
30Trusted For Over Years30

C F u n c t i o n s f o r S t a t i s t i c a l A n a l y s i s

C / S t a t / L i b r a r y

Quick Tips on How to Use this Online Manual

Click to display only the page.

Click to display both bookmark
and the page.

Click to display both thumbnails
and the page.

Click and drag to page to magnify
the view.

Click to go to the first page.

Click and drag to the page to select text.

Click and drag to page to reduce the view.

Click to go to the last page.

Click to go back to the previous view and
page from which you jumped.

Click to return to the next view.

Click to view the page at 100% zoom.

Click to fit the entire page within the
window.

Click to fit the page width inside the
window.

Click to find part of a word, a complete
word, or multiple words in a active
document.

Double-click to jump to a topic
when the bookmarks are displayed.

Click to jump to a topic when the
bookmarks are displayed.

Click to go to the next page.

Click to go back to the previous page
from which you jumped.

Click and use to drag the page in vertical
direction and to select items on the page.

Printing an online file: Select Print from the File menu to print an online file. The dialog box that opens allows you
to print full text, range of pages, or selection.

Important Note: The last blank page of each chapter (appearing in the hard copy documentation) has been deleted
from the on-line documentation causing a skip in page numbering before the first page of the next chapter, for
instance, Chapter 3 in the on-line documentation ends on page 213 and Chapter 4 begins on page 215.

Numbering Pages. When you refer to a page number in the PDF online documentation, be aware that the page
number in the PDF online documentation will not match the page number in the original document. A PDF
publication always starts on page 1, and supports only one page-numbering sequence per file.

Copying text. Click the button and drag to select and copy text.

Viewing Multiple Online Manuals: Select Open from the File menu, and open the .PDF file you need.
Select Cascade from the Window menu to view multiple files.

Resizing the Bookmark Area in Windows: Drag the double-headed arrow that appears on the area’s border as you
pass over it.

Resizing the Bookmark Area in UNIX: Click and drag the button that appears on the area’s border at the
bottom of the vertical bar.

Jumping to Topics: Throughout the text of this manual, links to chapters and other sections appear in green color
text to indicate that you can jump to them. To return to the page from which you jumped, click the return
back icon on the toolbar. Note: If you zoomed in or out after jumping to a topic, you will return to the
previous zoom view(s) before returning to the page from which you jumped.

Let’s try it, click on the following green-colored text: Chapter 1: Basic Statistics

If you clicked on the green color in the example above, Chapter 1: Ba sic Statistics opened.
To return to this page, click the on the toolbar.

Visual Numerics, Inc.
Corporate Headquarters
2500 Wilcrest Drive, Ste 200
Houston, Texas 77042-2759
USA

PHONE: 713-784-3131
FAX: 713-781-9260
e-mail: info@vni.com

Visual Numerics
International Ltd.
Centennial Court
Suite 1, North Wing
Easthampstead Road
BRACKNELL BERSHIRE
RG12 1YQ
United Kingdom

PHONE: +44-1-344-45-8700
FAX: +44-1-344-45-8748
e-mail: info@vniuk.co.uk

Visual Numerics SARL
Tour Europe
33 Place des Corolles Cedex
F-92049 Paris La Defense
France

PHONE: +33-1-46-93-94-20
FAX: +33-1-46-93-94-39
e-mail: info@vni.paris.fr

Visual Numerics S. A. de C.V.
Florencia 57 Piso 10-01
Col. Juarez
Mexico D. F. C. P. 06000
Mexico
PHONE: +52-5514-9730 or 9628
FAX: +52-5514-5880

Visual Numerics International GmbH
Zettachring 10
D-70567 Stuttgart
Germany

PHONE: +49-711-13287-0
FAX: +49-711-13287-99
e-mail: vni@visual-numerics.de

Visual Numerics Japan, Inc
GOBANCHO HIKARI Building 4th Floor
14 Goban-cho ChIiyoda-KU
Tokyo, 113
JAPAN

PHONE: +81-3-5211-7760
FAX: +81-3-5211-7769
e-mail: vnijapan@vnij.co.jp

Visual Numerics, Inc.
7/F, #510, Chung Hsiao E. Road
Section 5
Taipei, TAIWAN 110
Republic of China

PHONE: (886) 2-727-2255
FAX: (886) 2-727-6798
e-mail: info@vni.com.tw

World Wide Web site: http://www.vni.com

Visual Numerics Korea, Inc.
HANSHIN BLDG. Room 801
136-Mapo-Dong, Mapo-gu
Seoul 121-050
Korea

PHONE:+82-2-3273-2632 or 2633
FAX: +82-2-3273-2634
e-mail: info@vni.co.kr

COPYRIGHT NOTICE: Copyright 1990-2001, an unpublished work by Visual Numerics, Inc. All rights reserved.

VISUAL NUMERICS, INC., MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Visual Numerics, Inc., shall not be liable for errors contained herein or for incidental, consequential, or other indirect
damages in connection with the furnishing, performance, or use of this material.

TRADEMARK NOTICE: IMSL, Visual Numerics, IMSL FORTRAN Numerical Libraries, IMSL Productivity Toolkit, IMSL
Libraries Environment and Installation Assurance Test, C Productivity Tools, FORTRAN Productivity Tools, IMSL C/Math/Library,
IMSL C/Stat/Library, IMSL Fortran 90 MP Library, and IMSL Exponent Graphics are registered trademarks or trademarks of Visual
Numerics, Inc., in the U.S. and other countries. Sun, SunOS, and Solaris are registered trademarks or trademarks of Sun Microsystems,
Inc. SPARC and SPARCompiler are registered trademarks or trademarks of SPARC International, Inc. Silicon Graphics is a registerd
trademark of Silicon Graphics, Inc. IBM, AIX, and RS/6000 are registered trademarks or trademarks of International Business
Machines Corporation. HP is a trademark of Hewlett-Packard. Silicon Graphics and IRIX are registered trademarks or trademarks of
Silicon Graphics, Inc. DEC and AXP are registered trademarks or trademarks of Digital Equipment Corporation. All other trademarks
are the property of their respective owners.

Use of this document is governed by a Visual Numerics Software License Agreement. This document contains confidential and
proprietary information constituting valuable trade secrets. No part of this document may be reproduced or transmitted in any form
without the prior written consent of Visual Numerics.

RESTRICTED RIGHTS LEGEND: This documentation is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by
the U.S. Government is subject to the restrictions set forth in subparagraph (c)(1)(ll) of the Rights in Technical Data and Computer
Software clause at DFAR 252.227-7013, and in subparagraphs (a) through (d) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, and in similar clauses in the NASA FAR Supplement, when applicable. Contractor/Manufacturer is
Visual Numerics, Inc., 2500 Wilcrest Drive, Ste 200, Houston, Texas 77042.

IMSL Fortran and C
Application Development Tools

IMSL C Numerical Libraries Contents •••• i

Contents

Introduction vii

Chapter 1: Basic Statistics 1

Chapter 2: Regression 43

Chapter 3: Correlation and Covariance 185

Chapter 4: Analysis of Variance 215

Chapter 5: Categorical and Discrete Data Analysis 259

Chapter 6: Nonparametric Statistics 295

Chapter 7: Tests of Goodness of Fit 335

Chapter 8: Time Series and Forecasting 369

Chapter 9: Multivariate Analysis 411

Chapter 10: Survival Analysis 459

Chapter 11: Probability Distribution Functions and Inverses 491

Chapter 12: Random Number Generation 527

Chapter 13: Printing Functions 575

Chapter 14: Utilities 587

ii •••• Contents IMSL C/Stat Library

Reference Material 693

Product Support 697

Appendix A: References A-1

Appendix B: Alphabetical Summary of Routines B-1

Index i

Introduction IMSL C/Stat/Library •••• vii

Introduction

IMSL C/Stat/Library
The IMSL C/Stat/Library is a library of C functions useful in scientific
programming. Each function is designed and documented to be used in research
activities as well as by technical specialists. A number of the example programs
also show graphs of resulting output.

Getting Started
To use any of the C/Stat/Library functions, you must first write a program in C to
call the function. Each function conforms to established conventions in
programming and documentation. First priority in development is given to
efficient algorithms, clear documentation, and accurate results. The uniform
design of the functions makes it easy to use more than one function in a given
application. Also, you will find that the design consistency enables you to apply
your experience with one C/Stat/Library function to all other C functions that you
use.

ANSI C vs. Non-ANSI C
All of the examples in this documentation conform to ANSI C. If you are not
using ANSI C, you will need to modify your examples in functions that are
declared or in those arrays that are initialized as type float.

Non-ANSI C does not allow for automatic aggregate initialization, and thus, all
auto arrays that are initialized as type float in ANSI C must be initialized as type
static float in non-ANSI C. The following program contains arrays that are
initialized as type float and also a user-defined function:

1 #include <imsls.h>
2
3 float fcn(int, float[], int, float[]);
4
5 main()
6 {
7 int n_observations = 3,
8 n_parameters = 1,
9 n_independent = 1;
10 float *theta_hat;

viii •••• Thread Safe Usage IMSL C/Stat/Library

11 float x[3] = {1.0, 2.0, 3.0};
12 float y[3] = {2.0, 4.0, 3.0};
13 /* Evaluate the integral */
14 theta_hat = imsls_f_nonlinear_regression(fcn, n_parameters,
15 n_observations, n_independent, x, y, 0);
16 /* Print the result and the exact answer */
17 imsls_f_write_matrix("estimated coefficient", 1, 1, theta_hat, 0);
18 }
19 float fcn(int n_independent, float x[], int n_parameters,
20 float theta[])
21 {
22 return exp(theta[0]*x[0]);
23 }

If using non-ANSI C, you will need to modify lines 3, 11, 12, 19, and 20 as
follows:

3 float fcn(); /* Function is not prototyped */
.
.
.

