some qualitative substantiation of the assumption of equal variances.)

#i ncl ude <i sl s. h>
mai n()

#defi ne N1_OBSERVATI ONS 7
#defi ne N2_OBSERVATI ONS 9

i nt df ;
float diff_neans, lower_limt, upper_linmt, t, p_value, sp2;
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float x1[ N1_OBSERVATI ONS] = {

72.0, 75.0, 77.0, 80.0, 104.0, 110.0, 125.0};

float x2[ N2_OBSERVATI ONS] = {

111.0, 118.0, 128.0, 138.0, 140.0, 150.0,

164.0, 169.0};

/* Perform anal ysis */

di ff_neans = insls_f_nornal _two_sanpl e( N1_OBSERVATI ONS, x1,

N2_OBSERVATI ONS, ~ x2,
| MSLS_POOLED VAR ANCE, &sp2,

| MSLS_Cl _DI FF_FOR EQUAL_VARS, & ower linit,
| MBLS_T_TEST_FOR EQUAL_VARS, &df, &, &p_val ue,

0);

/* Print results */

printf("\nx1l_nmean - x2_nean = %. 2f\n", diff_neans);

printf("Pool ed variance = %. 2f\n", sp2);

printf("95%6 Cl for x1 _nean - x2_nean is (%. 2f, %. 2f)\n",

lower limt, upper_limt);
printf("df = 9@d\n", df);
printf("t = 9. 2f\n", t);
printf("p-value = 98.5f\n", p_value);

Output

x1_nmean - x2_mean = -50.48

Pool ed variance = 434. 63

95% Cl for x1_nmean - x2_nean is (-73.01,-27.94)
df = 14

t =-4.80

p-val ue = 0.00028

&upper _limt,

table_oneway

Tallies observations into a one-way frequency table.

Synopsis

#include <i sl s. h>

float *insls_f_tabl e_oneway (int n_observations, float x[1],

int n_intervals, ..., 0)

The type double function isi nsl s_d_t abl e_oneway.

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)

Array of length n_obser vat i ons containing the observations.

18 « table_oneway
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int n_intervals (Input)

Number of intervals (bins).

Return Value

Pointer to an array of length n_i nt er val s containing the counts.

Synopsis with Optional Arguments

#include <insls. h>

float *insl s_f_tabl e_oneway (int n_observations, float x[],

int n_intervals,

| MSLS_DATA BOUNDS, float *m ni num float *maxi mum or

| MSLS_KNOAN_BOUNDS, float | ower _bound, float upper _bound,
or

| MSLS_CUTPO NTS, float cutpoints[], or

| MSLS_CLASS MARKS, float cl ass_marks[],

| MBLS_RETURN_USER, float tabl e[],

0)

Optional Arguments

| MSLS_DATA BOUNDS, float *m ni mum float * maxi mum (Output)

If none is specified or if | MSLS_DATA BOUNDS is specified,

n_i nt er val s intervals of equal length are used with the initial interval
starting with the minimum value inx and the last interval ending with the
maximum value inx. The initial interval is closed on the left and right. The
remaining intervals are open on the left and closed on the right. When

| MSLS_DATA_BOUNDS is explicitly specified, the minimum and maximum
values in x are output in nmi ni rumand mexi num With this option, each
interval is of length (maxi mum—mi ni rum)/n_i nt erval s.

or

I MSLS_KNOWN_BOUNDS, float | ower _bound, float upper _bound (Input)

If | MSLS_KNOWN_BOUNDS is specified, two semi-infinite intervals are
used as the initial and last intervals. The initial interval is closed on the
right and includes | ower _bound as its right endpoint. The last interval
is open on the left and includes all values greater than upper _bound.
The remaining n_i nt er val s — 2 intervals are each of length

upper _bound -1 ower _bound

n_interval s—2

and are open on the left and closed on the right. Argument
n_i nt er val s must be greater than or equal to 3 for this option.

or
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#i ncl ude <i sl s. h>

| MSLS_CUTPO NTS, float cut poi nts[] (Input)

If I MBLS_CUTPQO NTS is specified, cutpoints (boundaries) must be
provided in the array cut poi nt s of length n_i nt erval s — 1. This
option allows unequal interval lengths. The initial interval is closed on
the right and includes the initial cutpoint as its right endpoint. The last
interval is open on the left and includes all values greater than the last
cutpoint. The remaining n_i nt er val s — 2 intervals are open on the left
and closed on the right. Argumentn_i nt er val must be greater than or
equal to 3 for this option.

or

| MSLS_CLASS MARKS, float cl ass_marks[] (Input)

If I MBLS_CLASS_MARKS is specified, equally spaced class marks in
ascending order must be provided in the array cl ass_mar ks of length
n_i nt erval s. The class marks are the midpoints of each of the

n_i nt erval s. Each interval is assumed to have length

cl ass_mar ks [1] —cl ass_mar ks [0]. Argument n_i nt er val s must
be greater than or equal to 2 for this option.

None or exactly one of the four optional arguments described above can
be specified in order to define the intervals or bins for the one-way table.

| MSLS_RETURN_USER, float tabl e[] (Output)

Counts are stored in the array t abl e of length n_i nt er val s, which is
provided by the user.

Examples

Example 1

The data for this example is from Hinkley (1977) and Vellemanand Hoaglin
(1981). The measurements (in inches) are for precipitation in Minneapolis/St.
Paul during the month of March for 30 consecutive years.

mai n()
i nt n_i nterval s=10;
i nt n_observati ons=30;

fl oat *t abl e;
fl oat X[ 1]

= {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
1.89, 0.90, 2.05};

table = inmsls_f_table_oneway (n_observations, x, n_intervals, 0);
imsls_f _wite_matrix("counts", 1, n_intervals, table, 0);
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#i ncl ude <
mai n()

i nt

i nt

fl oat

fl oat
fl oat

tabl e

i msls_

#i ncl ude <
mai n()
.
I nt
i nt
doubl e
doubl e

Output
counts

o o N
o © o w

Example 2

= O

In this example, | MSLS_KNOWN_BOUNDS is used, and | ower _bound = 0.5 and
upper _bound = 4.5 are set so that the eight interior intervals each have width
(4.5 -0.5)/(10 = 2) = 0.5. The 10 intervals are (-, 0.5], (0.5, 1.0], ..., (4.0, 4.5],

and (4.5, o].

i mels. h>

n_observati ons=30;
n_i nterval s=10;
*t abl e;

| ower _bound=0. 5,
x[] = {0.77, 1.74, 0.81,

0.59, 0.81, 2.81,
1.89, 0.90, 2.05};

= insl s_f_table_oneway (n_observations,

upper _bound=4. 5;
1.20, 1.
2.20, 3.00, 3.09, 1.51, 2.

1.87, 1.

| MSLS_KNOWN_BOUNDS,
upper _bound,

0);
f wite_matrix("counts", 1,
Output
counts
2 3
7 6
8 9
0 0
Example 3

n_intervals,

X,

table, 0);

0. 32,

n_interval s,
| ower _bound,

In this example, 10 class marks, 0.25, 0.75, 1.25, ..., 4.75, are input. This defines
the class intervals (0.0, 0.5], (0.5, 1.0], ..., (4.0, 4.5], (4.5, 5.0]. Note that unlike
the previous example, the initial and last intervals are the same length as the

remaining intervals.

i mels. h>

n_i nterval s=10;
n_observati ons=30;
*tabl e;

x[] = {0.77, 1.74, 0.81,

1. 20,

1. 95,

1.20, 0.47,
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doubl e

class_marksj]

1.43
0.52,
1.87,
0.90

3.37
1.62
1.18

, 2.20, 3.00, 3.09, 1.51,
, 1.31, 0.32, 0.59, 0.81, 2.81,
, 1.35, 4.75, 2.48, 0.96,1. 89,

2.05};

= {0.25, 0.75, 1.25,

table = insls_d_tabl e _oneway (n_observations,

| MBLS_
0);

inmsls_d wite_matrix("counts", 1,

}

Output

~N N

8
0

Example 4

counts
3

6
9
0

CLASS_MARKS,

n_intervals,

2.10

1.75, 2.25
2.75, 3.25,3.75, 4.25, 4.75};

X, n_intervals,
cl ass_marks,

tabl e,

0);

In this example, cutpoints, 0.5, 1.0, 1.5, 2.0, ..., 4.5, are input to define the same
10 intervals as in Example 2. Here again, the initial and last intervals are semi-
infinite intervals.

#i ncl ude <insls. h>

mai n()
.
I nt
i nt
doubl e
doubl e

doubl e

n_i nterval s=10;
n_observati ons=30;

*t abl e;

x[] = {0.77,
1.43
0. 52,
1. 87,
0. 90,

cut poi nts[]

1.74
3.37
1.62
1.18
2

, 0.81
, 2.20
, 1.31
, 1.35

. 05};
= {0.5, 1.0, 1.5, 2.0,
3.0, 3.5, 4.0, 4.5};
table = insls_d_tabl e_oneway (n_observations,

~AOWER

.20, 1.95, 1.20
.00, 3.09, 1.51
.32, 0.59, 0.81
.75, 2.48, 0.96

2.5,

X, n_intervals,

| MSLS_CUTPQO NTS, cutpoints,
0);
imsls_d wite_matrix("counts", 1, n_intervals, table, 0);
}
Output

counts

1 2 3 4 5 6

2 7 6 6 4 2

7 8 9 10

2 0 0 1
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table_twoway

Tallies observations into two-way frequency table.

Synopsis

#include <i sl s. h>

float *insls_f_table_twoway (int n_observations, float x[1],
float y[]1, int nx, int ny, ..., 0)

The type double function isi nsl s_d_t abl e_t woway.

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of length n_obser vat i ons containing the data for the first
variable.

float y[]1 (Input)
Array of length n_obser vat i ons containing the data for the second
variable.

int nx (Input)
Number of intervals (bins) for variable x.

int nx (Input)
Number of intervals (bins) for variabley.

Return Value

Pointer to an array of size nx by ny containing the counts.

Synopsis with Optional Arguments

#include <i nsls. h>

float *imsls_f_table_twoway (int n_observations, float x[],

float y[]1, int nx,int ny,

| MSLS_DATA BOUNDS, float *xm n, float *xmax, float *ym n,
float *ymex, or

| MSLS_KNOWN_BOUNDS, float x| o, float xhi, float yl o,
float yhi , or

| MSLS_CUTPO NTS, float cx[], float cy[], or

| MSLS_CLASS_MARKS, float cx[], float cy[],
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| MSLS_RETURN_USER, float tabl e[],
0)

Optional Arguments

| MBLS_DATA _BOUNDS, float *x| o, float *xhi, float *yl o, float *yhi
(Output)
If none is specified or if | MSLS_DATA_BOUNDS is specified,
n_i nt erval s intervals of equal length are used. Letxmi n and xmax be
the minimum and maximum values inx, respectively, with similar
meanings for ym n and ymax. Then, t abl e[ 0] is the tally of
observations with the x value less than or equal to
xm n + (xmax — xm n)/nx, and the y value less than or equal to
ym n + (ymax —ym n)/ny. When | MSLS_DATA_BOUNDS is explicitly
specified, the minimum and maximum values inx and y are output in
Xm n, xmax, ym n, and ymax.

or

| MBLS_KNOWN_BOUNDS, float x| o, float xhi, float yl o, float yhi (Input)
Intervals of equal lengths are used just as in the case of
| MSLS_DATA_BOUNDS, except the upper and lower bounds are taken as
the user supplied variables x| o, xhi , yl 0, and yhi , instead of the actual
minima and maxima in the data. Therefore, the first and last intervals for
both variables are semi-infinite in length. Argumentsnx and ny must be
greater than or equal to 3.

or

| MSLS_CUTPO NTS, float cx[], float cy[] (Input)
If I MBLS_CUTPQO NTS is specified, cutpoints (boundaries) must be
provided in the arrays cx and cy, of length (nx- 1) and (ny- 1)
respectively. The tally int abl e[ 0] is the number of observations for
which the x value is less than or equal to cx[ 0] , and the y value is less
than or equal to cy[ 0] . This option allows unequal interval lengths.
Arguments nx and ny must be greater than or equal to 2.

or

| MBLS_CLASS_MARKS, float cx[], float cy[] (Input)
If | MBLS_CLASS_MARKS is specified, equally spaced class marks in
ascending order must be provided in the arrays cx and cy. The class
marks are the midpoints of each interval. Each interval is taken to have
length cx[ 1] —cx[ 0] in the x direction and cy[ 1] —cy[ 0] inthey
direction. The total number of elements int abl e may be less than
n_observati ons. Arguments nx and ny must be greater than or equal
to 2.
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None or exactly one of the four optional arguments described above can be
specified in order to define the intervals or bins for the one-way table.

| MSLS_RETURN USER, float tabl e[] (Output)
Counts are stored in the array table of size nx by ny, which is provided
by the user.

Examples

Example 1

The data for x in this example are the same as those used in the examples for

t abl e_oneway. The data for y were created by adding small integers to the data
in x. This example uses the default tally method, | MSLS_DATA BOUNDS, which
may be appropriate when the range of the data is unknown.