11 static float x[3] = {1.0, 2.0, 3.0};
12 static float y[3] = {2.0, 4.0, 3.0};

.

.

.
19 float fcn(n_independent, x, n_parameters,
20 theta) /*Declaration of variable names*/
20a int n_independent;
20b float x[];
20c int n_parameters;
20d float theta[]; /*Type definitions of variables*/

The imsls.h File
The include file <imsls.h> is used in all the examples in this manual. This file
contains prototypes for all IMSL-defined functions; the structures,
Imsls_f_regression, Imsls_d_regression, Imsls_f_poly_regression,
Imsls_d_poly_regression, Imsls_f_arma, and Imsls_d_arma; and the enumerated
data types, Imsls_arma_method, Imsls_permute, Imsls_dummy_method,
Imsls_write_options, Imsls_page_options, and Imsls_error.

Thread Safe Usage
On systems that support either POSIX threads or WIN32 threads, IMSL
C/Stat/Library can be safely called from a multithreaded application. When
IMSL C/Stat/Library is used in a multithreaded application, the calling program
must adhere to a few important guidelines. In particular, IMSL C/Stat/Library's
implementation of signal handling, error handling, and I/O must be understood.

Signal Handling
When calling C/Stat/Library from a multithreaded application it is necessary to
turn C/Stat/Library 's signal-handling capability off. This is accomplished by

Introduction Matrix Storage Modes •••• ix

making a single call to imsls_error_options before any calls are made to
C/Stat/Library. For an example of turning off C/Stat/Library's internal-signal
handling , see Example 3 of imsls_error_options.

C/Stat/Library 's error handling in a multithreaded application behaves similarly
to how it behaves in a single-threaded application. The major difference is that
an error stack exists for each thread calling C/Stat/Library functions. The result
of separate error stacks for each thread is greater control of the error handler
options for each thread. Each thread can set its own options for the
C/Stat/Library error handler using imsls_error_options. For an example of
setting error handler options for separate threads, see Example 3 of
imsls_error_options.

Routines that Produce Output
A number of routines in C/Stat/Library can be used to produce output. The
function imsls_output_file can be used to control which file the output is
directed. In an application with a single thread of execution, a single call to
imsls_output_file can be used to set the file to which the output will be
directed. In a multithreaded application each thread must call
imsls_output_file to change the default setting of where output will be
directed. See Example 2 of imsls_output_ file for more details.

Input Arguments
In a multithreaded application attention must be given to the data sent to
C/Stat/Library. Some arguments that may appear to be input-only are temporarily
modified during the call and restored before returning to the caller. Care must be
used to avoid usage of the same data space in separate threads calling functions in
C/Stat/Library.

Matrix Storage Modes
In this section, the word matrix is used to refer to a mathematical object and the
word array is used to refer to its representation as a C data structure. In the
following list of array types, the C/Stat/Library functions require input consisting
of matrix dimension values and all values for the matrix entries. These values are
stored in row-major order in the arrays.

Each function processes the input array and typically returns a pointer to a
�result.� For example, in solving linear regression, the pointer points to the
estimated coefficients. Normally, the input array values are not changed by the
functions.

In the C/Stat/Library, an array is a pointer to a contiguous block of data. An array
is not a pointer to a pointer to the rows of the matrix. Typical declarations are as
follows:

x •••• Memory Allocation for Output Arrays IMSL C/Stat/Library

float *a = {1, 2, 3, 4};
float b[2][2] = {1, 2, 3, 4};
float c[] = {1, 2, 3, 4};

Note: If you are using non-ANSI C and the variables are of type auto, the above
declarations would need to be declared as type static float.

General Mode
A general matrix is a square n × n matrix. The data type of a general array can be
int, float, or double.

Rectangular Mode
A rectangular matrix is an m × n matrix. The data type of a rectangular array can
be int, float, or double.

Symmetric Mode

A symmetric matrix is a square n × n matrix A, such that AT = A. (The matrix
AT is the transpose of A.) The data type of a symmetric array can be int, float, or
double.

Memory Allocation for Output Arrays
Many functions return a pointer to an array containing the computed answers. If
the function invocation uses the optional arguments

IMSLS_RETURN_USER, float a[]

then the computed answers are stored in the user-provided array a, and the
pointer returned by the function is set to point to the user-provided array a. If an
invocation does not use IMSLS_RETURN_USER, then a pointer to the function is
internally initialized (through a memory allocation request to malloc) and stores
the answers there. (To release this space, free can be used. Both malloc and
free are standard C library functions declared in the header.) In this way, the
allocation of space for the computed answers can be made either by the user or
internally by the function.

Similarly, other optional arguments specify whether additional computed output
arrays are allocated by the user or are to be allocated internally by the function.
For example, in many functions, the optional arguments

IMSLS_ANOVA_TABLE, float **anova_table (Output)
IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)

specify two mutually exclusive optional arguments. If the first option is chosen,
float **anova_table refers to the address of a pointer to an internally allocated
array containing the analysis of variance statistics. On return, the pointer is
initialized (through a memory allocation request to malloc), and the array is

Introduction Finding the Right Function •••• xi

stored there. Typically, float *anova_table is declared, &anova_table is used
as an argument to this function, and free(anova_table) is used to release the
space. In the second option, the analysis of variance statistics are stored in the
user-provided array anova_table.

Finding the Right Function
The C/Stat/Library documentation is organized into chapters; each chapter
contains functions with similar computational or analytical capabilities. To locate
the right function for a given problem, use either the table of contents located in
each chapter introduction or the alphabetical summary at the end of this manual.

Often, the quickest way to use the C/Stat/Library is to find an example similar to
your problem, then mimic the example. Each function documented has at least
one example demonstrating its application.

Organization of the Documentation
This manual contains a concise description of each function with at least one
example demonstrating the use of each function, including sample input and
results. All information pertaining to a particular function is in one place within a
chapter.

Each chapter begins with an introduction followed by a table of contents listing
the functions included in the chapter. Documentation of the functions consists of
the following information:

•••• Section Name: Usually, the common root for the type float and type double
versions of the function.

•••• Purpose: A statement of the purpose of the function.

•••• Synopsis: The form for referencing the subprogram with required arguments
listed.

•••• Required Arguments: A description of the required arguments in the order of
their occurrence.

Input: Argument must be initialized; it is not changed by the function.

Input/Output: Argument must be initialized; the function returns output
through this argument. The argument cannot be a constant or an expression.

Output: No initialization is necessary. The argument cannot be a constant
or an expression; the function returns output through this argument.

•••• Return Value: The value returned by the function.

•••• Synopsis with Optional Arguments: The form for referencing the function
with both required and optional arguments listed.

xii •••• Naming Conventions IMSL C/Stat/Library

•••• Optional Arguments: A description of the optional arguments in the order of
their occurrence.

•••• Description: A description of the algorithm and references to detailed
information. In many cases, other IMSL functions with similar or
complementary functions are noted.

•••• Examples: At least one application of this function showing input and
optional arguments.

•••• Errors: Listing of any errors that may occur with a particular function. A
discussion on error types is given in the �User Errors� section of the Reference
Material. The errors are listed by their type as follows:

Informational Errors: List of informational errors that may occur with the
function.

Alert Errors: List of alert errors that may occur with the function.

Warning Errors: List of warning errors that may occur with the function.

Fatal Errors: List of fatal errors that may occur with the function.

References: References are listed alphabetically by author.

Naming Conventions
Most functions are available in both a type float and a type double version, with
names of the two versions sharing a common root. Some functions are also
available in type int. The following list is of each type and the corresponding
prefix of the function name in which multiple type versions exist:

Type Prefix
float imsls_f_

double imsls_d_

int imsls_i_

The section names for the functions contain only the common root to make
finding the functions easier. For example, the functions
imsls_f_simple_statistics and imsls_d_simple_statistics can be
found in Chapter 1 in the �simple_statistics� section.

Where appropriate, the same variable name is used consistently throughout the
C/Stat/Library. For example, anova_table denotes the array containing the
analysis of variance statistics and y denotes a vector of responses for a dependent
variable.

When writing programs accessing the C/Stat/Library, choose C names that do not
conflict with IMSL external names. The careful user can avoid any conflicts with
IMSL names if, in choosing names, the following rule is observed:

Introduction Error Handling, Underflow, and Overflow •••• xiii

•••• Do not choose a name beginning with �imsls_� in any combination of
uppercase or lowercase characters.

Error Handling, Underflow, and Overflow
The functions in the C/Stat/Library attempt to detect and report errors and invalid
input. This error-handling capability provides automatic protection for the user
without requiring the user to make any specific provisions for the treatment of
error conditions. Errors are classified according to severity and are assigned a
code number. By default, errors of moderate or higher severity result in messages
being automatically printed by the function. Moreover, errors of highest severity
cause program execution to stop. The severity level, as well as the general nature
of the error, is designated by an �error type� with symbolic names IMSLS_FATAL,
IMSLS_WARNING, etc. See the section �User Errors� in the Reference Material for
further details.

In general, the C/Stat/Library codes are written so that computations are not
affected by underflow, provided the system (hardware or software) replaces an
underflow with the value 0. Normally, system error messages indicating
underflow can be ignored.

IMSL codes also are written to avoid overflow. A program that produces system
error messages indicating overflow should be examined for programming errors
such as incorrect input data, mismatch of argument types, or improper
dimensions.

In many cases, the documentation for a function points out common pitfalls that
can lead to failure of the algorithm.

Printing Results
Most functions in the C/Stat/Library do not print any of the results; the output is
returned in C variables. The C/Stat/Library does contain some special functions
just for printing arrays. For example, IMSL function imsls_f_write_matrix
is convenient for printing matrices of type float. See Chapter 13, �Printing
Functions,� for detailed descriptions of these functions.

Missing Values
Some of the functions in the C/Stat/Library allow the data to contain missing
values. These functions recognize as a missing value the special value referred to
as �Not a Number� or NaN. The actual value is different on different computers,
but it can be obtained by reference to the function imsls_f_machine, described
in Chapter 14, �Utilities�.

The way that missing values are treated depends on the individual function and is
described in the documentation for the function.

Chapter 1: Basic Statistics Routines •••• 1

Chapter 1: Basic Statistics

Routines
1.1 Simple Summary Statistics

Univariate summary statistics simple_statistics 2
Mean and variance inference
for a single normal populationnormal_one_sample 7
Inferences for two normal populations normal_two_sample 11

1.2 Tabulate, Sort, and Rank
Tally observations into a one-way frequency table.....table_oneway 18
Tally observations into a two-way frequency table..... table_twoway 23
Sort data with options to tally cases
into a multi-way frequency table..sort_data 28
Ranks, normal scores, or exponential scoresranks 36

Usage Notes
The functions for computations of basic statistics generally have relatively simple
arguments. In most cases, the first required argument is the number of
observations. The data are input in either a one- or two-dimensional array. As
usual, when a two-dimensional array is used, the rows contain observations and
the columns represent variables. Most of the functions in this chapter allow for
missing values. Missing value codes can be set by using function
imsls_f_machine, described in Chapter 14.

Several functions in this chapter perform statistical tests. These functions
generally return a �p-value� for the test, often as the return value for the C
function. The p-value is between 0 and 1 and is the probability of observing data
that would yield a test statistic as extreme or more extreme under the assumption
of the null hypothesis. Hence, a small p-value is evidence for the rejection of the
null hypothesis.

2 •••• simple_statistics IMSL C/Stat/Library

simple_statistics
Computes basic univariate statistics.

Synopsis
#include <imsls.h>

float *imsls_f_simple_statistics (int n_observations,
int n_variables, float x[], ..., 0)

The type double function is imsls_d_simple_statistics.

Required Arguments

int n_observations (Input)
Number of observations.

int n_variables (Input)
Number of variables.

float x[] (Input)
Array of size n_observations × n_variables containing the data
matrix.

Return Value
A pointer to an array containing some simple statistics for each of the columns in
x. If IMSLS_MEDIAN and IMSLS_MEDIAN_AND_SCALE are not used as optional
arguments, the size of the matrix is 14 × n_variables. The columns of this
matrix correspond to the columns of x, and the rows contain the following
statistics:

Row Statistic
0 mean

1 variance

2 standard deviation

3 coefficient of skewness

4 coefficient of excess (kurtosis)

5 minimum value

6 maximum value

7 range

8 coefficient of variation (when defined)
If the coefficient of variation is not defined, 0 is returned.

9 number of observations (the counts)

Chapter 1: Basic Statistics simple_statistics •••• 3

Row Statistic
10 lower confidence limit for the mean (assuming normality)

The default is a 95-percent confidence interval.

11 upper confidence limit for the mean (assuming normality)

12 lower confidence limit for the variance (assuming normality)
The default is a 95-percent confidence interval.

13 upper confidence limit for the variance (assuming normality))

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_simple_statistics (int n_observations,
int n_variables, float x[],
IMSLS_CONFIDENCE_MEANS, float confidence_means,
IMSLS_CONFIDENCE_VARIANCES, float confidence_variances,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_STAT_COL_DIM, int stat_col_dim,
IMSLS_MEDIAN, or
IMSLS_MEDIAN_AND_SCALE,
IMSLS_MISSING_LISTWISE, or
IMSLS_MISSING_ELEMENTWISE,
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_WEIGHTS, float weights[],
IMSLS_RETURN_USER, float simple_statistics[],
0)

Optional Arguments
IMSLS_CONFIDENCE_MEANS, float confidence_means (Input)

Confidence level for a two-sided interval estimate of the means
(assuming normality) in percent. Argument confidence_means must
be between 0.0 and 100.0 and is often 90.0, 95.0, or 99.0. For a one-
sided confidence interval with confidence level c, set
confidence_means = 100.0 − 2(100 − c). If
IMSLS_CONFIDENCE_MEANS is not specified, a 95-percent confidence
interval is computed.

IMSLS_CONFIDENCE_VARIANCES, float confidence_variances (Input)
The confidence level for a two-sided interval estimate of the variances
(assuming normality) in percent. The confidence intervals are symmetric
in probability (rather than in length). For a one-sided confidence interval
with confidence level c, set confidence_means = 100.0 − 2(100 − c).
If IMSLS_CONFIDENCE_VARIANCES is not specified, a 95-percent
confidence interval is computed.

4 •••• simple_statistics IMSL C/Stat/Library

IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of array x.
Default: x_col_dim = n_variables

IMSLS_STAT_COL_DIM, int stat_col_dim (Input)
Column dimension of the returned value array, or if
IMSLS_RETURN_USER is specified, the column dimension of array
simple_statistics.
Default: stat_col_dim = n_variables

IMSLS_MEDIAN, or
IMSLS_MEDIAN_AND_SCALE

Exactly one of these optional arguments can be specified in order to
indicate the additional simple robust statistics to be computed. If
IMSLS_MEDIAN is specified, the medians are computed and stored in
one additional row (row number 14) in the returned matrix of simple
statistics. If IMSLS_MEDIAN_AND_SCALE is specified, the medians, the
medians of the absolute deviations from the medians, and a simple
robust estimate of scale are computed, then stored in three additional
rows (rows 14, 15, and 16) in the returned matrix of simple statistics.

IMSLS_MISSING_LISTWISE, or
IMSLS_MISSING_ELEMENTWISE

If IMSLS_MISSING_ELEMENTWISE is specified, all non missing data for
any variable is used in computing the statistics for that variable. If
IMSLS_MISSING_LISTWISE is specified and if an observation (row of x)
contains a missing value, the observation is excluded from computations
for all variables. The default is IMSLS_MISSING_LISTWISE. In either
case, if weights and/or frequencies are specified and the value of the
weight and/or frequency is missing, the observation is excluded from
computations for all variables.

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_observations containing the frequency for each
observation.
Default: Each observation has a frequency of 1

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_observations containing the weight for each
observation.
Default: Each observation has a weight of 1

IMSLS_RETURN_USER, float simple_statistics[] (Output)
User-supplied array containing the matrix of statistics. If neither
IMSLS_MEDIAN nor IMSLS_MEDIAN_AND_SCALE is specified, the
matrix is 14 × n_variables. If IMSLS_MEDIAN is specified, the matrix
is 15 × n_variables. If IMSLS_MEDIAN_AND_SCALE is specified, the
matrix is 17 × n_variables.

Chapter 1: Basic Statistics simple_statistics •••• 5

Description
For the data in each column of x, imsls_f_simple_statistics computes the
sample mean, variance, minimum, maximum, and other basic statistics. This
function also computes confidence intervals for the mean and variance (under the
hypothesis that the sample is from a normal population).

Frequencies are interpreted as multiple occurrences of the other values in the
observations. In other words, a row of x with a frequency variable having a value
of 2 has the same effect as two rows with frequencies of 1. The total of the
frequencies is used in computing all the statistics based on moments (mean,
variance, skewness, and kurtosis). Weights are not viewed as replication factors.
The sum of the weights is used only in computing the mean (the weighted mean is
used in computing the central moments). Both weights and frequencies can be 0,
but neither can be negative. In general, a 0 frequency means that the row is to be
eliminated from the analysis; no further processing or error checking is done on
the row. A weight of 0 results in the row being counted, and updates are made of
the statistics.

The definitions of some of the statistics are given below in terms of a single
variable x of which the i-th datum is xi.

Mean

x
f w x

f w
w

i i i

i i

= �
�

Variance

s
f w x x

nw
i i i w2

2

1
=

−

−
� b g

Skewness
f w x x n

f w x x n

i i i w

i i i w

−

−

�

�

b g
b g

3

2 3 2

/

/
/

Excess or Kurtosis
f w x x n

f w x x n

i i i w

i i i w

−

−
−�

�

b g
b g

4

2 2 3
/

/

Minimum
x ximin min= b g

Maximum
x ximax max= b g

6 •••• simple_statistics IMSL C/Stat/Library

Range
x xmax min−

Coefficient of Variation
s
x

xw

w
wfor ≠ 0

Median

median
middle after sorting if is odd
average of middle two 's if is even

x
x n

x ni
i

i
l q = RST

Median Absolute Deviation
MAD = median {|xi − median {xj}|}

Simple Robust Estimate of Scale
MAD/Φ-1(3/4)

where Φ-1(3/4) ≈ 0.6745 is the inverse of the standard normal distribution
function evaluated at 3/4. This standardizes MAD in order to make the scale
estimate consistent at the normal distribution for estimating the standard deviation
(Huber 1981, pp. 107−108).

Example
Data from Draper and Smith (1981) are used in this example, which includes
5 variables and 13 observations.