#i ncl ude <i sl s. h>

mai n()
i nt nx = 5;
i nt ny = 6;
i nt n_observati ons=30;

fl oat *t abl e;

f1 oat x[] ={0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, O0.32,
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
1.89, 0.90, 2.05};
f1 oat y[] ={1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
2.89, 2.90, 5.05};
table = inmsl s_f_table_twoway (n_observations, x, y, nx, ny, 0);
imsls_f _wite_matrix("counts", nx, ny, table,
| MSLS_ROW NUMBER_ZERO, | MSLS_COL_NUMBER_ZERO, 0);
}
Output
counts
0 1 2 3 4 5
0 4 2 4 2 0 0
1 0 4 3 2 1 0
2 0 0 1 2 0 1
3 0 0 0 0 1 2
4 0 0 0 0 0 1
Example 2

In this example, x| 0, xhi , yl 0, and yhi are chosen so that the intervals will be 0
to 1, 1 to 2, and so on for x, and 1 to 2, 2 to 3, and so on for y.

#i ncl ude <insls. h>

mai n()
i nt nx = 5;
i nt ny = 6;
i nt n_observati ons=30;
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fl oat *t abl e;
fl oat xlo = 1.0;
fl oat xhi = 4.0;
fl oat ylo = 2.0;
fl oat yhi = 6.0;
float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
1.89, 0.90, 2.05};
fl oat y[] ={1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
2.89, 2.90, 5.05};
table = insls_f_table_twoway (n_observations, x, y, nx, ny,
| MBLS_KNOWN_BOUNDS, x| o, xhi, ylo, yhi, 0);
imsls f wite matrix("counts", nx, ny, table,
| MSLS_ROW NUMBER ZERO, | MBLS_COL NUMBER ZERO, 0):
}
Output
counts
0 1 2 3 4 5
0 3 2 4 0 0 0
1 0 5 5 2 0 0
2 0 0 1 3 2 0
3 0 0 0 0 0 2
4 0 0 0 0 1 0
Example 3

In this example, the class boundaries are input incx and cy. The same intervals
are chosen as in Example 2, where the first element ofcx and cy specify the first
cutpoint between classes.

#i ncl ude <insls. h>

mai n()
i nt nx = 5;
i nt ny = 6;
i nt n_observati ons=30;

fl oat *tabl e;

fl oat cmx[] = {0 1.5, 2.5, 3.5, 4.5};

fl oat crmy[] :{15 2.5, 3.5, 4.5, 5.5, 6.5};

float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
1.89, 0.90, 2.05};

fl oat y[] ={1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
2.89, 2.90, 5.05};

table = insls_f_table_twoway (n_observations, x, y, nx, ny,

| MBLS_CLASS MARKS, cnx, cny, 0);
imsls f wite matrix("counts”, nx, ny, table,
| MSLS_ROW NUMBER ZERO, | MBLS_COL NUMBER ZERO, 0):
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Output

counts
0 1 2 3 4 5
0 3 2 4 0 0 0
1 0 5 5 2 0 0
2 0 0 1 3 2 0
3 0 0 0 0 0 2
4 0 0 0 0 1 0
Example 4

This example, uses the | MSLS_CUTPQO NTS tally option with cutpoints such that
the intervals are specified as in the previous examples.

#i ncl ude <i sl s. h>

mai n()
i nt nx = 5;
i nt ny = 6;
i nt n_observati ons=30;
fl oat *t abl e;
fl oat cpx[] = {1, 2, 3, 4};
fl oat cpy[] = {2, 3, 4, 5, 6};
f1 oat x[] ={0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, O0.32,
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
1.89, 0.90, 2.05};
f1 oat y[] ={1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
2.89, 2.90, 5.05};
table = inmsls_f_table_twoway (n_observations, x, y, nx, ny,
| MBLS_CUTPO NTS, cpx, cpy, 0);
imsls_f _wite_matrix("counts", nx, ny, table,
| MSLS_ROW NUMBER_ZERO, | MSLS_COL_NUMBER_ZERO, 0);
}
Output
counts
0 1 2 3 4 5
0 3 2 4 0 0 0
1 0 5 5 2 0 0
2 0 0 1 3 2 0
3 0 0 0 0 0 2
4 0 0 0 0 1 0
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sort_data

Sorts observations by specified keys, with option to tally cases into a multi-way
frequency table.

Synopsis
#include <i nsls. h>

void i msl s_f _sort_data (int n_observations, int n_vari abl es, float
x[], int n_keys, ..., 0)

The type double function isi nsl s_d_sort _dat a.

Required Arguments

int n_observations (Input)
Number of observations (rows) in X.

int n_vari abl es (Input)
Number of variables (columns) in x.

float x[] (Input/Output)
Ann_observations xn_vari abl es matrix containing the
observations to be sorted. The sorted matrix is returned in x (exception:
see optional argument | MSLS_PASSI VE).

int n_keys (Input)
Number of columns of x on which to sort. The first n_keys columns of
x are used as the sorting keys (exception: see optional argument
| MSLS_| NDI CES_KEYS).

Synopsis with Optional Arguments
#include <insls. h>

void imsls_f_sort_data (int n_observations, int n_vari abl es,

float x[], int n_keys,

| MSLS_X_COL_DI'M int x_col _di m

| MSBLS | NDI CES_KEYS, int i ndi ces_keys[],

| MSLS_FREQUENCI ES, float frequencies[],

| MBLS_ASCENDI NG, or

| MSLS_DESCENDI NG,

| MBLS_ACTI VE, or

| MSLS_PASSI VE,

| MSLS_PERMUTATI ON, int **per nutati on,

| MSLS_PERMUTATI ON_USER, int pernutation[],

| MSLS_TABLE, int **n_val ues, float **val ues, float **t abl e,

| MSLS_TABLE USER, int n_val ues[], float val ues[],
float table[],
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| MSLS_LI ST_CELLS, int *n_cells, float **list_cells,
float **t abl e_unbal anced,

| MSBLS_LI ST_CELLS USER, int *n_cells, float |1ist_cells[],
float t abl e_unbal anced[],

| MBLS_N, int *n_cells, int **n,

| MSBLS_N USER, int *n_cells, int n[],

0)

Optional Arguments

I MBLS_X_COL_DIM int x_col _di m (Input)
Column dimension ofx.
Default: x_col _di m = n_vari abl es

| MBLS_|I NDI CES_KEYS, int i ndi ces_keys[] (Input)
Array of length n_keys giving the column numbers ofx which are to be
used in the sort.
Default: i ndi ces_keys []=0, 1, ..., n_keys — 1

| MSLS_FREQUENCI ES, float frequencies[] (Input)
Array of length n_obser vat i ons containing the frequency for each
observation in x.
Default: f requencies []=1

| MSLS_ASCENDI NG, or

| MBLS_DESCENDI NG
By default, or if | MSLS_ASCENDI NGis specified, the sort is in ascending
order. If | MSLS_DESCENDI NGis specified, the sort is in descending
order.

| MSLS_ACTI VE, or

| MSLS_PASSI VE
By default, or if | MSLS_ACTI VE is specified, the sorted matrix is
returned in x. If | MSLS_PASSI VE is specified, x is unchanged by
i msl s_f_sort_data (i.e., x becomes input only).

| MBLS_PERMUTATI ON, int **pernutati on (Output)
Address of a pointer to an internally allocated array of length
n_obser vat i ons specifying the rearrangement (permutation) of the
observations (rows).

| MBLS_PERMUTATI ON_USER, int pernutation[] (Output)
Storage for array per mut at i on is provided by the user. See
| MSLS_PERMJTATI ON.
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| MSLS_TABLE, int **n_val ues, float **val ues, float **tabl e (Output)

Argument n_val ues is the address of a pointer to an internally
allocated array of length n_keys containing in its i-th element
(i=0,1, ...,n_keys — 1), the number of levels or categories of the
i-th classification variable (column).

Argument val ues is the address of a pointer to an internally allocated
array of length

n_val ues [0] +n_val ues [1] + ... + n_val ues [n_keys — 1]
containing the values of the classification variables. The first

n_val ues [0] elements of val ues contain the values for the first
classification variable. The next n_val ues [1] contain the values for the
second variable. The last n_val ues [n_keys — 1] positions contain the
values for the last classification variable.

Argument t abl e is the address of a pointer to an internally allocated array
of length n_val ues [0] X n_val ues [1] X ... x n_val ues [n_keys —1]
containing the frequencies in the cells of the table to be fit.

Empty cells are included int abl e, and each element of t abl e is
nonnegative. The cells of t abl e are sequenced so that the first variable
cycles through its n_val ues [0] categories one time, the second
variable cycles through its n_val ues [1] categories n_val ues [0]
times, the third variable cycles through itsn_val ues [2] categories
n_val ues [0] X n_val ues [1] times, etc., up to the n_keys-th
variable, which cycles through itsn_val ues [n_keys — 1] categories
n_val ues [0] X n_val ues [1] x ... X n_val ues [n_keys — 2] times.

| MSLS_TABLE USER, int n_val ues[], float val ues[], float tabl e[]

(Output)

Storage for arrays n_val ues, val ues, and t abl e is provided by the
user. If the length oft abl e is not known in advance, the upper bound
for this length can be taken to be the product of the number of distinct
values taken by all of the classification variables (sincet abl e includes
the empty cells).

| MSLS_LI ST_CELLS, int *n_cells, float **list_cells,

float **tabl e_unbal anced (Output)

Number of nonempty cells is returned byn_cel | s. Argument

l'i st_cel | s isan internally allocated array of size

n_cel | s x n_keys containing, for each row, a list of the levels of
n_keys corresponding classification variables that describe a cell.

Argumentt abl e_unbal anced is the address of a pointer to an array of
length n_cel | s containing the frequency for each cell.
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| MSBLS_LI ST_CELLS USER, int *n_cells, float |1ist_cells[],
float t abl e_unbal anced[] (Output)
Storage for arrays | i st _cel | s and t abl e_unbal anced is provided
by the user. See | MSLS_LI ST_CELLS.

I MSLS_N, int *n_cells, int **n (Output)
The integer n_cel | s returns the number of groups of different
observations. A group contains observations (rows) inx that are equal
with respect to the method of comparison.

Argument n is the address of the pointer to an internally allocated array
of length n_cel | s containing the number of observations (rows) in each

group.

The first n [0] rows of the sorted x are group number 1. The next
n [1]rows of the sorted x are group number 2, etc. The last
n [n_cel | s — 1] rows of the sorted x are group number n_cel | s.

| MSLS_N_USER, int *n_cells, int n[] (Output)
Storage for array n_cel | s is provided by the user. If the value of
n_cel | s is not known, n_obser vat i ons can be used as an upper
bound for the length of n. See | MSLS_N.

Description

Functioni nsl s_f _sort _dat a can perform both a key sort and/or tabulation of
frequencies into a multi-way frequency table.

Sorting

Functioni nsl s_f _sort _dat a sorts the rows of real matrix x using a particular
row in x as the keys. The sort is algebraic with the first key as the most
significant, the second key as the next most significant, etc. Whenx is sorted in
ascending order, the resulting sorted array is such that the following is true:

. Fori=0,1,...,n_observations —2,
x [i] [i ndi ces_keys [0]] < x [i + 1] [i ndi ces_keys [0]]

. Fork=1, ...,n_keys — 1, if
x [{] [i ndi ces_keys [j]]=x [i + 1] [i ndi ces_keys [/]] for
j=0,1,...,k—1, then
x [{] [i ndi ces_keys [k]] =x [i+ 1] [i ndi ces_keys [k]]

The observations also can be sorted in descending order.
The rows of x containing the missing value code NaN in at least one of the

specified columns are considered as an additional group. These rows are moved
to the end of the sorted x.
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The sorting algorithm is based on a quicksort method given by Singleton (1969)
with modifications by Griffenand Redish (1970) and Petro (1970).

Frequency Tabulation

Functioni nsl s_f _sort _dat a determines the distinct values in multivariate
data and computes frequencies for the data. This function accepts the data in the
matrix x, but performs computations only for the variables (columns) in the first
n_keys columns of x (Exception: see optional argument

I MSLS_| NDI CES_KEYS). In general, the variables for which frequencies should
be computed are discrete; they should take on a relatively small number of
different values. Variables that are continuous can be grouped first. The

i msl s_f _t abl e_oneway function can be used to group variables and determine
the frequencies of groups.

When | MBLS_TABLE is specified, i msl s_f _sort _dat a fills the vector val ues
with the unique values of the variables and tallies the number of unique values of
each variable in the vector t abl e. Each combination of one value from each
variable forms a cell in a multi-way table. The frequencies of these cells are
entered int abl e so that the first variable cycles through its values exactly once,
and the last variable cycles through its values most rapidly. Some cells cannot
correspond to any observations in the data; in other words, “missing cells” are
included in t abl e and have a value of 0.

When | MBLS_LI ST_CELLS is specified, the frequency of each cell is entered in

t abl e_unbal anced so that the first variable cycles through its values exactly
once and the last variable cycles through its values most rapidly. All cells have a
frequency of at least 1, i.e., there is no “missing cell.” The arrayl i st _cel | s can
be considered “parallel” to t abl e_unbal anced because row i of I i st _cel | s
is the set of n_keys values that describes the cell for which row i of

t abl e_unbal anced contains the corresponding frequency.

Examples

Example 1

The rows of a 10 x 3 matrix x are sorted in ascending order using Columns 0 and
1 as the keys. There are two missing values (NaNs) in the keys. The observations
containing these values are moved to the end of the sorted array.