#include <imsls.h>

#define N_VARIABLES 5
#define N_OBSERVATIONS 13

main()
{

float *simple_statistics;
float x[] = {

7., 26., 6., 60., 78.5,
1., 29., 15., 52., 74.3,
11., 56., 8., 20., 104.3,
11., 31., 8., 47., 87.6,
7., 52., 6., 33., 95.9,
11., 55., 9., 22., 109.2,
3., 71., 17., 6., 102.7,
1., 31., 22., 44., 72.5,
2., 54., 18., 22., 93.1,
21., 47., 4., 26., 115.9,
1., 40., 23., 34., 83.8,
11., 66., 9., 12., 113.3,
10., 68., 8., 12., 109.4};

char *row_labels[] = {
"means", "variances", "std. dev", "skewness", "kurtosis",
"minima", "maxima", "ranges", "C.V.", "counts", "lower mean",
"upper mean", "lower var", "upper var"};

Chapter 1: Basic Statistics normal_one_sample •••• 7

simple_statistics = imsls_f_simple_statistics(N_OBSERVATIONS,
N_VARIABLES, x, 0);

imsls_f_write_matrix("* * * Statistics * * *\n", 14, N_VARIABLES,
simple_statistics,
IMSLS_ROW_LABELS, row_labels,
IMSLS_WRITE_FORMAT, "%7.3f", 0);

}

Output
* * * Statistics * * *

1 2 3 4 5
means 7.462 48.154 11.769 30.000 95.423
variances 34.603 242.141 41.026 280.167 226.314
std. dev 5.882 15.561 6.405 16.738 15.044
skewness 0.688 -0.047 0.611 0.330 -0.195
kurtosis 0.075 -1.323 -1.079 -1.014 -1.342
minima 1.000 26.000 4.000 6.000 72.500
maxima 21.000 71.000 23.000 60.000 115.900
ranges 20.000 45.000 19.000 54.000 43.400
C.V. 0.788 0.323 0.544 0.558 0.158
counts 13.000 13.000 13.000 13.000 13.000
lower mean 3.907 38.750 7.899 19.885 86.332
upper mean 11.016 57.557 15.640 40.115 104.514
lower var 17.793 124.512 21.096 144.065 116.373
upper var 94.289 659.817 111.792 763.434 616.688

normal_one_sample
Computes statistics for mean and variance inferences using a sample from a
normal population.

Synopsis
#include <imsls.h>

float imsls_f_normal_one_sample (int n_observations, float x[], ...,
0)

The type double function is imsls_d_normal_one_sample.

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of length n_observations.

Return Value
The mean of the sample.

8 •••• normal_one_sample IMSL C/Stat/Library

Synopsis with Optional Arguments
#include <imsls.h>

float imsls_f_normal_one_sample (int n_observations, float x[],
IMSLS_CONFIDENCE_MEAN, float confidence_mean,
IMSLS_CI_MEAN, float *lower_limit, float *upper_limit,
IMSLS_STD_DEV, float *std_dev,
IMSLS_T_TEST, int *df, float *t, float *p_value,
IMSLS_T_TEST_NULL, float mean_hypothesis_value,
IMSLS_CONFIDENCE_VARIANCE, float confidence_variance,
IMSLS_CI_VARIANCE, float *lower_limit,

float *upper_limit,
IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared,

float *p_value,
IMSLS_CHI_SQUARED_TEST_NULL,

float variance_hypothesis_value,
0)

Optional Arguments
IMSLS_CONFIDENCE_MEAN, float confidence_mean (Input)

Confidence level (in percent) for two-sided interval estimate of the
mean. Argument confidence_mean must be between 0.0 and 100.0
and is often 90.0, 95.0, or 99.0. For a one-sided confidence interval with
confidence level c (at least 50 percent), set
confidence_mean = 100.0 − 2.0 × (100.0 − c). If
IMSLS_CONFIDENCE_MEAN is not specified, a 95-percent confidence
interval is computed.

IMSLS_CI_MEAN, float *lower_limit, float *upper_limit (Output)
Argument lower_limit contains the lower confidence limit for the
mean, and argument upper_limit contains the upper confidence limit
for the mean.

IMSLS_STD_DEV, float *std_dev (Output)
Standard deviation of the sample.

IMSLS_T_TEST, int *df, float *t, float *p_value (Output)
Argument df is the degrees of freedom associated with the t test for the
mean, t is the test statistic, and p_value is the probability of a larger
t in absolute value. The t test is a test, against a two-sided alternative, of
the hypothesis µ = µ0, where µ0 is the null hypothesis value as described
in IMSLS_T_TEST_NULL.

IMSLS_T_TEST_NULL, float mean_hypothesis_value (Input)
Null hypothesis value for t test for the mean.
Default: mean_hypothesis_value = 0.0

Chapter 1: Basic Statistics normal_one_sample •••• 9

IMSLS_CONFIDENCE_VARIANCE, float confidence_variance (Input)
Confidence level (in percent) for two-sided interval estimate of the
variances. Argument confidence_variance must be between 0.0 and
100.0 and is often 90.0, 95.0, 99.0. For a one-sided confidence interval
with confidence level c (at least 50 percent), set
confidence_variance = 100.0 − 2.0 × (100.0 − c). If this option is
not used, a 95-percent confidence interval is computed.

IMSLS_CI_VARIANCE, float *lower_limit, float *upper_limit (Output)
Contains the lower and upper confidence limits for the variance.

IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared,
float *p_value (Output)
Argument df is the degrees of freedom associated with the chi-squared
test for variances, chi_squared is the test statistic, and p_value is the
probability of a larger chi-squared. The chi-squared test is a test of the
hypothesis σ σ σ2

0
2

0
2= where is the null hypothesis value as described

in IMSLS_CHI_SQUARED_TEST_NULL.

IMSLS_CHI_SQUARED_TEST_NULL, float variance_hypothesis_value

(Input)
Null hypothesis value for the chi-squared test.
Default: variance_hypothesis_value = 1.0

Description
Statistics for mean and variance inferences using a sample from a normal
population are computed, including confidence intervals and tests for both mean
and variance. The definitions of mean and variance are given below. The
summation in each case is over the set of valid observations, based on the
presence of missing values in the data.

Mean, return value

x
x

n
i

= �

Standard deviation, std_dev

s
x x

n
i

=
−

−
� b g2

1

The t statistic for the two-sided test concerning the population mean is given by

t x
s n

=
− µ0

/

where s and x are given above. This quantity has a T distribution with n − 1
degrees of freedom.

10 •••• normal_one_sample IMSL C/Stat/Library

The chi-squared statistic for the two-sided test concerning the population variance
is given by

χ
σ

2
2

0
2

1
=

−n sb g

where s is given above. This quantity has a χ2 distribution with n − 1 degrees of
freedom.

Examples

Example 1
This example uses data from Devore (1982, p. 335), which is based on data
published in the Journal of Materials. There are 15 observations; the mean is the
only output.

#include <imsls.h>

main()
{
#define N_OBSERVATIONS 15

float mean;
float x[N_OBSERVATIONS] = {

26.7, 25.8, 24.0, 24.9, 26.4,
25.9, 24.4, 21.7, 24.1, 25.9,
27.3, 26.9, 27.3, 24.8, 23.6};

/* Perform analysis */
mean = imsls_f_normal_one_sample(N_OBSERVATIONS, x, 0);

/* Print results */
printf("Sample Mean = %5.2f", mean);

}

Output
Sample Mean = 25.3

Example 2
This example uses the same data as the initial example. The hypothesis
H0: µ = 20.0 is tested. The extremely large t value and the correspondingly
small p-value provide strong evidence to reject the null hypothesis.

#include <imsls.h>

main()
{
#define N_OBSERVATIONS 15

int df;
float mean, s, lower_limit, upper_limit, t, p_value;
static float x[N_OBSERVATIONS] = {

Chapter 1: Basic Statistics normal_two_sample •••• 11

26.7, 25.8, 24.0, 24.9, 26.4,
25.9, 24.4, 21.7, 24.1, 25.9,
27.3, 26.9, 27.3, 24.8, 23.6};

/* Perform analysis +*/
mean = imsls_f_normal_one_sample(N_OBSERVATIONS, x,

IMSLS_STD_DEV, &s,
IMSLS_CI_MEAN, &lower_limit, &upper_limit,
IMSLS_T_TEST_NULL, 20.0,
IMSLS_T_TEST, &df, &t, &p_value,
0);

/* Print results */
printf("Sample Mean = %5.2f\n", mean);
printf("Sample Standard Deviation = %5.2f\n", s);
printf("95%% CI for the mean is (%5.2f,%5.2f)\n", lower_limit,

upper_limit);
printf("df = %3d\n", df);
printf("t = %5.2f\n", t);
printf("p-value = %8.5f\n", p_value);

}

Output
Sample Mean = 25.31
Sample Standard Deviation = 1.58
95% CI for the mean is (24.44,26.19)
df = 14
t = 13.03
p-value = 0.00000

normal_two_sample
Computes statistics for mean and variance inferences using samples from two
normal populations.

Synopsis
#include <imsls.h>

float imsls_f_normal_two_sample (int n1_observations, float x1[],
int n2_observations, float x2[], ..., 0)

The type double function is imsls_d_normal_two_sample.

Required Arguments

int n1_observations (Input)
Number of observations in the first sample, x1.

float x1[] (Input)
Array of length n1_observations containing the first sample.

int n2_observations (Input)
Number of observations in the second sample, x2.

12 •••• normal_two_sample IMSL C/Stat/Library

float x2[] (Input)
Array of length n2_observations containing the second sample.

Return Value
Difference in means, x1_mean − x2_mean.

Synopsis with Optional Arguments
#include <imsls.h>

float imsls_f_normal_two_sample (int n1_observations, float x1[],
int n2_observations, float x2[],
IMSLS_MEANS, float *x1_mean, float *x2_mean,
IMSLS_CONFIDENCE_MEAN, float confidence_mean,
IMSLS_CI_DIFF_FOR_EQUAL_VARS, float *lower_limit,

float *upper_limit,
IMSLS_CI_DIFF_FOR_UNEQUAL_VARS, float *lower_limit,

float *upper_limit

IMSLS_T_TEST_FOR_EQUAL_VARS, int *df, float *t,
float *p_value,

IMSLS_T_TEST_FOR_UNEQUAL_VARS, float *df, float *t,
float *p_value,

IMSLS_T_TEST_NULL, float mean_hypothesis_value,
IMSLS_POOLED_VARIANCE, float *pooled_variance,
IMSLS_CONFIDENCE_VARIANCE, float confidence_variance,
IMSLS_CI_COMMON_VARIANCE, float *lower_limit,

float *upper_limit,
IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared,

float *p_value,
IMSLS_CHI_SQUARED_TEST_NULL,

float variance_hypothesis_value,
IMSLS_STD_DEVS, float *x1_std_dev, float *x2_std_dev,
IMSLS_CI_RATIO_VARIANCES, float *lower_limit,

float *upper_limit,
IMSLS_F_TEST, int *df_numerator, int *df_denominator,

float *F, float *p_value,
0)

Optional Arguments
IMSLS_MEANS, float *x1_mean, float *x2_mean (Output)

Means of the first and second samples.

IMSLS_CONFIDENCE_MEAN, float confidence_mean (Input)
Confidence level for two-sided interval estimate of the mean of x1
minus the mean of x2, in percent. Argument confidence_mean must
be between 0.0 and 100.0 and is often 90.0, 95.0, or 99.0. For a one-
sided confidence interval with confidence level c (at least 50 percent),

Chapter 1: Basic Statistics normal_two_sample •••• 13

set confidence_mean = 100.0 − 2.0 × (100.0 − c).
Default: confidence_mean = 95.0

IMSLS_CI_DIFF_FOR_EQUAL_VARS, float *lower_limit,
float *upper_limit (Output)
Argument lower_limit contains the lower confidence limit, and
upper_limit contains the upper limit for the mean of the first
population minus the mean of the second, assuming equal variances.

IMSLS_CI_DIFF_FOR_UNEQUAL_VARS, float *lower_limit,
float *upper_limit (Output)
Argument lower_limit contains the approximate lower confidence
limit, and upper_limit contains the approximate upper limit for the
mean of the first population minus the mean of the second, assuming
unequal variances.

IMSLS_T_TEST_FOR_EQUAL_VARS, int *df, float *t, float *p_value

(Output)
A t test for µ1 − µ2 = c, where c is the null hypothesis value. (See the
description of IMSLS_T_TEST_NULL.) Argument df contains the
degrees of freedom, argument t contains the t value, and argument
p_value contains the probability of a larger t in absolute value,
assuming equal means. This test assumes equal variances.

IMSLS_T_TEST_FOR_UNEQUAL_VARS, float *df, float *t, float *p_value

(Output)
A t test for µ1 − µ2 = c, where c is the null hypothesis value. (See the
description of IMSLS_T_TEST_NULL.) Argument df contains the
degrees of freedom for Satterthwaite�s approximation, argument t
contains the t value, and argument p_value contains the approximate
probability of a larger t in absolute value, assuming equal means. This
test does not assume unequal variances.

IMSLS_T_TEST_NULL, float mean_hypothesis_value (Input)
Null hypothesis value for the t test.
Default: mean_hypothesis_value = 0.0

IMSLS_POOLED_VARIANCE, float *pooled_variance (Output)
Pooled variance for the two samples.

IMSLS_CONFIDENCE_VARIANCE, float confidence_variance (Input)
Confidence level for inference on variances. Under the assumption of
equal variances, the pooled variance is used to obtain a two-sided
confidence_variance percent confidence interval for the common
variance if IMSLS_CI_COMMON_VARIANCE is specified. Without
making the assumption of equal variances, the ratio of the variances is of
interest. A two-sided confidence_variance percent confidence

14 •••• normal_two_sample IMSL C/Stat/Library

interval for the ratio of the variance of the first sample to that of the
second sample is computed and is returned if
IMSLS_CI_RATIO_VARIANCES is specified. The confidence intervals
are symmetric in probability.
Default: confidence_variance = 95.0

IMSLS_CI_COMMON_VARIANCE, float *lower_limit, float *upper_limit

(Output)
Argument lower_limit contains the lower confidence limit, and
upper_limit contains the upper limit for the common, or pooled,
variance.

IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared,
float *p_value (Output)
The chi-squared test for σ σ σ2

0
2 2= where is the common, or pooled,

variance, and σ0
2 is the null hypothesis value. (See description of

IMSLS_CHI_SQUARED_TEST_NULL.) Argument df contains the degrees
of freedom, argument chi_squared contains the chi-squared value, and
argument p_value contains the probability of a larger chi-squared in
absolute value, assuming equal means.

IMSLS_CHI_SQUARED_TEST_NULL, float variance_hypothesis_value

(Input)
Null hypothesis value for the chi-squared test.
Default: variance_hypothesis_value = 1.0

IMSLS_STD_DEVS, float *x1_std_dev, float *x2_std_dev (Output)
Standard deviations of the first and second samples.

IMSLS_CI_RATIO_VARIANCES, float *lower_limit, float *upper_limit

(Output)
Argument lower_limit contains the approximate lower confidence
limit, and upper_limit contains the approximate upper limit for the
ratio of the variance of the first population to the second.

IMSLS_F_TEST, int *df_numerator, int *df_denominator, float *F,
float *p_value (Output)
The F test for equality of variances. Argument df_numerator and
df_denominator contain the numerator degrees of freedom, argument
F contains the F test value, and argument p_value contains the
probability of a larger F in absolute value, assuming equal variances.

Description
Function imsls_f_normal_two_sample computes statistics for making
inferences about the means and variances of two normal populations, using

Chapter 1: Basic Statistics normal_two_sample •••• 15

independent samples in x1 and x2. For inferences concerning parameters of a
single normal population, see function imsls_normal_one_sample on page 7.

Let µ1 and σ1
2 be the mean and variance of the first population, and let µ2 and

σ2
2 be the corresponding quantities of the second population. The function

contains test confidence intervals for difference in means, equality of variances,
and the pooled variance.

The means and variances for the two samples are as follows:

x x n x x ni i1 1 1 2 2 2= =� �(/), () /

and

s x x n s x x ni i1
2

1 1
2

1 2
2

2 2
2

21 1= − − = − −� �() / , /b g b g b g
Inferences about the Means

The test that the difference in means equals a certain value, for example, µ0,
depends on whether or not the variances of the two populations can be considered
equal. If the variances are equal and mean_hypothesis_value equals 0, the
test is the two-sample t test, which is equivalent to an analysis-of-variance test.
The pooled variance for the difference-in-means test is as follows:

s
n s n s

n n
2 1 1 2 2

1 2

1 1
2

=
− + −

+ −
b g b g

The t statistic is as follows:

t x x
s n n

= − −
+

1 2 0

1 21 1
µ

/ /b g b g
Also, the confidence interval for the difference in means can be obtained by
specifying IMSLS_CI_DIFF_FOR_EQUAL_VARS.

If the population variances are not equal, the ordinary t statistic does not have a
t distribution and several approximate tests for the equality of means have been
proposed. (See, for example, Anderson and Bancroft 1952, and
Kendall and Stuart 1979.) One of the earliest tests devised for this situation is the
Fisher-Behrens test, based on Fisher�s concept of fiducial probability. A
procedure used if IMSLS_T_TEST_FOR_UNEQUAL_VARS and/or
IMSLS_CI_DIFF_FOR_UNEQUAL_VARS are specified is the Satterthwaite�s
procedure, as suggested by H.F. Smith and modified by F.E. Satterthwaite
(Anderson and Bancroft 1952, p. 83).

The test statistic is

′ = − −t x x sd1 2 0µb g /
where

16 •••• normal_two_sample IMSL C/Stat/Library

s s n s nd = +1
2

1 2
2

2/ /e j e j
Under the null hypothesis of µ1 − µ2 = c, this quantity has an approximate t
distribution with degrees of freedom df (in IMSLS_T_TEST_FOR_UNEQUAL_VARS),
given by the following equation:

df =

−
+

−

s

s n

n

s n

n

d
4

1
2

1
2

1

2
2

2
2

21 1

/ /e j e j

Inferences about Variances

The F statistic for testing the equality of variances is given by F s s= max min/2 2 ,

where smax
2 is the larger of s1

2 and s2
2 . If the variances are equal, this quantity

has an F distribution with n1 − 1 and n2 − 1 degrees of freedom.

It is generally not recommended that the results of the F test be used to decide
whether to use the regular t test or the modified t′ on a single set of data. The
modified t′ (Satterthwaite�s procedure) is the more conservative approach to use
if there is doubt about the equality of the variances.

Examples

Example 1
This example, taken from Conover and Iman (1983, p. 294), involves scores on
arithmetic tests of two grade-school classes. The question is whether a group
taught by an experimental method has a higher mean score. Only the difference in
means is output. The data are shown below.