#i ncl ude <insls. h>
#defi ne N_OBSERVATI ONS 10
#defi ne N_VARI ABLES 3

mai n()
.
I nt
fl oat

n_keys=2;

x[ N_OBSERVATI ONS] [ N_VARI ABLES] = {1.0, 1.0, 1.0,
2.0, 1.0, 2.0,
1.0, 1.0, 3.0,
1.0, 1.0, 4.0
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x[4][ 1] =i sl s_f _machi ne(6);

x[6][ 0] =i nsl s_f _nmachi ne(6);

insls_f_sort_data (N_OBSERVATI ONS, N_VARI ABLES, x, n_keys, 0);

imsls_f _wite matrix("sorted x", N _OBSERVATI ONS, N_VARI ABLES,
(float *)x, 0);

Output
sorted x
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Example 2

This example uses the same data as the previous example. The permutation of the
rows is output in the array per nut at i on.

#i ncl ude <insls. h>
#defi ne N_OBSERVATI ONS 10
#defi ne N_VARI ABLES 3

MAI N()
{
i nt n_keys=2;
i nt n_cells;
i nt *n;
i nt *pernut ati on;
float  x[ N_OBSERVATI ONS] [ N VARI ABLES] ={1.0, 1.0, 1.0,
2.0, 1.0, 2.0,
1.0, 1.0, 3.0,
1.0, 1.0, 4.0,
2.0, 2.0, 5.0,
1.0, 2.0, 6.0,
1.0, 2.0, 7.0,
1.0, 1.0, 8.0,
2.0. 2.0, 9.0,
1.0, 1.0, 9.0};
x[4][ 1] =i sl s_f _nmachi ne(6);
x[6][ 0] =i sl s_f _nachi ne(6);
inmsls_f_sort_data (N_OBSERVATI ONS, N_VARI ABLES,

(float *)x, n_keys,

| MSLS_PASSI VE,

| MSLS_PERMUTATI ON, &per nut ati on,
IMSLS N, & _cells, &n, 0};
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inmsls_f wite_matrix("unchanged x ", N_OBSERVATI ONS, N_VARI ABLES,
(float *)x, 0);

inmsls_i _wite matrix("pernutation”, 1, N_OBSERVATIONS, pernutation,
0);

imsls_i_wite matrix("n", 1, n_cells, n, 0);

}
Output

unchanged x
1 2 3
1 1 1 1
2 2 1 2
3 1 1 3
4 1 1 4
5 2 5
6 1 2 6
7 2 7
8 1 1 8
9 2 2 9
10 1 1 9

permut ati on
1 2 3 4 5 6 7 8 9 10
o 9 2 3 7 5 1 8 6 4

Example 3

The table of frequencies for a data matrix of size 30 x 2 is output in the array
tabl e.

#i ncl ude <insls. h>

mai n()
{
i nt n_observati ons=30;
i nt n_vari abl es=2;
i nt n_keys=2;
i nt *n_val ues;
i nt n_rows, n_col umms;

fl oat *val ues;
fl oat *t abl e;

fl oat x[] = {0.5, 1.5,
1.5, 3.5,
0.5, 3.5,
1.5, 2.5,
1.5, 3.5,
1.5, 4.5,
0.5, 1.5,
1.5, 3.5,
3.5, 6.5,
2.5, 3.5,
2.5, 4.5,
3.5, 6.5,
1.5, 2.5,
2.5, 4.5,
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inmsls_f _sort_data (n_observations, n_variables, x, n_keys,

| MSLS_PASSI VE,
| MSLS TABLE, &n_val ues, &val ues, &table,
0);
imsls_f wite_matrix("unchanged x", n_observations, n_variabl es
x, 0);

n_rows = n_values[0];

n_colums = n_val ues[ 1];

imsls_f wite_matrix("row values", 1, n_rows, values, 0);

imsls_ f wite_matrix("colum values", 1, n_colums, &val ues[n_rows],
0);

inmsls_ f wite_matrix("table", n_rows, n_columms, table, 0);

Output
unchanged x

1 2

1 0.5 1.5

2 1.5 3.5

3 0.5 3.5

4 1.5 2.5

5 1.5 3.5

6 1.5 4.5

7 0.5 1.5

8 1.5 3.5

9 3.5 6.5

10 2.5 3.5
11 2.5 4.5
12 3.5 6.5
13 1.5 2.5
14 2.5 4.5
15 0.5 3.5
16 1.5 2.5
17 1.5 3.5
18 0.5 3.5
19 0.5 1.5
20 0.5 2.5
21 2.5 5.5
22 1.5 2.5
23 1.5 3.5
24 1.5 4.5
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25 4.5 5.5
26 2.5 4.5
27 0.5 3.5
28 1.5 2.5
29 0.5 2.5
30 2.5 5.5
row val ues
1 2 3 4 5
0.5 1.5 2.5 3.5 4.5
col um val ues
1 2 3 4 5 6
1.5 2.5 3.5 4.5 5.5 6.5
tabl e
1 2 3 4 5 6
1 3 2 4 0 0 0
2 0 5 5 2 0 0
3 0 0 1 3 2 0
4 0 0 0 0 0 2
5 0 0 0 0 1 0
ranks
Computes the ranks, normal scores, or exponential scores for a vector of
observations.
Synopsis
#include <insls. h>
float *insl s_f_ranks (int n_observations, float x[], ..., 0)
The type double function isi msl s_d_r anks.
Required Arguments
int n_observations (Input)
Number of observations.
float x[] (Input)
Array of length n_obser vat i ons containing the observations to be
ranked.
Return Value
A pointer to a vector of length n_obser vat i ons containing the rank (or
optionally, a transformation of the rank) of each observation.
Synopsis with Optional Arguments
#include <i nsl . h>
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float* insls_f_ranks (int n_observations, float x[1],
| MBLS_AVERAGE_TI E, or
| MSLS_HI GHEST, or
| MSLS_LOWEST, or
| MBLS_RANDOM SPLI T,
| MSLS_FUZZ, float fuzz_val ue,
| MSLS_RANKS, or
| MSLS_BLOM SCORES, or
| MSLS_TUKEY_SCORES, or
| MSBLS_VAN_DER WAERDEN SCORES, or
| MBLS_EXPECTED_NORVAL_SCORES, or
| MSLS_SAVAGE_SCORES,
| MBLS_RETURN_USER, float ranks[],
0)

Optional Arguments
| MBLS_AVERAGE_TI E, or
| MSLS_HI GHEST, or

| M5LS_LOVEST, or

| MSLS_RANDOM SPLI T
Exactly one of these optional arguments can be used to change the
method used to assign a score to tied observations.

Argument Method

| MSLS_AVERAGE_TI E [ average of the scores of the tied
observations (default)

| MSLS_HI GHEST highest score in the group of ties
| MSLS_LOWEST lowest score in the group of ties

| MSLS_RANDOM SPLI T | tied observations are randomly split
using a random number generator

| MSLS_FUZZ, float fuzz_val ue (Input)
Value used to determine when two items are tied. Ifabs(x [i ] —x [j ]) is
less than or equal to f uzz_val ue, then x[i] and x[j] are said to be
tied.
Default: f uzz_val ue =0.0

| M5SLS_RANKS, or

| MBLS_BLOM SCORES, or

| MBLS_TUKEY_SCORES, or

| MSLS_VAN_DER WAERDEN SCORES, or

| MBLS_EXPECTED_NORMAL_SCORES, or
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| MSLS_SAVAGE_SCORES
Exactly one of these optional arguments can be used to specify the type
of values returned.

Argument Result

| MBLS_RANKS ranks (default)

| MSLS BLOM SCORES Blom version of normal scores

| MSLS_TUKEY_SCORES Tukey version of normal scores

| MSLS_ VAN _DER WAERDEN SCORES | Van der Waerden version of normal
scores

| MSLS_EXPECTED NORMAL_SCORES | expected value of normal order
statistics (for tied observations, the
average of the expected normal
scores)

| MSLS_SAVAGE SCORES Savage scores (the expected value of
exponential order statistics)

| MSLS_RETURN_USER, float ranks[] (Output)
If specified, the ranks are returned in the user-supplied array r anks.

Description
Ties

In data without ties, the output values are the ordinary ranks (or a transformation
of the ranks) of the data in x. If x[ i ] has the smallest value among the values in
x and there is no other element in x with this value, thenr anks [i ] = 1. If both
x[i ] and x[j ] have the same smallest value, the output value depends on the
option used to break ties.

Argument Result

| MSLS_AVERAGE Tl E ranks[i ]=ranks[j ]=1.5

| MSLS_HI GHEST ranks[i ]=ranks[j ]=2.0

| MBLS _LOWEST ranks[i ]=ranks[j ]=1.0

| MBLS_RANDOM SPLI T ranks[i ]=1.0 and r anks[j ]=2.0
or, randomly,
ranks[i ]=2.0 and r anks[j ]=1.0

When the ties are resolved randomly, functioni nsl s_f _random uni f orm
(Chapter 12) is used to generate random numbers. Different results may occur
from different executions of the program unless the “seed” of the random number
generator is set explicitly by use of the functioni nsl s_f _random seed_set
(Chapter 12).
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Scores

As an option, normal and other functions of the ranks can be returned. Normal
scores can be defined as the expected values, or approximations to the expected
values, of order statistics from a normal distribution. The simplest approximations
are obtained by evaluating the inverse cumulative normal distribution function,
functioni sl s_f _normal _i nverse_cdf (Chapter 11), at the ranks scaled into
the open interval (0, 1). In the Blom version (see Blom 1958), the scaling
transformation for the rank 7; (1 < »; < n, where n is the sample size,
n_observations) is (r; — 3/8)/(n + 1/4). The Blom normal score corresponding
to the observation with rank r; is

(D_l ( = 3/ 8)

n+tl/4

where ®() is the normal cumulative distribution function.

Adjustments for ties are made after the normal score transformation. That is, if

x [i ] equals x [j ] (withinf uzz_val ue) and their value is the k-th smallest in the
data set, the Blom normal scores are determined for ranks of k and k& + 1. Then,
these normal scores are averaged or selected in the manner specified. (Whether
the transformations are made first or ties are resolved first makes no difference
except when | MBLS AVERAGE TI E is specified.)

In the Tukey version (see Tukey 1962), the scaling transformation for the rank
r;is (r; — 1/3)/(n + 1/3). The Tukey normal score corresponding to the
observation with rank r; is as follows:

(D_l = 1/3
n+l1/3
Ties are handled in the same way as for the Blom normal scores.

In the Van der Waerden version (see Lehmann 1975, p. 97), the scaling
transformation for the rank r; is ;/(n + 1). The Van der Waerden normal score
corresponding to the observation with rank r; is as follows:

ol i
n+l
Ties are handled in the same way as for the Blom normal scores.

When option | MSLS_EXPECTED_NORMAL_SCORES is used, the output values are
the expected values of the normal order statistics from a sample of size
n_observati ons. If the value in x[ i ] is the k-th smallest, the value output in
ranks [i ] is E(z;), where E(*) is the expectation operator and z;, is the k-th order
statistic in a sample of size n_obser vat i ons from a standard normal
distribution. Ties are handled in the same way as for the Blom normal scores.
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Savage scores are the expected values of the exponential order statistics from a
sample of size n_obser vat i ons. These values are called Savage scores because
of their use in a test discussed by Savage 1956 (see also Lehmann 1975). If the
value inx[ i ] is the k-th smallest, the value output inr anks [i ] is E(y;), where
Vi 1s the k-th order statistic in a sample of size n_obser vat i ons from a standard
exponential distribution. The expected value of the k-th order statistic from an
exponential sample of size n (n_obser vat i ons) is as follows:

1 1
—+ +..+
n—k+l1

Ties are handled in the same way as for the Blom normal scores.
Examples

Example 1

The data for this example, from Hinkley (1977), contains 30 observations. Note
that the fourth and sixth observations are tied and that the third and twentieth
observations are tied.

#i ncl ude <insls. h>

#defi ne N_OBSERVATI ONS 30
mai n()
fl oat *ranks;
f1 oat x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,

3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
4.75, 2.48, 0.96, 1.89, 0.90, 2.05};

ranks = i nmsls_f_ranks(N_OBSERVATI ONS, x, 0);
inmsls f wite_matrix("Ranks", 1, N_OBSERVATIONS, ranks, 0);
}
Output
Ranks
1 2 3 4 5 6
5.0 18.0 6.5 11.5 21.0 11.5
7 8 9 10 11 12
2.0 15.0 29.0 24.0 27.0 28.0
13 14 15 16 17 18
16.0 23.0 3.0 17.0 13.0 1.0
19 20 21 22 23 24
4.0 6.5 26.0 19.0 10.0 14.0
25 26 27 28 29 30
30.0 25.0 9.0 20.0 8.0 22.0
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Example 2

This example uses all the score options with the same data set, which contains
some ties. Ties are handled in several different ways in this example.
#i ncl ude <insls. h>

#def i ne N_OBSERVATI ONS 30
voi d mai n()

fl oat fuzz_val ue=0.0, score[4][ N_OBSERVATI ONS], *ranks;
f1 oat x[] = {0.77, 1.74, 0.81, 1.20, 1.95 1.20, 0.47, 1.43,
3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
4.75, 2.48, 0.96, 1.89, 0.90, 2.05};
char *row_| abel s[] = {"Blont', "Tukey", "Van der Waerden",
"Expected Val ue"};

/* Blom scores using | argest ranks */
/* for ties */
i mel s_f _ranks(N_OBSERVATI ONS, x,
| MBLS_HI GHEST,
| MSLS_BLOM SCORES,
| MSLS_RETURN USER,  &score[0][0],
0);
/* Tukey normal scores using smallest */
/* ranks for ties */
i mel s_f _ranks(N_OBSERVATI ONS, x,
| MSLS_LOWEST,
| MSBLS_TUKEY_SCORES,
| MSLS_RETURN USER, &score[1][0],
0);
/* Van der Waerden scores using */
/* randomy resolved ties */
i el s_random seed_set (123457);
i mel s_f _ranks(N_OBSERVATI ONS, x,
| MSLS_RANDOM SPLI T,
| MSLS_VAN DER WAERDEN SCORES,
| MSLS_RETURN USER, &score[2][0],
0);
/* Expected val ue of normal order */
/* statistics using averaging to */
/* break ties */
i mel s_f _ranks(N_OBSERVATI ONS, x,
| MBLS_EXPECTED NORMAL_SCORES,
| MSLS_RETURN USER, &score[3][0],
0);
inmsls_f wite_matrix("Normal Order Statistics", 4, N _OBSERVATI ONS,
(float *)score,
| MSLS_ROW LABELS, row_| abel s,
| MSLS_WRI TE_FORVMAT, "9%0@. 3f",
0);
/* Savage scores using averaging */
/* to break ties */
ranks = inmsls_f_ranks(N_OBSERVATI ONS, x,
| MBLS_SAVAGE_SCORES,
0);
inmsls_f _wite_matrix("Expected val ues of exponential order "
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1
0.179
0. 068

13
0.743

19
0. 141

25

"statistics", 1,

N_OBSERVATI ONS, ranks
0);
Output
Normal Order Statistics
1 2 3 4
-1.024 0. 209 -0.776 -0.294
-1.020 0. 208 -0.890 -0.381
-0.989 0. 204 -0. 753 -0. 287
-1.026 0. 209 -0.836 -0. 338
6 7 8 9
-0.294 -1.610 -0.041 1.610
-0.381 -1.599 -0.041 1.599
-0.372 -1.518 -0.040 1.518
-0.338 -1.616 -0.041 1.616
11 12 13 14
1.176 1.361 0. 041 0. 668
1.171 1.354 0.041 0. 666
1.131 1. 300 0. 040 0. 649
1.179 1. 365 0. 041 0. 669
16 17 18 19
0.125 -0. 209 -2.040 -1.176
0.124 -0. 208 -2.015 -1.171
0.122 -0. 204 -1.849 -1.131
0.125 -0. 209 -2.043 -1.179
21 22 23 24
1.024 0. 294 -0.473 -0.125
1. 020 0. 293 -0.471 -0.124
0. 989 0. 287 -0. 460 -0.122
1.026 0. 294 -0.473 -0.125
26 27 28 29
0. 893 -0. 568 0. 382 -0. 668
0. 890 -0. 566 0. 381 -0. 666
0. 865 -0. 552 0.372 -0. 649
0.894 -0. 568 0. 382 -0. 669
Expected val ues of exponential order statistics
2 3 4 5
0.892 0. 240 0. 474 1.166
8 9 10 11
0.677 2.995 1.545 2.162
14 15 16 17
1.402 0.104 0. 815 0. 555
20 21 22 23
0. 240 1.912 0. 975 0. 397
26 27 28 29
1.712 0. 350 1. 066 0. 304

3.995

. 473
471
460
473

cooo

10
776
773
753
777

cooo

15
361
354

el

365

20
776
890

coooe

836

25
040
015

NEdN

043

30
568
566

cooo

. 568

0.474

12

18

24

30
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Chapter 2: Regression

Routines
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23
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Multivariate Linear Regression—Model Fitting

Generate regressors for a general

linear model........oooiiiii regressors_for_gim
Fit a multivariate linear regression model ....................... regression

Multivariate Linear Regression—Statistical
Inference and Diagnostics
Produce summary statistics for

a regression model..........ccccoiiiiiiiiiiiii, regression_summary
Compute predicted values,

confidence intervals, and diagnostics............ regression_prediction
Construction of a completely

testable hypothesis..........ccccociiiiiiiiii, hypothesis_partial
Sums of cross products for a

multivariate hypothesis............cccccciiiiiii s hypothesis_scph
Tests for the multivariate linear hypothesis............. hypothesis_test

Variable Selection
All best regressions.........cccccveeeeeiiiiciieeeeeenn regression_selection
Stepwise regression ........ccoevvviiiiiiiieee e regression_stepwise

Polynomial and Nonlinear Regression
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Usage Notes

The regression models in this chapter include the simple and multiple linear
regression models, the multivariate general linear model, the polynomial model,
and the nonlinear regression model. Functions for fitting regression models,
computing summary statistics from a fitted regression, computing diagnostics,
and computing confidence intervals for individual cases are provided. This
chapter also provides methods for building a model from a set of candidate
variables.

Simple and Multiple Linear Regression
The simple linear regression model is
Vi=BotPix;tgi=1,2,..n

where the observed values of the y,’s constitute the responses or values of the
dependent variable, the x;’s are the settings of the independent (explanatory)
variable, (3, and [, are the intercept and slope parameters (respectively) and the
€;’s are independently distributed normal errors, each with mean 0 and variance

The multiple linear regression model is
Yi=Bo+ Bixy + Boxip + .+ Brxi i=1,2,..,n

where the observed values of the y;’s constitute the responses or values of the
dependent variable; the x;;’s, x;5’s, ..., x;;’s are the settings of the £ independent
(explanatory) variables; B3y, B, ..., Bx are the regression coefficients; and the €;’s
are independently distributed normal errors, each with mean 0 and variance 0°.

Functioni nsl s_f _regressi on (page 64) fits both the simple and multiple
linear regression models using a fast Given’s transformation and includes an
option for excluding the intercept [3,. The responses are input in array y, and the
independent variables are input in array X, where the individual cases correspond
to the rows and the variables correspond to the columns.

After the model has been fitted using i nsl s_f _r egr essi on, function

i mel s_f _regressi on_sunmary computes summary statistics and

i msl s_f _regression_predicti on computes predicted values, confidence
intervals, and case statistics for the fitted model. The information about the fit is
communicated fromi sl s_f _r egr essi on to
inmsls_f_regression_summary andi nsls_f_regressi on_prediction
by passing an argument of structure type Imsls_f regression.
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No Intercept Model

Several functions provide the option for excluding the intercept from a model. In
most practical applications, the intercept should be included in the model. For
functions that use the sums of squares and crossproducts matrix as input, the no-
intercept case can be handled by using the raw sums of squares and crossproducts
matrix as input in place of the corrected sums of squares and crossproducts. The
raw sums of squares and crossproducts matrix can be computed as (x, X, ..., X,

T
y) (xla X2y eees X y)

Variable Selection

Variable selection can be performed by imsls f regression selection
(page 112), which computes all best-subset regressions, or by

imsls f regression stepwise (page 123), which computes stepwise
regression. The method used by imsls f regression selectionis
generally preferred over that used by imsls f regression stepwise
because imsls f regression selection implicitly examines all possible
models in the search for a model that optimizes some criterion while stepwise
does not examine all possible models. However, the computer time and memory
requirements for imsls_f regression_ selection can be much greater than
that for imsls f regression_ stepwise when the number of candidate
variables is large.

Polynomial Model
The polynomial model is
Vi =By +Byx; +Box? + .. +Bxf g, i=L2,..,n

where the observed values of the y;’s constitute the responses or values of the
dependent variable; the x;’s are the settings of the independent (explanatory)
variable; By, By, ..., Bx are the regression coefficients; and the €;’s are
independently distributed normal errors each with mean 0 and variance o

Function imsls £ poly regression (page 132) fits a polynomial regression
model with the option of determining the degree of the model and also produces
summary information. Functionimsls f poly prediction computes
predicted values, confidence intervals, and case statistics for the model fit by
imsls_f poly regression.

The information about the fit is communicated fromimsls f poly regression
to imsls_f poly prediction by passing an argument of structure type
Imsls_f poly regression.

Specification of X for the General Linear Model

Variables used in the general linear model are either continuous or classification
variables. Typically, multiple regression models use continuous variables,
whereas analysis of variance models use classification variables. Although the
notation used to specify analysis of variance models and multiple regression
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models may look quite different, the models are essentially the same. The term
“general linear model” emphasizes that a common notational scheme is used for
specifying a model that may contain both continuous and classification variables.

A general linear model is specified by its effects (sources of variation). An effect
is referred to in this text as a single variable or a product of variables. (The term
“effect” is often used in a narrower sense, referring only to a single regression
coefficient.) In particular, an “effect” is composed of one of the following:

1. a single continuous variable

2 a single classification variable

3 several different classification variables

4. several continuous variables, some of which may be the same

5 continuous variables, some of which may be the same, and classification

variables, which must be distinct

Effects of the first type are common in multiple regression models. Effects of the
second type appear as main effects in analysis of variance models. Effects of the
third type appear as interactions in analysis of variance models. Effects of the
fourth type appear in polynomial models and response surface models as powers
and crossproducts of some basic variables. Effects of the fifth type appear in one-
way analysis of covariance models as regression coefficients that indicate lack of
parallelism of a regression function across the groups.

The analysis of a general linear model occurs in two stages. The first stage calls
functioni sl s_f _r egressor s_f or _gl mto specify all regressors except the
intercept. The second stage callsi msl s_f _r egr essi on, at which point the
model will be specified as either having (default) or not having an intercept.

For this discussion, define a variable | NTCEP as follows:

Option | NTCEP Action
I MBLS_NO_I NTERCEPT 0 An intercept is not in the model.
| MBLS_I NTERCEPT (default) 1 An intercept is in the model.

The remaining variables (n_cont i nuous, n_cl ass, x_cl ass_col umms,
n_effects,n_var_effects,andindi ces_effects) are defined for function
imsl s_f_regressors_for_gl mAll these variables have defaults except for
n_cont i nuous and n_cl ass, both of which must be specified.

(See the documentation fori nsl s_f _regressors_for_gl mon page 56 for a
discussion of the defaults.) The meaning of each of these arguments is as follows:

n_cont i nuous (Input)
Number of continuous variables.

n_cl ass (Input)
Number of classification variables.
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x_cl ass_col ums (Input)
Index vector of length n_cl ass containing the column numbers of
x that are the classification variables.

n_effects (Input)

Number of effects (sources of variation) in the model, excluding error.

n_var _effects (Input)

Vector of length n_ef f ect s containing the number of variables
associated with each effect in the model.

i ndi ces_effects (Input)
Index vector of length n_var _ef fect s(0) + n_var _effects(l)+
.. tn_var_effects (n_effects—1). The first n_var _ef f ect s(0)
elements give the column numbers ofx for each variable in the first
effect; the next n_var _ef f ect s(1) elements give the column numbers
for each variable in the second effect; and finally, the last
n_var _effects (n_effects —1)elements give the column numbers
for each variable in the last effect.

Suppose the data matrix has as its first four columns two continuous variables in
Columns 0 and 1 and two classification variables in Columns 2 and 3. The data

might appear as follows:

Column 0 | Column1 | Column 2 | Column 3
11.23 1.23 1.0 5.0
12.12 2.34 1.0 4.0
12.34 1.23 1.0 4.0
4.34 2.21 1.0 5.0
5.67 431 2.0 4.0
4.12 5.34 2.0 1.0
4.89 9.31 2.0 1.0
9.12 3.71 2.0 1.0

Each distinct value of a classification variable determines a level. The
classification variable in Column 2 has two levels. The classification variable in
Column 3 has three levels. (Integer values are recommended, but not required, for
values of the classification variables. The values of the classification variables
corresponding to the same level must be identical.) Some examples of regression
functions and their specifications are as follows:
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| NTCEP n_cl ass x_cl ass_col ums
Bo + Bix 1 0
Bo * Bixy + Boxi 1 0
M+ a; 1 1 2
M+ o+ B+ Yy 1 2 2,3
My 0 2 2,3
Bo + Bixy + Boxy + Bsxix, 1 0
Mot + B+ Bxy 1 1 2
n_effects |n_var_effects | indices_effects
Bo *+ Bix 1 1 0
B+ Bix, + Boxi 2 1,2 0,0,0
W+ aQ; 1 1 2
H+o;+ Bty 3 1,1,2 2,3,2,3
My 1 2 2,3
Bo + Bix; +Byxy + B 3 1,1,2 0,1,0,1
3X1 X
M+ o+ By + B 3 1,1,2 2,0,0,2

Functions for Fitting the Model

Functioni nsl s_f _regressi on (page 64) fits a multivariate general linear
model, where regressors for the general linear model have been generated using
functioni nsl s_f _regressors_for_glm

Linear Dependence and the R Matrix

Linear dependence of the regressors frequently arises in regression models—
sometimes by design and sometimes by accident. The functions in this chapterare
designed to handle linear dependence of the regressors; i.e., the
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n X p matrix X (the matrix of regressors) in the general linear model can have
rank less than p. Often, the models are referred to as non-full rank models.

As discussed in Searle (1971, Chapter 5), be careful to correctly use the results of
the fitted non-full rank regression model for estimation and hypothesis testing. In
the non-full rank case, not all linear combinations of the regression coefficients
can be estimated. Those linear combinations that can be estimated are called
“estimable functions.” If the functions are used to attempt to estimate linear
combinations that cannot be estimated, error messages are issued. A good general
discussion of estimable functions is given by Searle (1971, pp. 180-188).

The check used by functions in this chapter for linear dependence is sequential.
The j-th regressor is declared linearly dependent on the preceding j — 1
regressors if

1-R

J(1,2,005-1)

is less than or equal to tolerance. Here,

J(1.2,....j-1)

is the multiple correlation coefficient of the j-th regressor with the first j — 1
regressors. When a function declares the j-th regressor to be linearly dependent
on the first j — 1, the j-th regression coefficient is set to 0. Essentially, this
removes the j-th regressor from the model.