Scores for Standard Group Scores for Experimental Group
72 111
75 118
77 128
80 138

104 140

Chapter 1: Basic Statistics normal_two_sample •••• 17

Scores for Standard Group Scores for Experimental Group
110 150
125 163

164
169

#include <imsls.h>

main()
{
#define N1_OBSERVATIONS 7
#define N2_OBSERVATIONS 9

float diff_means;
float x1[N1_OBSERVATIONS] = {

72.0, 75.0, 77.0, 80.0, 104.0, 110.0, 125.0};
float x2[N2_OBSERVATIONS] = {

111.0, 118.0, 128.0, 138.0, 140.0, 150.0, 163.0,
164.0, 169.0};

/* Perform analysis */
diff_means = imsls_f_normal_two_sample(N1_OBSERVATIONS, x1,

N2_OBSERVATIONS, x2, 0);

/* Print results */
printf("\nx1_mean - x2_mean = %5.2f\n", diff_means);

}

Output
x1_mean - x2_mean = -50.48

Example 2
The same data is used for this example as for the initial example. Here, the results
of the t test are output. The variances of the two populations are assumed to be
equal. It is seen from the output that there is strong reason to believe that the two
means are different (t value of −4.804). Since the lower 97.5-percent confidence
limit does not include 0, the null hypothesis is that µ1 ≤ µ2 would be rejected at
the 0.05 significance level. (The closeness of the values of the sample variances
provides some qualitative substantiation of the assumption of equal variances.)

#include <imsls.h>

main()
{
#define N1_OBSERVATIONS 7
#define N2_OBSERVATIONS 9

int df;
float diff_means, lower_limit, upper_limit, t, p_value, sp2;

18 •••• table_oneway IMSL C/Stat/Library

float x1[N1_OBSERVATIONS] = {
72.0, 75.0, 77.0, 80.0, 104.0, 110.0, 125.0};

float x2[N2_OBSERVATIONS] = {
111.0, 118.0, 128.0, 138.0, 140.0, 150.0, 163.0,
164.0, 169.0};

/* Perform analysis */
diff_means = imsls_f_normal_two_sample(N1_OBSERVATIONS, x1,

N2_OBSERVATIONS, x2,
IMSLS_POOLED_VARIANCE, &sp2,
IMSLS_CI_DIFF_FOR_EQUAL_VARS, &lower_limit, &upper_limit,
IMSLS_T_TEST_FOR_EQUAL_VARS, &df, &t, &p_value,
0);

/* Print results */
printf("\nx1_mean - x2_mean = %5.2f\n", diff_means);
printf("Pooled variance = %5.2f\n", sp2);
printf("95%% CI for x1_mean - x2_mean is (%5.2f,%5.2f)\n",

lower_limit, upper_limit);
printf("df = %3d\n", df);
printf("t = %5.2f\n", t);
printf("p-value = %8.5f\n", p_value);

}

Output
x1_mean - x2_mean = -50.48
Pooled variance = 434.63
95% CI for x1_mean - x2_mean is (-73.01,-27.94)
df = 14
t = -4.80
p-value = 0.00028

table_oneway
Tallies observations into a one-way frequency table.

Synopsis
#include <imsls.h>

float *imsls_f_table_oneway (int n_observations, float x[],
int n_intervals, ..., 0)

The type double function is imsls_d_table_oneway.

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of length n_observations containing the observations.

Chapter 1: Basic Statistics table_oneway •••• 19

int n_intervals (Input)
Number of intervals (bins).

Return Value
Pointer to an array of length n_intervals containing the counts.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_table_oneway (int n_observations, float x[],
int n_intervals,
IMSLS_DATA_BOUNDS, float *minimum, float *maximum, or
IMSLS_KNOWN_BOUNDS, float lower_bound, float upper_bound,
or
IMSLS_CUTPOINTS, float cutpoints[], or
IMSLS_CLASS_MARKS, float class_marks[],
IMSLS_RETURN_USER, float table[],
0)

Optional Arguments
IMSLS_DATA_BOUNDS, float *minimum, float *maximum (Output)

If none is specified or if IMSLS_DATA_BOUNDS is specified,
n_intervals intervals of equal length are used with the initial interval
starting with the minimum value in x and the last interval ending with the
maximum value in x. The initial interval is closed on the left and right. The
remaining intervals are open on the left and closed on the right. When
IMSLS_DATA_BOUNDS is explicitly specified, the minimum and maximum
values in x are output in minimum and maximum. With this option, each
interval is of length (maximum − minimum)/n_intervals.

or

IMSLS_KNOWN_BOUNDS, float lower_bound, float upper_bound (Input)
If IMSLS_KNOWN_BOUNDS is specified, two semi-infinite intervals are
used as the initial and last intervals. The initial interval is closed on the
right and includes lower_bound as its right endpoint. The last interval
is open on the left and includes all values greater than upper_bound.
The remaining n_intervals − 2 intervals are each of length

upper_bound lower_bound

n_intervals

-
 − 2

and are open on the left and closed on the right. Argument
n_intervals must be greater than or equal to 3 for this option.

or

20 •••• table_oneway IMSL C/Stat/Library

IMSLS_CUTPOINTS, float cutpoints[] (Input)
If IMSLS_CUTPOINTS is specified, cutpoints (boundaries) must be
provided in the array cutpoints of length n_intervals − 1. This
option allows unequal interval lengths. The initial interval is closed on
the right and includes the initial cutpoint as its right endpoint. The last
interval is open on the left and includes all values greater than the last
cutpoint. The remaining n_intervals − 2 intervals are open on the left
and closed on the right. Argument n_interval must be greater than or
equal to 3 for this option.

or

IMSLS_CLASS_MARKS, float class_marks[] (Input)
If IMSLS_CLASS_MARKS is specified, equally spaced class marks in
ascending order must be provided in the array class_marks of length
n_intervals. The class marks are the midpoints of each of the
n_intervals. Each interval is assumed to have length
class_marks [1] − class_marks [0]. Argument n_intervals must
be greater than or equal to 2 for this option.

None or exactly one of the four optional arguments described above can
be specified in order to define the intervals or bins for the one-way table.

IMSLS_RETURN_USER, float table[] (Output)
Counts are stored in the array table of length n_intervals, which is
provided by the user.

Examples

Example 1
The data for this example is from Hinkley (1977) and Velleman and Hoaglin
(1981). The measurements (in inches) are for precipitation in Minneapolis/St.
Paul during the month of March for 30 consecutive years.

#include <imsls.h>
main()
{

int n_intervals=10;
int n_observations=30;
float *table;
float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,

2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
1.89, 0.90, 2.05};

table = imsls_f_table_oneway (n_observations, x, n_intervals, 0);
imsls_f_write_matrix("counts", 1, n_intervals, table, 0);

}

Chapter 1: Basic Statistics table_oneway •••• 21

Output
counts

1 2 3 4 5 6
4 8 5 5 3 1

7 8 9 10
3 0 0 1

Example 2
In this example, IMSLS_KNOWN_BOUNDS is used, and lower_bound = 0.5 and
upper_bound = 4.5 are set so that the eight interior intervals each have width
(4.5 − 0.5)/(10 − 2) = 0.5. The 10 intervals are (−∞, 0.5], (0.5, 1.0], …, (4.0, 4.5],
and (4.5, ∞].

#include <imsls.h>
main()
{

int n_observations=30;
int n_intervals=10;
float *table;
float lower_bound=0.5, upper_bound=4.5;
float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,

2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
1.89, 0.90, 2.05};

table = imsls_f_table_oneway (n_observations, x, n_intervals,
IMSLS_KNOWN_BOUNDS, lower_bound,
upper_bound,
0);

imsls_f_write_matrix("counts", 1, n_intervals, table, 0);
}

Output
counts

1 2 3 4 5 6
2 7 6 6 4 2

7 8 9 10
2 0 0 1

Example 3
In this example, 10 class marks, 0.25, 0.75, 1.25, ..., 4.75, are input. This defines
the class intervals (0.0, 0.5], (0.5, 1.0], ..., (4.0, 4.5], (4.5, 5.0]. Note that unlike
the previous example, the initial and last intervals are the same length as the
remaining intervals.

#include <imsls.h>
main()
{

int n_intervals=10;
int n_observations=30;
double *table;
double x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,

22 •••• table_oneway IMSL C/Stat/Library

1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10,
0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81,
1.87, 1.18, 1.35, 4.75, 2.48, 0.96,1.89,
0.90, 2.05};

double class_marks[] = {0.25, 0.75, 1.25, 1.75, 2.25,
2.75, 3.25,3.75, 4.25, 4.75};

table = imsls_d_table_oneway (n_observations, x, n_intervals,
IMSLS_CLASS_MARKS, class_marks,
0);

imsls_d_write_matrix("counts", 1, n_intervals, table, 0);
}

Output
counts

1 2 3 4 5 6
2 7 6 6 4 2

7 8 9 10
2 0 0 1

Example 4
In this example, cutpoints, 0.5, 1.0, 1.5, 2.0, ..., 4.5, are input to define the same
10 intervals as in Example 2. Here again, the initial and last intervals are semi-
infinite intervals.

#include <imsls.h>
main()
{

int n_intervals=10;
int n_observations=30;
double *table;
double x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,

1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10,
0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81,
1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89,
0.90, 2.05};

double cutpoints[] = {0.5, 1.0, 1.5, 2.0, 2.5,
3.0, 3.5, 4.0, 4.5};

table = imsls_d_table_oneway (n_observations, x, n_intervals,
IMSLS_CUTPOINTS, cutpoints,
0);

imsls_d_write_matrix("counts", 1, n_intervals, table, 0);
}

Output
counts

1 2 3 4 5 6
2 7 6 6 4 2
7 8 9 10
2 0 0 1

Chapter 1: Basic Statistics table_twoway •••• 23

table_twoway
Tallies observations into two-way frequency table.

Synopsis

#include <imsls.h>

float *imsls_f_table_twoway (int n_observations, float x[],
float y[], int nx, int ny, ..., 0)

The type double function is imsls_d_table_twoway.

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of length n_observations containing the data for the first
variable.

float y[] (Input)
Array of length n_observations containing the data for the second
variable.

int nx (Input)
Number of intervals (bins) for variable x.

int nx (Input)
Number of intervals (bins) for variable y.

Return Value
Pointer to an array of size nx by ny containing the counts.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_table_twoway (int n_observations, float x[],
float y[], int nx, int ny,
IMSLS_DATA_BOUNDS, float *xmin, float *xmax, float *ymin,

float *ymax, or
IMSLS_KNOWN_BOUNDS, float xlo, float xhi, float ylo,

float yhi, or
IMSLS_CUTPOINTS, float cx[], float cy[], or
IMSLS_CLASS_MARKS, float cx[], float cy[],

24 •••• table_twoway IMSL C/Stat/Library

IMSLS_RETURN_USER, float table[],
0)

Optional Arguments
IMSLS_DATA_BOUNDS, float *xlo, float *xhi, float *ylo, float *yhi

(Output)
If none is specified or if IMSLS_DATA_BOUNDS is specified,
n_intervals intervals of equal length are used. Let xmin and xmax be
the minimum and maximum values in x, respectively, with similar
meanings for ymin and ymax. Then, table[0] is the tally of
observations with the x value less than or equal to
xmin + (xmax − xmin)/nx, and the y value less than or equal to
ymin + (ymax − ymin)/ny. When IMSLS_DATA_BOUNDS is explicitly
specified, the minimum and maximum values in x and y are output in
xmin, xmax, ymin, and ymax.

or

IMSLS_KNOWN_BOUNDS, float xlo, float xhi, float ylo, float yhi (Input)
Intervals of equal lengths are used just as in the case of
IMSLS_DATA_BOUNDS, except the upper and lower bounds are taken as
the user supplied variables xlo, xhi, ylo, and yhi, instead of the actual
minima and maxima in the data. Therefore, the first and last intervals for
both variables are semi-infinite in length. Arguments nx and ny must be
greater than or equal to 3.

or

IMSLS_CUTPOINTS, float cx[], float cy[] (Input)
If IMSLS_CUTPOINTS is specified, cutpoints (boundaries) must be
provided in the arrays cx and cy, of length (nx-1) and (ny-1)
respectively. The tally in table[0] is the number of observations for
which the x value is less than or equal to cx[0], and the y value is less
than or equal to cy[0]. This option allows unequal interval lengths.
Arguments nx and ny must be greater than or equal to 2.

or

IMSLS_CLASS_MARKS, float cx[], float cy[] (Input)
If IMSLS_CLASS_MARKS is specified, equally spaced class marks in
ascending order must be provided in the arrays cx and cy. The class
marks are the midpoints of each interval. Each interval is taken to have
length cx[1] − cx[0] in the x direction and cy[1] − cy[0] in the y
direction. The total number of elements in table may be less than
n_observations. Arguments nx and ny must be greater than or equal
to 2.

Chapter 1: Basic Statistics table_twoway •••• 25

None or exactly one of the four optional arguments described above can be
specified in order to define the intervals or bins for the one-way table.

IMSLS_RETURN_USER, float table[] (Output)
Counts are stored in the array table of size nx by ny, which is provided
by the user.

Examples

Example 1
The data for x in this example are the same as those used in the examples for
table_oneway. The data for y were created by adding small integers to the data
in x. This example uses the default tally method, IMSLS_DATA_BOUNDS, which
may be appropriate when the range of the data is unknown.

#include <imsls.h>
main()
{

int nx = 5;
int ny = 6;
int n_observations=30;
float *table;
float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,

2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
1.89, 0.90, 2.05};

float y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
2.89, 2.90, 5.05};

table = imsls_f_table_twoway (n_observations, x, y, nx, ny, 0);
imsls_f_write_matrix("counts", nx, ny, table,

IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0);
}

Output
counts

0 1 2 3 4 5
0 4 2 4 2 0 0
1 0 4 3 2 1 0
2 0 0 1 2 0 1
3 0 0 0 0 1 2
4 0 0 0 0 0 1

Example 2
In this example, xlo, xhi, ylo, and yhi are chosen so that the intervals will be 0
to 1, 1 to 2, and so on for x, and 1 to 2, 2 to 3, and so on for y.

#include <imsls.h>
main()
{

int nx = 5;
int ny = 6;
int n_observations=30;

26 •••• table_twoway IMSL C/Stat/Library

float *table;
float xlo = 1.0;
float xhi = 4.0;
float ylo = 2.0;
float yhi = 6.0;
float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,

2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
1.89, 0.90, 2.05};

float y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
2.89, 2.90, 5.05};

table = imsls_f_table_twoway (n_observations, x, y, nx, ny,
IMSLS_KNOWN_BOUNDS, xlo, xhi, ylo, yhi, 0);

imsls_f_write_matrix("counts", nx, ny, table,
IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0);

}

Output
counts

0 1 2 3 4 5
0 3 2 4 0 0 0
1 0 5 5 2 0 0
2 0 0 1 3 2 0
3 0 0 0 0 0 2
4 0 0 0 0 1 0

Example 3
In this example, the class boundaries are input in cx and cy. The same intervals
are chosen as in Example 2, where the first element of cx and cy specify the first
cutpoint between classes.

#include <imsls.h>
main()
{

int nx = 5;
int ny = 6;
int n_observations=30;
float *table;
float cmx[] = {0.5, 1.5, 2.5, 3.5, 4.5};
float cmy[] = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5};
float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,

2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
1.89, 0.90, 2.05};

float y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
2.89, 2.90, 5.05};

table = imsls_f_table_twoway (n_observations, x, y, nx, ny,
IMSLS_CLASS_MARKS, cmx, cmy, 0);

imsls_f_write_matrix("counts", nx, ny, table,
IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0);

}

Chapter 1: Basic Statistics table_twoway •••• 27

Output

counts
0 1 2 3 4 5

0 3 2 4 0 0 0
1 0 5 5 2 0 0
2 0 0 1 3 2 0
3 0 0 0 0 0 2
4 0 0 0 0 1 0

Example 4
This example, uses the IMSLS_CUTPOINTS tally option with cutpoints such that
the intervals are specified as in the previous examples.

#include <imsls.h>
main()
{

int nx = 5;
int ny = 6;
int n_observations=30;
float *table;
float cpx[] = {1, 2, 3, 4};
float cpy[] = {2, 3, 4, 5, 6};
float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,

2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
1.89, 0.90, 2.05};

float y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
2.89, 2.90, 5.05};

table = imsls_f_table_twoway (n_observations, x, y, nx, ny,
IMSLS_CUTPOINTS, cpx, cpy, 0);

imsls_f_write_matrix("counts", nx, ny, table,
IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0);

}

Output

counts
0 1 2 3 4 5

0 3 2 4 0 0 0
1 0 5 5 2 0 0
2 0 0 1 3 2 0
3 0 0 0 0 0 2
4 0 0 0 0 1 0

28 •••• sort_data IMSL C/Stat/Library

sort_data
Sorts observations by specified keys, with option to tally cases into a multi-way
frequency table.

Synopsis
#include <imsls.h>

void imsls_f_sort_data (int n_observations, int n_variables, float
x[], int n_keys, ..., 0)

The type double function is imsls_d_sort_data.

Required Arguments

int n_observations (Input)
Number of observations (rows) in x.

int n_variables (Input)
Number of variables (columns) in x.

float x[] (Input/Output)
An n_observations × n_variables matrix containing the
observations to be sorted. The sorted matrix is returned in x (exception:
see optional argument IMSLS_PASSIVE).

int n_keys (Input)
Number of columns of x on which to sort. The first n_keys columns of
x are used as the sorting keys (exception: see optional argument
IMSLS_INDICES_KEYS).

Synopsis with Optional Arguments
#include <imsls.h>

void imsls_f_sort_data (int n_observations, int n_variables,
float x[], int n_keys,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_INDICES_KEYS, int indices_keys[],
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_ASCENDING, or
IMSLS_DESCENDING,
IMSLS_ACTIVE, or
IMSLS_PASSIVE,
IMSLS_PERMUTATION, int **permutation,
IMSLS_PERMUTATION_USER, int permutation[],
IMSLS_TABLE, int **n_values, float **values, float **table,
IMSLS_TABLE_USER, int n_values[], float values[],

float table[],

Chapter 1: Basic Statistics sort_data •••• 29

IMSLS_LIST_CELLS, int *n_cells, float **list_cells,
float **table_unbalanced,

IMSLS_LIST_CELLS_USER, int *n_cells, float list_cells[],
float table_unbalanced[],

IMSLS_N, int *n_cells, int **n,
IMSLS_N_USER, int *n_cells, int n[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of x.
Default: x_col_dim = n_variables

IMSLS_INDICES_KEYS, int indices_keys[] (Input)
Array of length n_keys giving the column numbers of x which are to be
used in the sort.
Default: indices_keys [] = 0, 1, …, n_keys − 1

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_observations containing the frequency for each
observation in x.
Default: frequencies [] = 1

IMSLS_ASCENDING, or

IMSLS_DESCENDING

By default, or if IMSLS_ASCENDING is specified, the sort is in ascending
order. If IMSLS_DESCENDING is specified, the sort is in descending
order.

IMSLS_ACTIVE, or

IMSLS_PASSIVE

By default, or if IMSLS_ACTIVE is specified, the sorted matrix is
returned in x. If IMSLS_PASSIVE is specified, x is unchanged by
imsls_f_sort_data (i.e., x becomes input only).

IMSLS_PERMUTATION, int **permutation (Output)
Address of a pointer to an internally allocated array of length
n_observations specifying the rearrangement (permutation) of the
observations (rows).

IMSLS_PERMUTATION_USER, int permutation[] (Output)
Storage for array permutation is provided by the user. See
IMSLS_PERMUTATION.