The reason a sequential check is used is that practitioners frequently include the
preferred variables to remain in the model first. Also, the sequential check is
based on many of the computations already performed as this does not degrade
the overall efficiency of the functions. There is no perfect test for linear
dependence when finite precision arithmetic is used. The optional argument
IMSLS_TOLERANCE allows the user some control over the check for linear
dependence. If a model is full rank, input tolerance = 0.0. However,
tolerance should be input as approximately 100 times the machine epsilon. The
machine epsilon is imsls f machine(4) in single precision and

imsls d_machine(4) in double precision. (See functions imsls f machine
and imsls_d machine in Chapter 14.)

Functions performing least squares are based on OR decomposition of X or on a
Cholesky factorization R'R of X" X. Maindonald (1984, Chapters 1-5) discusses
these methods extensively. The R matrix used by the regression function is a

p X p upper-triangular matrix, i.e., all elements below the diagonal are 0. The
signs of the diagonal elements of R are used as indicators of linearly dependent
regressors and as indicators of parameter restrictions imposed by fitting a
restricted model. The rows of R can be partitioned into three classes by the sign
of the corresponding diagonal element:

1. A positive diagonal element means the row corresponds to data.
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2. A negative diagonal element means the row corresponds to a linearly
independent restriction imposed on the regression parameters by AB = Z
in a restricted model.

3. A zero diagonal element means a linear dependence of the regressors
was declared. The regression coefficients in the corresponding row of B
are set to 0. This represents an arbitrary restriction that is imposed to
obtain a solution for the regression coefficients. The elements of the
corresponding row of R also are set to 0.

Nonlinear Regression Model
The nonlinear regression model is
yvi=fxz0)+e i=1,2,...,n

where the observed values of the y,’s constitute the responses or values of the
dependent variable, the x;’s are the known vectors of values of the independent
(explanatory) variables, fis a known function of an unknown regression
parameter vector 8, and the €;’s are independently distributed normal errors each
with mean 0 and variance 0°.

Functioni nsl s_f _nonl i near _regressi on (page 149) performs the least-
squares fit to the data for this model.

Weighted Least Squares

Functions throughout the chapter generally allow weights to be assigned to the
observations. The vector wei ght s is used throughout to specify the weighting for
each row of X.

Computations that relate to statistical inference—e.g., ¢ tests, F tests, and
confidence intervals—are based on the multiple regression model except that the
variance of €; is assumed to equal o’ times the reciprocal of the corresponding
weight.

If a single row of the data matrix corresponds to n; observations, the vector
f requenci es can be used to specify the frequency for each row of X. Degrees of
freedom for error are affected by frequencies but are unaffected by weights.

Summary Statistics

Functioni nsl s_f _regressi on_sunmmary can be used to compute and print
statistics related to a regression for each of the ¢ dependent variables fitted by

i msl s_f _regression (page 64). The summary statistics include the model
analysis of variance table, sequential sums of squares and F-statistics, coefficient
estimates, estimated standard errors, ¢-statistics, variance inflation factors, and
estimated variance-covariance matrix of the estimated regression coefficients.
Functioni nsl s_f _pol y_r egr essi on includes most of the same functionality
for polynomial regressions.
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The summary statistics are computed under the modely = XP + €, where y is the
n % 1 vector of responses, X is the n X p matrix of regressors with rank (X) =r, 3
is the p X 1 vector of regression coefficients, and € is the n X 1 vector of errors
whose elements are independently normally distributed with mean 0 and variance

OZ/W[.

Given the results of a weighted least-squares fit of this model (with thew;’s as the

weights), most of the computed summary statistics are output in the following
variables:

anova_t abl e
One-dimensional array usually of length 15. In
i msl s_f _regression_stepw se,anova_t abl e is of length 13
because the last two elements of the array cannot be computed from the
input. The array contains statistics related to the analysis of variance.
The sources of variation examined are the regression, error, and total.
The first 10 elements of anova_t abl e and the notation frequently used
for these is described in the following table (here, AOV replaces
anova_t abl e):

Model Analysis of Variance Table

Source of Degrees of Sum of

Variation Freedom Squares Mean Square F p-value
Regression DFR =A0V[0] |SSR=A0V[3] |[MSR=A0V[6] |AOV[8] AOV[9]
Error DFE=AOV[1] [SSE=AOV4] [s*=AOVT]
Total DFT = AOV[2] |SST=A0V[5]

If the model has an intercept (default), the total sum of squares is the
sum of squares of the deviations ofy; from its (weighted) mean y —the
so-called corrected total sum of squares, denoted by the following:

$57=3 (0, -3)
i=1

If the model does not have an intercept (I MSLS_NO_| NTERCEPT), the
total sum of squares is the sum of squares of y—the so-called
uncorrected total sum of squares, denoted by the following:

SST = Z w; yi2
i=1
The error sum of squares is given as follows:

SSE = zwi(yi _)A’i)z
i=1
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The error degrees of freedom is defined by DFE=n —r.

The estimate of & is given by st = SSE/DFE, which is the error mean
square.

The computed F statistic for the null hypothesis,

Hy:B; =B, =...= B =0, versus the alternative that at least one
coefficient is nonzero is given by F = MSR/s”. The p-value associated
with the test is the probability of an F larger than that computed under
the assumption of the model and the null hypothesis. A smallp-value
(less than 0.05) is customarily used to indicate there is sufficient
evidence from the data to reject the null hypothesis.

The remaining five elements inanova_t abl e frequently are displayed
together with the actual analysis of variance table. The quantities
R-squared (R2 =anova_t abl e[10]) and adjusted R-squared

R? =(anova_t abl €[11])
are expressed as a percentage and are defined as follows:

R* = 100(SSR/SST) = 100(1 — SSE/SST)

2
R =100max{0,1-————
SST/ DFT
The square root of sz(s =anova_t abl e[12]) is frequently referred to as
the estimated standard deviation of the model error.

The overall mean of the responses y is output in anova_t abl e[13].

The coefficient of variation (CV = anova_t abl e[14]) is expressed as a
percentage and defined by CV = 100s/y .

coef _t _tests
Two-dimensional matrix containing the regression coefficient vector 3
as one column and associated statistics (estimated standard error, ¢
statistic and p-value) in the remaining columns.

coef _covari ances
Estimated variance-covariance matrix of the estimated regression
coefficients.

Tests for Lack-of-Fit

Tests for lack-of-fit are computed for the polynomial regression by the function
imsl s_f_poly_regression (page 132). The output array ssq_| of contains
the lack-of-fit F' tests for each degree polynomial 1, 2, ..., k, that is fit to the data.
These tests are used to indicate the degree of the polynomial required to fit the
data well.
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Diagnostics for Individual Cases

Diagnostics for individual cases (observations) are computed by two functions in
the regression chapter: i nsl s_f _regressi on_predi cti on for linear and
nonlinear regressions and i msl s_f _pol y_predi cti on for polynomial
regressions.

Statistics computed include predicted values, confidence intervals, and
diagnostics for detecting outliers and cases that greatly influence the fitted
regression.

The diagnostics are computed under the model y = XP + €, where y is the n x 1
vector of responses, X is the n X p matrix of regressors with rank (X) =r,  is the
p % 1 vector of regression coefficients, and € is the n X 1 vector of errors whose
elements are independently normally distributed with mean 0 and variance o Iw;.

Given the results of a weighted least-squares fit of this model (with thew;’s as the
weights), the following five diagnostics are computed:

1. leverage

2 standardized residual
3 jackknife residual

4. Cook’s distance

5 DFFITS

The definition of these terms is given in the discussion that follows:

Let x; be a column vector containing the elements of the i-th row of X. A case can
be unusual either because of x; or because of the response y;. The leverage h; is a
measure of uniqueness of the x;. The leverage is defined by

by =[x (XTWX) x,Jw,

where W= diag(w;, ws, ..., w,) and (X TWXT denotes a generalized inverse of
XWX, The average value of the 4;’s is r/n. Regression functions declare

x; unusual if 4; > 2r/n. Hoaglin and Welsch (1978) call a data point highly
influential (i.e., a leverage point) when this occurs.

Let e; denote the residual
Vi~ Vi

for the i-th case. The estimated variance of e; is (1 — hi)szlwi, where s° is the
residual mean square from the fitted regression. The i-th standardized residual
(also called the internally studentized residual) is by definition

rze |— i
S (1-hy)

and r; follows an approximate standard normal distribution in large samples.
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The i-th jackknife residual or deleted residual involves the difference between
y; and its predicted value, based on the data set in which the i-th case is deleted.
This difference equals e;/(1 — /;). The jackknife residual is obtained by
standardizing this difference. The residual mean square for the regression in
which the i-th case is deleted is as follows:

5 (n—r)52 —w,-ei2 /(1 —hi)

s =

n—-r-—1

The jackknife residual is defined as

W
ti :ei -t
\/sf(l—hi)

and ¢; follows a ¢ distribution with n — » — 1 degrees of freedom.

Cook’s distance for the i-th case is a measure of how much an individual case
affects the estimated regression coefficients. It is given as follows:

2
wih;e;

rs* (1=n )2

Weisberg (1985) states that if D; exceeds the 50-th percentile of the F(r, n — r)
distribution, it should be considered large. (This value is about 1. This statistic
does not have an F distribution.)

DFFITS, like Cook’s distance, is also a measure of influence. For the i-th case,
DFFITS is computed by the formula below.

DFFITS, = ¢, Lz
s? (1-n;)

Hoaglin and Welsch (1978) suggest that DFFITS greater than

2\r/n

is large.

Transformations

Transformations of the independent variables are sometimes useful in order to
satisfy the regression model. The inclusion of squares and crossproducts of the
variables

2 2
(xl,)cz,x1 ,xz,xlxz)

is often needed. Logarithms of the independent variables are used also. (See
Draper and Smith 1981, pp. 218-222; Box and Tidwell 1962; Atkinson 1985,
pp- 177-180; Cook and Weisberg 1982, pp. 78—86.)
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When the responses are described by a nonlinear function of the parameters, a
transformation of the model equation often can be selected so that the
transformed model is linear in the regression parameters. For example, by taking
natural logarithms on both sides of the equation, the exponential model

y= eﬁo+ﬁ1x1 £
can be transformed to a model that satisfies the linear regression model provided
the €,;’s have a log-normal distribution (Draper and Smith, pp. 222-225).

When the responses are nonnormal and their distribution is known, a
transformation of the responses can often be selected so that the transformed
responses closely satisfy the regression model, assumptions. The square-root
transformation for counts with a Poisson distribution and the arc-sine
transformation for binomial proportions are common examples

(Snedecor and Cochran 1967, pp. 325-330; Draper and Smith, pp. 237-239).

Alternatives to Least Squares

The method of least squares has desirable characteristics when the errors are
normally distributed, e.g., a least-squares solution produces maximum likelihood
estimates of the regression parameters. However, when errors are not normally
distributed, least squares may yield poor estimators. Function

i msl s_f _| nor m regressi on offers three alternatives to least squares
methodology, Least Absolute Value , Lp Norm , and Least Maximum Value.

The least absolute value (LAV, L1) criterion yields the maximum likelihood
estimate when the errors follow a Laplace distribution. Option

| MSLS_METHOD LAV (page 169) is often used when the errors have a heavy
tailed distribution or when a fit is needed that is resistant to outliers.

A more general approach, minimizing the Lp norm (p < 1), is given by option

| MSLS_METHOD_LLP (page 169). Although the routine requires about 30 times
the CPU time for the case p = 1 than would the use of | MSLS_METHOD_LAV, the
generality of | MSLS_METHOD_LLP allows the user to try several choices forp = 1
by simply changing the input value of p in the calling program. The CPU time
decreases as p gets larger. Generally, choices of p between 1 and 2 are of interest.
However, the Lp norm solution for values of p larger than 2 can also be
computed.

The minimax (LMV, L., Chebyshev) criterion is used by | MSLS_METHOD_LMW
(page 169). Its estimates are very sensitive to outliers, however, the minimax
estimators are quite efficient if the errors are uniformly distributed.

Missing Values

NaN (Not a Number) is the missing value code used by the regression functions.
Use function i nsl s_f _machi ne(6), Chapter 14 (or function

i msl s_d_nachi ne(6) with double-precision regression functions) to retrieve
NaN. Any element of the data matrix that is missing must be set to
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i msl s_f _machi ne(6) (ori nmsl s_d_machi ne(6) for double precision). In
fitting regression models, any observation containing NaN for the independent,
dependent, weight, or frequency variables is omitted from the computation of the
regression parameters.

regressors_for_gim

Generates regressors for a general linear model.

Synopsis
#include <insls. h>

int inmsls_f_regressors_for_gl m(int n_observations, float x[],
int n_cl ass, int n_conti nuous, .., 0)

The type double function isi nsl s_d_regressors_for_gl m

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
Ann_observations X (n_cl ass + n_cont i nuous) array containing
the data. The columns must be ordered such that the first n_cl ass
columns contain the class variables and the nextn_cont i nuous
columns contain the continuous variables. (Exception: see optional
argument | MSLS_X_ CLASS COLUWNS.)

int n_cl ass (Input)
Number of classification variables.

int n_conti nuous (Input)
Number of continuous variables.

Return Value

An integer (n_r egr essor s) indicating the number of regressors generated.

Synopsis with Optional Arguments
#include <insls. h>

int inmsls_f_regressors_for_gl m(int n_observations, float x[],
intn_cl ass, intn_conti nuous,
| MSLS_X_COL_DI'M int x_col _di m
| MBLS_X CLASS COLUMNS, int x_cl ass_colums[],
| MSLS_MODEL_ORDER, int nodel _order,
| MSLS | NDI CES_EFFECTS, int n_effects,
intn_var_effects[], intindices_effects[],
| MSLS_DUMVY, Imsls_dummy method dummy_met hod,
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| MSLS_REGRESSORS, float **regressors,

| MSLS_REGRESSORS_USER, float regressors[],

| MSBLS_REGRESSCORS _COL_DI M int regressors_col _dim
0)

Optional Arguments

| MSLS_X_COL_DI' M intx_col _di m (Input)
Column dimension of x.
Default: x_col _di m=n_cl ass + n_cont i nuous

| MSLS_X_CLASS COLUWNS, int x_cl ass_col ums[] (Input)
Index array of length n_cl ass containing the column numbers of x that
are the classification variables. The remaining variables are assumed to
be continuous.
Default: x_cl ass_colums =0, 1, ...,n_class — 1

| MBLS_MODEL_ORDER, int nodel _order (Input)
Order of the model. Model order can be specified as 1 or 2. Use optional
argument | MSLS_| NDI CES_EFFECTS to specify more complicated
models.
Default: nodel _order =1
or

| MSLS_| NDI CES_EFFECTS, int n_effects, int n_var_effects[],
intindi ces_effects[] (Input)
Variable n_ef f ect s is the number of effects (sources of variation) in
the model. Variable n_var _ef f ect s is an array of length n_ef f ect s
containing the number of variables associated with each effect in the
model. Argumenti ndi ces_ef f ect s is an index array of length
n_var_effects[0] +n_var_effects[1] +... +n_var_effects
(n_effects —1). The first n_var _ef f ect s[0] elements give the
column numbers of x for each variable in the first effect. The next
n_var _effect s[1] elements give the column numbers for each
variable in the second effect. ... The last n_var _effects [n_effects
— 1] elements give the column numbers for each variable in the last
effect.

| MBLS_DUMWY, Imsls dummy method dummy_met hod (Input)
Dummy variable option. Indicator variables are defined for each class
variable as described in the “Description” section.

Dummy variables are then generated from the » indicator variables in
one of the following three ways:

dunmy_net hod Method

I MBLS_ALL The 7 indicator variables are the dummy
variables (default).
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dunmy_net hod Method

I MBLS_LEAVE _OUT_LAST The dummies are the first » — 1 indicator
variables.

I MBLS_SUM TO_ZERO The n — 1 dummies are defined in terms of the
indicator variables so that for balanced data,
the usual summation restrictions are imposed
on the regression coefficients.

| MSLS_REGRESSCRS, float **regressors (Output)
Address of a pointer to the internally allocated array of size
n_observati ons X n_r egr essor s containing the regressor variables
generated from Xx.

| MSLS_REGRESSORS_USER, float regressors[] (Output)
Storage for array r egr essor s is provided by the user. See
| MBLS_REGRESSORS.

| MBLS_REGRESSORS _COL_DI M int regressors_col _di m (Input)
Column dimension of r egr essor s.
Default: r egressors_col _di m=n_regressors

Description

Functioni nsl s_f _regressors_for_gl mgenerates regressors for a general
linear model from a data matrix. The data matrix can contain classification
variables as well as continuous variables. Regressors for effects composed solely
of continuous variables are generated as powers and crossproducts. Consider a
data matrix containing continuous variables as Columns 3 and 4. The effect
indices (3, 3) generate a regressor whose i-th value is the square of the i-th value
in Column 3. The effect indices (3, 4) generates a regressor whose i-th value is
the product of the i-th value in Column 3 with the i-th value in Column 4.

Regressors for an effect (source of variation) composed of a single classification
variable are generated using indicator variables. Let the classification variable 4
take on values ay, a,, ..., a,. From this classification variable,

i msl s_f _regressors_for_gl mcreates n indicator variables. For
k=1,2,..,n, wehave

P

_{lifA=ak

0 otherwise

For each classification variable, another set of variables is created from the
indicator variables. These new variables are called dummy variables. Dummy
variables are generated from the indicator variables in one of three manners:

1. The dummies are the » indicator variables.

2. The dummies are the first n — 1 indicator variables.
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3. The n — 1 dummies are defined in terms of the indicator variables so that
for balanced data, the usual summation restrictions are imposed on the
regression coefficients.

In particular, for dummy method = IMSLS_ALL, the dummy variables are
Ap=I(k=1,2, .., n). For dummy method = IMSLS LEAVE OUT LAST, the
dummy variables are 4, = [(k=1, 2, ..., n — 1). For

dummy method = IMSLS SUM_TO_ZERO, the dummy variables are
Ap=1;-1(k=1,2,.., n—1). The regressors generated for an effect composed
of a single-classification variable are the associated dummy variables.

Let m; be the number of dummies generated for the j-th classification variable.
Suppose there are two classification variables 4 and B with dummies

Al’ Az,..., Aml

and

B.,B,,..,B,

2

The regressors generated for an effect composed of two classification variables
A and B are

A®B=(4,.4....., 4, )®(B,.B,..... B,,)

o> By,
= (AIBI’AIB2’ vers AleZ ’A2BI’A2B2’ vers
A,B,, sy Ay By Ay By, oy 4, B, )

More generally, the regressors generated for an effect composed of several
classification variables and several continuous variables are given by the
Kronecker products of variables, where the order of the variables is specified in
indices effects. Consider a data matrix containing classification variables in
Columns 0 and 1 and continuous variables in Columns 2 and 3. Label these four
columns 4, B, X;, and X,. The regressors generated by the effect indices
0,1,2,2,3)are 4 ® B ® X1 X1 X>.

Remarks

Let the data matrix x = (4, B, X|), where A and B are classification variables and
X is a continuous variable. The model containing the effects 4, B, 4B, X,

AX;, BX;, and ABX is specified as follows (use optional keyword

IMSLS INDICES EFFECTS):

n class=2
n_continuous =1
n effects=7
n var effects=(1,1,2,1,2,2,3)
indices _effects=(0,1,0,1,2,0,2,1,2,0,1,2)
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For this model, suppose that variable 4 has two levels, 4; and 4,, and that
variable B has three levels, B, B,, and B;. For each dunmy_net hod option, the
regressors in their order of appearance in r egr essor s are given below.

dunmy_net hod regressors

I NSLS—ALL Al 5 A23 Bl 5 BZs BS! AIBI ) AIBZs AIBSs AZBI ) AZBZs
AxBs, Xy, A1 Xy, 42X, BiIX,, BoXy, Bi Xy, A1 B X,
A1 BoXy, A1 B3 Xy, AyB1 X, A:Br X, 4,83X

I NSLS—LEAVE—QJT—LAST Al 5 Bl 5 BZs AIBI > AIBZs AXYI 5 AIAXYI > Bl‘le > BZ‘XYI 5
A1Bi Xy, 4By

|WBLS_SULTO.ZERO 14y — 4y, By = B3, By = B, (4y = 42) (B = By),
(4 = 45) (B, = By), X, (4 —4p) X,

(By = B3)X;, (By = By)X;, (4 = 4) (By = B)X,
(4 = 45) (B, = By)X

Within a group of regressors corresponding to an interaction effect, the indicator
variables composing the regressors vary most rapidly for the last classification
variable, next most rapidly for the next to last classification variable, etc.

By default, i nsl s_f _regressors_f or_gl minternally generates values for
n_effects,n_var_effects,andindi ces_ef fects, which correspond to a
first order model with NEF = n_cont i nuous + n_cl ass. The variables then are
used to create the regressor variables. The effects are ordered such that the first
effect corresponds to the first column of x, the second effect corresponds to the
second column of x, etc. A second order model corresponding to the columns
(variables) of x is generated if | MSLS_MODEL_ ORDER with nodel _or der =2 is
specified.

There are

. NVAR
NEF = n_class + 2[h_conti nuous +

effects, where NVAR =n_cont i nuous + n_cl ass. The first NVAR effects
correspond to the columns of x, such that the first effect corresponds to the first
column of x, the second effect corresponds to the second column of x, ..., the
NVAR-th effect corresponds to the NVAR-th column of x (i.e. Xx[NVAR - 1]).
The next n_cont i nuous effects correspond to squares of the continuous
variables. The last

(NV;!R)

effects correspond to the two-variable interactions.
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. Let the data matrix x = (4, B, X), where 4 and B are classification
variables and JX] is a continuous variable. The effects generated and
order of appearance is

A,B, X, X}, AB, AX,,BX,

. Let the data matrix x = (4, X], X;), where 4 is a classification variable
and X; and X, are continuous variables. The effects generated and order
of appearance is

A, X, X, X?, X5, 4X,,4X,, X, X,

. Let the data matrix x = (X}, 4, X5) (see | MSLS_CLASS_COLUWNS),
where 4 is a classification variable and X; and )X, are continuous
variables. The effects generated and order of appearance is

X, A4, X,, X2, X3, X4, X, X,, AX,

Higher-order and more complicated models can be specified using
| MSLS_| NDI CES_EFFECTS.

Examples

Example 1

In the following example, there are two classification variables, 4 and B, with two
and three values, respectively. Regressors for a one-way model (the default model
order) are generated using the | MSLS_ALL dummy method (the default dummy
method). The five regressors generated are 4, 4,, By, B,, and Bj.

#i ncl ude <insls. h>
void main() {
int n_observations = 6;
int n_class = 2;
int n_cont = 0;
int n_regressors;
float x[12] = {

10.0, 5.0,
20.0, 15.0,
20.0, 10.0,
10.0, 10.0,
10.0, 15.0,
20.0, 5.0};
n_regressors = insls_f _regressors_for_gl m(n_observations, x,

n_class, n_cont, 0);
printf("Nunber of regressors = 9%3d\n", n_regressors);

Output

Nunmber of regressors = 5
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Example 2

In this example, a two-way analysis of covariance model containing all the
interaction terms is fit. First, i nsl s_f _regressors_f or _gl mis called to
produce a matrix of regressors, r egr essor s, from the data x. Then,

regressor s is used as the input matrix into i nsl s_f _r egr essi on to produce
the final fit. The regressors, generated using

dunmmy_net hod =1 MSLS_LEAVE_QOUT_LAST, are the model whose mean
function is

P oy + B+ Yy B+ Cxgy + N+ B

. g i=1,27=1,2,3

where 0y = B3 =Yy = Y5 = Y53 =(, =N3 =05 =0, =05 =0.

#i ncl ude <insls. h>
void main() {
#def i ne N_OBSERVATI ONS 18
int n_class = 2;
int n_cont = 1;
fl oat anova[ 15], *regressors;
int n_regressors;
fl oat X[ 54]
0, 1.
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int class_col[
int n_effects = 7;
int n_var_effects[7] = {1, 1, 2, 1, 2, 2, 3};
int indices_ effects[12] = {0, 1, O, 1, 2, 0, 2, 1, 2, 0, 1, 2};
fl oat *coef;
char *reg_|l abel s[] = {
" ", "Alphal", "Betal", "Beta2", "Gammll", "Ganmal2",
"Delta", "Zetal", "Etal", "Eta2", "Thetall", "Thetal2"};
char *| abel s[] = {
"degrees of freedom for the nodel",
"degrees of freedomfor error",
"total (corrected) degrees of freedont,
"sum of squares for the nodel",
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"sum of squares for error"

"total (corrected) sum of squares"

"model nean square", "error nean square"

"F-statistic", "p-value",

"R-squared (in percent)","adjusted R-squared (in percent)"
"est. standard deviation of the nodel error"

"overall nean of y"

"coefficient of variation (in percent)"};

n_regressors = inmsls_f_regressors_for_gl m (N _OBSERVATI ONS, x,
n_class, n_cont,
I MSLS_X CLASS COLUWNS, cl ass_col
| MSLS DUMWY, | MSLS LEAVE OUT LAST,
I MSLS | NDI CES_EFFECTS, n_effects, n_var_effects, indices_effects,
| MSLS_RECGRESSORS, &regressors,
0);

printf("Nunber of regressors = %3d", n_regressors);

imsls_ f wite_matrix ("regressors”, N _OBSERVATIONS, n_regressors,

regressors,
| MSLS_COL_LABELS, reg_| abels,
0);

coef = inmsls_f_regression (N_OBSERVATI ONS, n_regressors, regressors,

| MBLS_ANOVA TABLE USER, anova,

0);
imsls_ f wite_matrix ("* * * Analysis of Variance * * *\n", 15, 1
anova,
| MBLS_ROW LABELS, | abel s,
| MSLS WRI TE_FORVMAT, "9%d1.4f",
0);
}
Output
Number of regressors = 11
regressors
Al phal Bet al Bet a2 Gamuall Gamual2 Delta
1 1.00 1.00 0.00 1.00 0.00 1.11
2 1.00 1.00 0.00 1.00 0.00 2.22
3 1.00 1.00 0.00 1.00 0.00 3.33
4 1.00 0.00 1.00 0.00 1.00 1.11
5 1.00 0.00 1.00 0.00 1.00 2.22
6 1.00 0.00 1.00 0.00 1.00 3.33
7 1.00 0.00 0.00 0.00 0.00 1.11
8 1.00 0.00 0.00 0.00 0.00 2.22
9 1.00 0.00 0.00 0.00 0.00 3.33
10 0.00 1.00 0.00 0.00 0.00 1.11
11 0.00 1.00 0.00 0.00 0.00 2.22
12 0.00 1.00 0.00 0.00 0.00 3.33
13 0.00 0.00 1.00 0.00 0.00 1.11
14 0.00 0.00 1.00 0.00 0.00 2.22
15 0.00 0.00 1.00 0.00 0.00 3.33
16 0.00 0.00 0.00 0.00 0.00 1.11
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17 0.00 0.00 0.00 0.00 0.00 2.22

18 0. 00 0. 00 0. 00 0. 00 0. 00 3.33
Zetal Et al Et a2 Thet all Thet al2
1 1.11 1.11 0.00 1.11 0.00
2 2.22 2.22 0. 00 2.22 0. 00
3 3.33 3.33 0. 00 3.33 0. 00
4 1.11 0.00 1.11 0.00 1.11
5 2.22 0. 00 2.22 0. 00 2.22
6 3.33 0. 00 3.33 0. 00 3.33
7 1.11 0. 00 0. 00 0. 00 0. 00
8 2.22 0. 00 0. 00 0. 00 0. 00
9 3.33 0. 00 0. 00 0. 00 0. 00
10 0. 00 1.11 0. 00 0. 00 0. 00
11 0. 00 2.22 0. 00 0. 00 0. 00
12 0. 00 3.33 0. 00 0. 00 0. 00
13 0. 00 0. 00 1.11 0. 00 0. 00
14 0. 00 0. 00 2.22 0. 00 0. 00
15 0. 00 0. 00 3.33 0. 00 0. 00
16 0. 00 0. 00 0. 00 0. 00 0. 00
17 0. 00 0. 00 0. 00 0. 00 0. 00
18 0. 00 0. 00 0. 00 0. 00 0. 00

* * * Analysis of Variance * * *

degrees of freedom for the nodel 11. 0000
degrees of freedomfor error 6. 0000
total (corrected) degrees of freedom 17. 0000
sum of squares for the nodel 43. 9028
sum of squares for error 0. 8333
total (corrected) sum of squares 44,7361
nodel nean square 3.9912
error nean square 0. 1389
F-statistic 28. 7364
p-val ue 0. 0003
R-squared (in percent) 98. 1372
adj usted R-squared (in percent) 94. 7221
est. standard deviation of the nodel error 0. 3727
overal |l mean of y 3.9722
coefficient of variation (in percent) 9. 3821
regression

Fits a multivariate linear regression model using least squares.

Synopsis
#include <insls. h>

float *insls_f_regression (int n_rows, int n_i ndependent, floatx[],
float y[1, ..., 0)

The type double function isi nsl s_d_r egr essi on.
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Required Arguments

int n_rows (Input)
Number of rows in X.

int n_i ndependent (Input)
Number of independent (explanatory) variables.

float x[] (Input)
Array of size n_r ows X n_i ndependent containing the independent
(explanatory) variables(s). The i-th column of x contains the i-th
independent variable.

float y[1 (Input)
Array of size n_r ows X n_dependent containing the dependent
(response) variables(s). The i-th column of y contains the i-th dependent
variable. See optional argument IMSL S DEPENDENT to set the value
of n_dependent .

Return Value

If the optional argument | MSLS_NO_| NTERCEPT is not used, r egr essi on
returns a pointer to an array of length n_dependent x (n_i ndependent + 1)
containing a least-squares solution for the regression coefficients. The estimated
intercept is the initial component of each row, where the i-th row contains the
regression coefficients for the i-th dependent variable.

Synopsis with Optional Arguments
#include <i nsl s. h>

float *insls_f_regresssion (int n_rows, int n_i ndependent,
float X[, float y[],
| MSLS_X_COL_DI'M int x_col _dim
IMSLS Y _ COL_DIM int y_col _dim
| MSLS_N_DEPENDENT, int n_dependent,
| MBLS_X I NDI CES, int indind[], int i nddep[], int ifrq,
intiwt,
| MSLS_I DO, int ido,
| MSLS_ROWS_ADD, or
| MSLS_ROWS_DELETE,
| MSLS_I NTERCEPT, or
| MSLS_NO_| NTERCEPT,
| MSLS_TOLERANCE, float tol erance,
| MBLS_RANK, int *rank,
| MSLS_CCOEF_COVARI ANCES, float **coef _covari ances,
| MSLS_CCEF_COVARI ANCES_USER, float coef _covari ances[],
| MSLS _COV_COL_DIM int cov_col _dim
| MSLS_X_MEAN, float **x_nean,
| MSBLS_X_MEAN _USER, float x_nean[],
| MSLS_RESI DUAL, float **resi dual,
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| MBLS_RESI DUAL_USER, float residual [],
| MSLS_ANOVA _TABLE, float **anova_t abl e,
| MSLS_ANOVA TABLE USER, float anova_t abl e[],
| MSLS_FREQUENCI ES, float frequencies[],
| MBLS WEI GHTS, float wei ghts[],
| MBLS_REGRESSI ON_| NFO,
Imsls_f regression **r egr essi on_i nf o,
| MSLS_RETURN_USER, float coefficients[],
0)

Optional Arguments

| MBLS_ X _COL_DIM int x_col _di m (Input)
Column dimension of x.
Default: x_col _di m=n_i ndependent

I MBLS_Y_COL_DIM int y_col _di m (Input)
Column dimension of y.
Default: y_col _di m=n_dependent

| MSLS_N_DEPENDENT, int n_dependent (Input)
Number of dependent variables. Input matrix y must be declared of size
n_r ows by n_dependent , where column i of y contains the i-th
dependent variable.
Default: n_dependent =1

I MSLS_X_I NDI CES, int i ndind[], int i nddep, int ifrq, int iw (Input)
This argument allows an alternative method for data specification. Data
(independent, dependent, frequencies, and weights) is all stored in the
data matrix x. Argumenty, and keywords | MSLS_FREQUENCI ES and
| MSLS_WEI GHTS are ignored.

Each of the four arguments contains indices indicating column numbers
of x in which particular types of data are stored. Columns are numbered
0...x_col _dim-1.

Parameter i ndi nd contains the indices of the independent variables..
Parameter i nddep contains the indices of the dependent variables.

Parameters i f r g and i w contain the column numbers of x in which the
frequencies and weights, respectively, are stored. Seti fr q = —1 if there
will be no column for frequencies. Set i wt = —1 if there will be no
column for weights. Weights are rounded to the nearest integer.
Negative weights are not allowed.

Note that required input argument y is not referenced, and can be
declared a vector of length 1.

| MSLS_I DO, int i do (Input)
Processing option.
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ido Action

0 This is the only invocation; all the data are input at once. (Default)

1 This is the first invocation with this data; additional calls will be
made. Initialization and updating for the n_r ows observations of x
will be performed.

2 This is an intermediate invocation; updating for the n_r ows
observations of x will be performed.

3 This is the final invocation of this function. Updating for the data in
x and wrap-up computations are performed. Workspace is released.
No further call to r egr essi on with i do greater than 1 should be
made without first calling r egr essi on withi do =1

Default: i do=10

| MSLS_ROWS_ADD, or

| MSBLS_ROWS_DELETE
By default (or if | MSLS_ROWS_ADD is specified), the observations in x
are added to the discriminant statistics. If | MSLS _ROAS_DELETE is
specified, then the observations are deleted.

Ifi do = 0, these optional arguments are ignored (data is always added if
there is only one invocation).

| MSBLS_| NTERCEPT, or
| MSLS_NO_| NTERCEPT
| MBLS | NTERCEPT is the default where the fitted value for observation
iis

Bo + Bix; +... + By

where k£ =n_independent. If | MSLS_NO_| NTERCEPT is specified, the intercept
term

()

is omitted from the model and the return value from regression is a
pointer to an array of length n_dependent x n_i ndependent .

| MSLS_TCOLERANCE, float tol erance (Input)
Tolerance used in determining linear dependence. For r egr essi on,
tol erance =100 x i nsl s_f _machi ne(4) is the default choice. For
imsl s_d_regression,tol erance =100 xi nsl s_d_nachi ne(4) is
the default. (See i msl s_f _machi ne Chapter 14.)
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| MBLS_RANK, int *rank (Output)
Rank of the fitted model is returned in *r ank.

| MSLS_CCOEF_COVARI ANCES, float **coef _covari ances (Output)
Address of a pointer to the n_dependent x m X m internally allocated
array containing the estimated variances and covariances of the
estimated regression coefficients. Here, m is the number of regression
coefficients in the model. If | MSLS_NO_| NTERCEPT is specified,
n =n_i ndependent ; otherwise, n =n_i ndependent + 1.

The first m x m elements contain the matrix for the first dependent
variable, the next m X m elements contain the matrix for the next
dependent variable, ... and so on.

| MSLS_COEF_COVARI ANCES_USER, float coef _covariances[] (Output)
Storage for arrays coef _covari ances is provided by the user. See
| MSLS_COEF_COVARI ANCES.

| MSLS_COV_COL_DI M int cov_col _di m (Input)
Column dimension of array coef _covari ances.
Default: cov_col _di m= m, where m is the number of regression
coefficients in the model

| MSLS_X_MEAN, float **x_mean (Output)
Address of a pointer to the internally allocated array containing the
estimated means of the independent variables.

| MSLS_X_MEAN USER, float x_mean[] (Output)
Storage for array x_nean is provided by the user.
See | MBLS_X_MEAN.

| MBLS_RESI DUAL, float **residual (Output)
Address of a pointer to the internally allocated array of size n_r ows by
n_dependent containing the residuals. Residuals may not be requested
ifi do > 0.

| MSLS_RESI DUAL_USER, float residual [] (Output)
Storage for array residual is provided by the user.
See | MSLS_RESI DUAL.

| MSLS_ANOVA TABLE, float **anova_t abl e (Output)
Address of a pointer to the internally allocated array of size
15 x n_dependent containing the analysis of variance table for each
dependent variable. The i-th column corresponds to the analysis for the
i-th dependent variable.
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The analysis of variance statistics are given as follows:

Element | Analysis of Variance Statistics
0 degrees of freedom for the model
1 degrees of freedom for error
2 total (corrected) degrees of freedom
3 sum of squares for the model
4 sum of squares for error
5 total (corrected) sum of squares
6 model mean square
7 error mean square
8 overall F-statistic
9 p-value
10 R (in percent)
11 adjusted R” (in percent)
12 estimate of the standard deviation
13 overall mean of y
14 coefficient of variation (in percent)

The anova statistics may not be requested if i do > 0.

| MSLS_ANOVA TABLE USER, float anova_t abl e[] (Output)
Storage for array anova_t abl e is provided by the user. See
| MSLS_ANOVA TABLE.

| MBLS_FREQUENCI ES, float frequenci es[] (Input)
Array of length n_r ows containing the frequency for each observation.
Default: f requenci es[] =1

| MBLS V\EI GHTS, float wei ghts[] (Input)
Array of length n_r ows containing the weight for each observation.
Default: wei ghts[] =1
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| MSLS_REGRESSI ON_| NFO, Imsls_f regression **regressi on_info
(Output)
Address of the pointer to an internally allocated structure of type
Imsls_f regression containing information about the regression fit. This
structure is required as input for functions
i msl s_f _regression_predictionand
i msl s_f_regression_summary.

| MBLS_RETURN_USER, float coefficients[] (Output)
If specified, the least-squares solution for the regression coefficients is
stored in array coefficients provided by the user. If
I MSLS_NO_| NTERCEPT is specified, the array requires
n_dependent X x units of memory, where n = n_i ndependent ;
otherwise, n = n_i ndependent + 1.

Description

Function i nmsl s_f _r egr essi on fits a multivariate multiple linear regression
model with or without an intercept. The multiple linear regression model is

Yi=Bo+ Bixa +Boxp .o + By + € i=1,2,...,n

where the observed values of the y;’s are the responses or values of the dependent
variable; the x;;’s, x2’s, ..., x;;’s are the settings of the k (input in

n_i ndependent ) independent variables; 3y, B, ..., By are the regression
coefficients whose estimated values are to be output by i msl s_f _regression;
and the €;’s are independently distributed normal errors each with mean 0 and
variance s°. Here, n is the sum of the frequencies for all nonmissing observations,
ie.,

n_rows-1

n= Zfl
i=0

where f; is equal to f r equenci es[i] if optional argument | MSLS_FREQUENCI ES
is specified and equal to 1.0 otherwise. Note that by default, B is included in the
model.

More generally, i nsl s_f _regr essi on fits a multivariate regression model. See
the chapter introduction for a description of the multivariate model.

Functioni nsl s_f _r egr essi on computes estimates of the regression
coefficients by minimizing the sum of squares of the deviations of the observed
response y; from the fitted response

Vi
for the n observations. This minimum sum of squares (the error sum of squares) is

output as one of the analysis of variance statistics if | MSLS_ANOVA_TABLE (or
| MSLS_ANOVA TABLE_USER) is specified and is computed as follows:
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SSE = Z;Wi (y,' _JA’I')Z
l:

Another analysis of variance statistic is the total sum of squares. By default, the
total sum of squares is the sum of squares of the deviations of y; from its mean

Y

the so-called corrected total sum of squares. This statistic is computed as follows:
! _\2
SST = Zwl.(yl. -y )
i=1

When IMSLS NO INTERCEPT is specified, the total sum of squares is the sum of
squares of y;, the so-called uncorrected total sum of squares. This is computed as
follows:

SST = i w,»y,»2
i=1

See Draper and Smith (1981) for a good general treatment of the multiple linear
regression model, its analysis, and many examples.

In order to compute a least-squares solution, imsls_ f regression performs an
orthogonal reduction of the matrix of regressors to upper-triangular form. The
reduction is based on one pass through the rows of the augmented matrix (x, y)
using fast Givens transformations. (See Golub and Van Loan 1983, pp. 156-162;
Gentleman 1974.) This method has the advantage that the loss of accuracy
resulting from forming the crossproduct matrix used in the normal equations is
avoided.

By default, the current means of the dependent and independent variables are
used to internally center the data for improved accuracy. Let x; be a column
vector containing the j-th row of data for the independent variables. Let x;
represent the mean vector for the independent variables given the data for rows 1,
2, ..., I. The current mean vector is defined as follows:

i
Z wifiX;
_ =l
-
Z w;f;
Jj=1

where the w;’s and the /s are the weights and frequencies. The i-th row of data
has

Xi

Ry

subtracted from it and is multiplied by
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where

Although a crossproduct matrix is not computed, the validity of this centering
operation can be seen from the following formula for the sum of squares and
crossproducts matrix:

anwifi(xi - X, )(x; _fn)T = iiwifi(xi -%;)(x; _)?i)T
i=1

i=2 %i-1

An orthogonal reduction on the centered matrix is computed. When the final
computations are performed, the intercept estimate and the first row and column
of the estimated covariance matrix of the estimated coefficients are updated (if
IMSLS_COEF COVARIANCES or IMSLS COEF_COVARIANCES USER is
specified) to reflect the statistics for the original (uncentered) data. This means
that the estimate of the intercept is for the uncentered data.

As part of the final computations, imsls f regression checks for linearly
dependent regressors. In particular, linear dependence of the regressors is
declared if any of the following three conditions are satisfied:

. A regressor equals 0.

o Two or more regressors are constant.

is less than or equal to tolerance. Here,

01,2, -1

is the multiple correlation coefficient of the i-th independent variable
with the first i — 1 independent variables. If no intercept is in the model,
the multiple correlation coefficient is computed without adjusting for the
mean.

On completion of the final computations, if the i-th regressor is declared to be
linearly dependent upon the previous i — 1 regressors, the i-th coefficient estimate
and all elements in the i-th row and i-th column of the estimated variance-
covariance matrix of the estimated coefficients (if IMSLS_COEF COVARIANCES
or IMSLS_COEF_COVARIANCES USER is specified) are set to 0. Finally, if a
linear dependence is declared, an informational (error) message, code
IMSLS_RANK DEFICIENT, is issued indicating the model is not full rank.
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Examples

Example 1
A regression model
Yi=Bo+ Bixy + Boxip + Baxz T E; i=1,2,...,9
is fitted to data taken from Maindonald (1984, pp. 203-204).
#i ncl ude <insls. h>

#defi ne | NTERCEPT 1
#def i ne N_| NDEPENDENT 3
#define N_COEFFI Cl ENTS (I NTERCEPT + N_| NDEPENDENT)
#define N_OBSERVATIONS 9

mai n()
fl oat *coefficients;
f1 oat x[ ][ N_I NDEPENDENT] = {7.0, 5.0, 6.0,
2.0,-1.0, 6.0,
7.0, 3.0, 5.0,
-3.0, 1.0, 4.0,
2.0,-1.0, 0.0,
2.0, 1.0, 7.0,
-3.0,-1.0, 3.0,
2.0, 1.0, 1.0,
2.0, 1.0, 4.0},
fl oat y[] = {7.0,-5.0, 6.0, 5.0, 5.0, -2.0, 0.0, 8.0, 3.0};

coefficients = insls_f_regressi on(N_OBSERVATI ONS, N_| NDEPENDENT,
(float *)x, y, 0);
inmsls_f wite_matrix("Least-Squares Coefficients", 1, N_COEFFI ClI ENTS,
coefficients,
| MBLS_COL_NUMBER_ZERO,

0);
}
Output
Least - Squares Coefficients
0 1 2 3
7.733 -0. 200 2.333 -1.667

Example 2

A weighted least-squares fit is computed using the model
Yi=Bot Bixy +Bxpte i=1,2,...,4

and weights 1/* discussed by Maindonald (1984, pp. 67-68).

In the example, | MSLS_WEI GHTS is specified. The minimum sum of squares for
error in terms of the original untransformed regressors and responses for this
weighted regression is
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4
SSE = zwi(yi _)A’i)z
i=1

where w; = 1/1'2, represented in the C code as array w.

#i ncl ude <insls. h>
#i ncl ude <math. h>

#def i ne N_| NDEPENDENT 2
#def i ne N_COEFFI Cl ENTS N_| NDEPENDENT + 1
#defi ne N_OBSERVATIONS 4

mai n()
i nt i;
fl oat *coef ficients, w N_OBSERVATI ONS], anova_tabl e[ 15],
powver ;
f1 oat x[ 1 N_I NDEPENDENT] = {
-2.0, 0.0,
-1.0, 2.0,
2.0, 5.0,
7.0, 3.0};
f1 oat y[] ={-3.0, 1.0, 2.0, 6.0};
char *anova_row_| abel s[] = {

"degrees of freedomfor regression",
"degrees of freedomfor error",

"total (uncorrected) degrees of freedoni,
"sum of squares for regression",

"sum of squares for error",

"total (uncorrected) sum of squares",
"regressi on nmean square",

"error nean square", "F-statistic",
"p-value", "R-squared (in percent)",

"adj usted R-squared (in percent)",

"est. standard deviation of nodel error"”,
"overall nean of y",

"coefficient of variation (in percent)"};

/* Cal cul ate weights */
power = 0.0;
for (i =0; i < NOBSERVATIONS;, i++) {
power += 1.0;
wi] = 1.0/ (power*power);

/*Perform anal ysis */
coefficients = insls_f_regressi on( N _OBSERVATI ONS, N_| NDEPENDENT,
(float *) x, vy,
| MBLS_VEI GHTS, w,
| MSLS_ANOVA TABLE USER, anova_tabl e,
0);

/* Print results */
inmsls_ f _wite_matrix("Least Squares Coefficients", 1,
N_COEFFI CI ENTS, coefficients, 0);
inmsls f wite_matrix("* * * Analysis of Variance * * *\n", 15, 1,
anova_t abl e,
| MSLS_ROW LABELS, anova_row_| abel s,
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| MSLS_WRI TE_FORMAT, "°%0. 2f",

0);
}
Output
Least Squares Coefficients
1 2 3
-1.431 0. 658 0. 748

* * * Analysis of Variance * * *

degrees of freedom for regression
degrees of freedomfor error

total (uncorrected) degrees of freedom
sum of squares for regression

sum of squares for error

total (uncorrected) sum of squares
regressi on nean square

error mean square

F-statistic

p- val ue

R-squared (in percent)

fopRe)
RPOOOWRWORENWEN
™
g

adj usted R-squared (in percent) 03
est. standard devi ation of nodel error 01
overal | mean of y -1.51
coefficient of variation (in percent) -66. 55

Example 3

A multivariate regression is performed for a data set with two dependent
variables. Also, usage of the keyword | MSLS_X | NDI CES is demonstrated. Note
that the required input variable y is not referenced and is declared as a pointer to
a float.

#i ncl ude <i sl s. h>

#defi ne | NTERCEPT 1
#define N_| NDEPENDENT 3
#defi ne N_DEPENDENT 2
#define N_COEFFI Cl ENTS (I NTERCEPT + N_| NDEPENDENT)
#define N_OBSERVATI ONS 9

mai n()

float coefficients[ N DEPENDENT*N_COEFFI Cl ENTS] ;
float *dummy;

float scpe[ N_DEPENDENT* N _DEPENDENT] ;

float anova_t abl e[ 15* N_DEPENDENT] ;

static fl oat X[] = { 7.0, 5.0, 6.0, 7.0, 1.0,
2.0,-1.0, 6.0, -5.0, 4.0,

7.0, 3.0, 5.0, 6.0, 10.0,

-3.0, 1.0, 4.0, 5.0, 5.0,

2.0,-1.0, 0.0, 5.0, -2.0,

2.0, 1.0, 7.0, -2.0, 4.0,

-3.0,-1.0, 3.0 0.0, -6.0
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2.0,
2.0,

OO

, 1.0, 8.0,
4.0, 3.0

on
[eNe)
—— -

i nt ifrg =-1, iw=-1;
static int indind N_INDEPENDENT] = {0, 1, 2};
static int inddep[ N_DEPENDENT] = {3, 4};
char *fm = "9d0.4f"
char *anova_row | abel s[] ={
"d. f. regressmn

"d.f. error'

"d.f. total (uncorrected)",

"ssr",

"sse",

"sst (uncorrected)",

“mer",

"mse", "F-statistic",

"p-value", "R-squared (in percent)",

"adj. R-squared (in percent)",

"est. s.t.d. of nodel error",

"overall nean of y",

"coefficient of variation (in percent)"};

i sl s_f _regressi on( N_OBSERVATI ONS, N_| NDEPENDENT,
(float *) x, dummy,
I MSLS X COL_DI'M N_I NDEPENDENT+N_DEPENDENT,
| IVSLS N_ DEPENDENT, N_DEPENDENT,
| MBLS_X_ I NDI CES, indind, inddep, ifrq, iw,
| MSLS_SCPE_USER, scpe,
| MSLS_ANOVA TABLE USER, anova_tabl e,
| MSBLS_RETURN_USER, coefficients,
0);

inmsls_f _wite_matrix("Least Squares Coefficients", N _DEPENDENT,
N_COEFFI Cl ENTS, coefficients,
| MBLS_COL_NUMBER ZERO, 0);

inmsls_f wite_matrix("SCPE", N _DEPENDENT, N_DEPENDENT, scpe,
| MSBLS_WRI TE_FORMAT, "94.0.4f", 0);

imsls f wite matrix("* * * Analysis of Variance * * *\n",
15, N_DEPENDENT,
anova_t abl e,
| MSLS_ROW LABELS, anova_row_| abel s,
| MSBLS_WRI TE_FORVMAT, "9%40.2f",

0);
}
Output
Least Squares Coefficients

0 1 2 3
1 7.733 -0. 200 2.333 -1.667
2 -1.633 0. 400 0. 167 0. 667

SCPE

1 2
1 4. 0000 20. 0000
2 20. 0000 110. 0000
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* * * Analysis of Variance * * *

1 2

d.f. regression 3.00 3.00
d.f. error 5. 00 5.00
d.f. total (uncorre 8. 00 8. 00

cted)
SSr 152. 00 56. 00
sse 4.00 110. 00
sst (uncorrected) 156. 00 166. 00
nsr 50. 67 18. 67
nse 0. 80 22.00
F-statistic 63. 33 0.85
p-val ue 0. 00 0.52
R-squared (in 97. 44 33.73

percent)
adj. R-squared 95. 90 0. 00

(in percent)
est. s.t.d. of 0. 89 4.69

nodel error
overall mean of y 3.00 2.00
coefficient of 29.81 234.52

variation (in

percent)

Warning Errors
| MBLS_RANK_DEFI CI ENT The model is not full rank. There is not a

unique least-squares solution.

Fatal Errors

| MSLS _BAD_| DO 6 “ido” = #. Initial allocations must be
performed by making a call to function
regression with “ido” = 1.

| MSLS_BAD_I DO 7 “ido” = #. A new analysis may not begin
until the previous analysis is terminated by
a call to function regression with “ido” = 3.

regression_summary

Produces summary statistics for a regression model given the information from
the fit.

Synopsis

#include <insls.h>

void i sl s_f_regressi on_summary
(Imsls_f regression *r egressi on_i nfo, ..., 0)

The type double function isi nsl s_d_r egr essi on_summary.
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Required Argument

Imsls_f regression *regression_info (Input)

Pointer to a structure of type Imsls_f regression containing information
about the regression fit. See i msl s_f _r egr essi on.

Synopsis with Optional Arguments

#include <i sl s. h>

void insls_f _regressi on_sunmmary

(Imsls_f regression *r egr essi on_i nf o,

| MSLS_I NDEX_REGRESSI ON, int i dep,

| MSLS_CCEF_T_TESTS, float **coef t tests

| MSLS_CCEF_T_TESTS_USER, float coef _t tests[],

| MSLS_CCEF_COL_DI M int coef _col _di m

| MSLS_CCEF_VI F, float **coef _vif,

| MSLS_CCEF_VI F_USER, float coef _vif[],

| MSLS_CCEF_COVARI ANCES, float **coef _covari ances,
| MSLS_COEF_COVARI ANCES_USER, float coef _covari ances[],
| MSBLS_COEF_COV_COL_DI'M int coef _cov_col _dim

| MSLS_ANOVA TABLE, float **anova_t abl e,

| MSLS_ANOVA TABLE USER, float anova_table[],

0)

Optional Arguments
| MSLS_| NDEX_REGRESSI ON, int i dep (Input)

Given a multivariate regression fit, this option allows the user to specify
for which regression summary statistics will be computed.
Default: i dep =0

| MSLS_CCEF_T_TESTS, float **coef _t_tests (Output)

Address of a pointer to the npar x 4 array containing statistics relating
to the regression coefficients, where npar is equal to the number of
parameters in the model.

Each row (for each dependent variable) corresponds to a coefficient in
the model, where npar is the number of parameters in the model. Row
i + intcep corresponds to the i-th independent variable, where infcep is
equal to 1 if an intercept is in the model and 0 otherwise, for
i=0,1,2, ..., npar—1.
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The statistics in the columns are as follows:

Column Description
0 coefficient estimate
1 estimated standard error of the coefficient estimate
2 t-statistic for the test that the