30 •••• sort_data IMSL C/Stat/Library

IMSLS_TABLE, int **n_values, float **values, float **table (Output)
Argument n_values is the address of a pointer to an internally
allocated array of length n_keys containing in its i-th element
(i = 0, 1, …, n_keys − 1), the number of levels or categories of the
i-th classification variable (column).

Argument values is the address of a pointer to an internally allocated
array of length
n_values [0] + n_values [1] + … + n_values [n_keys − 1]
containing the values of the classification variables. The first
n_values [0] elements of values contain the values for the first
classification variable. The next n_values [1] contain the values for the
second variable. The last n_values [n_keys − 1] positions contain the
values for the last classification variable.

Argument table is the address of a pointer to an internally allocated array
of length n_values [0] × n_values [1] × … × n_values [n_keys − 1]
containing the frequencies in the cells of the table to be fit.

Empty cells are included in table, and each element of table is
nonnegative. The cells of table are sequenced so that the first variable
cycles through its n_values [0] categories one time, the second
variable cycles through its n_values [1] categories n_values [0]
times, the third variable cycles through its n_values [2] categories
n_values [0] × n_values [1] times, etc., up to the n_keys-th
variable, which cycles through its n_values [n_keys − 1] categories
n_values [0] × n_values [1] × … × n_values [n_keys − 2] times.

IMSLS_TABLE_USER, int n_values[], float values[], float table[]

(Output)
Storage for arrays n_values, values, and table is provided by the
user. If the length of table is not known in advance, the upper bound
for this length can be taken to be the product of the number of distinct
values taken by all of the classification variables (since table includes
the empty cells).

IMSLS_LIST_CELLS, int *n_cells, float **list_cells,
float **table_unbalanced (Output)
Number of nonempty cells is returned by n_cells. Argument
list_cells is an internally allocated array of size
n_cells × n_keys containing, for each row, a list of the levels of
n_keys corresponding classification variables that describe a cell.

Argument table_unbalanced is the address of a pointer to an array of
length n_cells containing the frequency for each cell.

Chapter 1: Basic Statistics sort_data •••• 31

IMSLS_LIST_CELLS_USER, int *n_cells, float list_cells[],
float table_unbalanced[] (Output)
Storage for arrays list_cells and table_unbalanced is provided
by the user. See IMSLS_LIST_CELLS.

IMSLS_N, int *n_cells, int **n (Output)
The integer n_cells returns the number of groups of different
observations. A group contains observations (rows) in x that are equal
with respect to the method of comparison.

Argument n is the address of the pointer to an internally allocated array
of length n_cells containing the number of observations (rows) in each
group.

The first n [0] rows of the sorted x are group number 1. The next
n [1]rows of the sorted x are group number 2, etc. The last
n [n_cells − 1] rows of the sorted x are group number n_cells.

IMSLS_N_USER, int *n_cells, int n[] (Output)
Storage for array n_cells is provided by the user. If the value of
n_cells is not known, n_observations can be used as an upper
bound for the length of n. See IMSLS_N.

Description
Function imsls_f_sort_data can perform both a key sort and/or tabulation of
frequencies into a multi-way frequency table.

Sorting

Function imsls_f_sort_data sorts the rows of real matrix x using a particular
row in x as the keys. The sort is algebraic with the first key as the most
significant, the second key as the next most significant, etc. When x is sorted in
ascending order, the resulting sorted array is such that the following is true:

• For i = 0, 1, …, n_observations − 2,
x [i] [indices_keys [0]] ≤ x [i + 1] [indices_keys [0]]

• For k = 1, …, n_keys − 1, if
x [i] [indices_keys [j]] = x [i + 1] [indices_keys [j]] for
j = 0, 1, …, k − 1, then
x [i] [indices_keys [k]] = x [i + 1] [indices_keys [k]]

The observations also can be sorted in descending order.

The rows of x containing the missing value code NaN in at least one of the
specified columns are considered as an additional group. These rows are moved
to the end of the sorted x.

32 •••• sort_data IMSL C/Stat/Library

The sorting algorithm is based on a quicksort method given by Singleton (1969)
with modifications by Griffen and Redish (1970) and Petro (1970).

Frequency Tabulation

Function imsls_f_sort_data determines the distinct values in multivariate
data and computes frequencies for the data. This function accepts the data in the
matrix x, but performs computations only for the variables (columns) in the first
n_keys columns of x (Exception: see optional argument
IMSLS_INDICES_KEYS). In general, the variables for which frequencies should
be computed are discrete; they should take on a relatively small number of
different values. Variables that are continuous can be grouped first. The
imsls_f_table_oneway function can be used to group variables and determine
the frequencies of groups.

When IMSLS_TABLE is specified, imsls_f_sort_data fills the vector values
with the unique values of the variables and tallies the number of unique values of
each variable in the vector table. Each combination of one value from each
variable forms a cell in a multi-way table. The frequencies of these cells are
entered in table so that the first variable cycles through its values exactly once,
and the last variable cycles through its values most rapidly. Some cells cannot
correspond to any observations in the data; in other words, �missing cells� are
included in table and have a value of 0.

When IMSLS_LIST_CELLS is specified, the frequency of each cell is entered in
table_unbalanced so that the first variable cycles through its values exactly
once and the last variable cycles through its values most rapidly. All cells have a
frequency of at least 1, i.e., there is no �missing cell.� The array list_cells can
be considered �parallel� to table_unbalanced because row i of list_cells
is the set of n_keys values that describes the cell for which row i of
table_unbalanced contains the corresponding frequency.

Examples

Example 1
The rows of a 10 × 3 matrix x are sorted in ascending order using Columns 0 and
1 as the keys. There are two missing values (NaNs) in the keys. The observations
containing these values are moved to the end of the sorted array.

#include <imsls.h>
#define N_OBSERVATIONS 10
#define N_VARIABLES 3
main()
{

int n_keys=2;
float x[N_OBSERVATIONS][N_VARIABLES] = {1.0, 1.0, 1.0,

2.0, 1.0, 2.0,
1.0, 1.0, 3.0,
1.0, 1.0, 4.0,

Chapter 1: Basic Statistics sort_data •••• 33

2.0, 2.0, 5.0,
1.0, 2.0, 6.0,
1.0, 2.0, 7.0,
1.0, 1.0, 8.0,
2.0, 2.0, 9.0,
1.0, 1.0, 9.0};

x[4][1]=imsls_f_machine(6);
x[6][0]=imsls_f_machine(6);
imsls_f_sort_data (N_OBSERVATIONS, N_VARIABLES, x, n_keys, 0);
imsls_f_write_matrix("sorted x", N_OBSERVATIONS, N_VARIABLES,

(float *)x, 0);
}

Output
sorted x

1 2 3
1 1 1 1
2 1 1 9
3 1 1 3
4 1 1 4
5 1 1 8
6 1 2 6
7 2 1 2
8 2 2 9
9 2 7

10 2 5

Example 2
This example uses the same data as the previous example. The permutation of the
rows is output in the array permutation.

#include <imsls.h>
#define N_OBSERVATIONS 10
#define N_VARIABLES 3
MAIN()
{

int n_keys=2;
int n_cells;
int *n;
int *permutation;
float x[N_OBSERVATIONS][N_VARIABLES]={1.0, 1.0, 1.0,

2.0, 1.0, 2.0,
1.0, 1.0, 3.0,
1.0, 1.0, 4.0,
2.0, 2.0, 5.0,
1.0, 2.0, 6.0,
1.0, 2.0, 7.0,
1.0, 1.0, 8.0,
2.0. 2.0, 9.0,
1.0, 1.0, 9.0};

x[4][1]=imsls_f_machine(6);
x[6][0]=imsls_f_machine(6);
imsls_f_sort_data (N_OBSERVATIONS, N_VARIABLES,

(float *)x, n_keys,
IMSLS_PASSIVE,
IMSLS_PERMUTATION, &permutation,
IMSLS_N, &n_cells, &n, 0};

34 •••• sort_data IMSL C/Stat/Library

imsls_f_write_matrix("unchanged x ", N_OBSERVATIONS, N_VARIABLES,
(float *)x, 0);

imsls_i_write_matrix("permutation", 1, N_OBSERVATIONS, permutation,
0);

imsls_i_write_matrix("n", 1, n_cells, n, 0);
}

Output
unchanged x
1 2 3

1 1 1 1
2 2 1 2
3 1 1 3
4 1 1 4
5 2 5
6 1 2 6
7 2 7
8 1 1 8
9 2 2 9

10 1 1 9

permutation
1 2 3 4 5 6 7 8 9 10
0 9 2 3 7 5 1 8 6 4

n
1 2 3 4
5 1 1 1

Example 3
The table of frequencies for a data matrix of size 30 × 2 is output in the array
table.

#include <imsls.h>
main()
{

int n_observations=30;
int n_variables=2;
int n_keys=2;
int *n_values;
int n_rows, n_columns;
float *values;
float *table;
float x[] = {0.5, 1.5,

1.5, 3.5,
0.5, 3.5,
1.5, 2.5,
1.5, 3.5,
1.5, 4.5,
0.5, 1.5,
1.5, 3.5,
3.5, 6.5,
2.5, 3.5,
2.5, 4.5,
3.5, 6.5,
1.5, 2.5,
2.5, 4.5,

Chapter 1: Basic Statistics sort_data •••• 35

0.5, 3.5,
1.5, 2.5,
1.5, 3.5,
0.5, 3.5,
0.5, 1.5,
0.5, 2.5,
2.5, 5.5,
1.5, 2.5,
1.5, 3.5,
1.5, 4.5,
4.5, 5.5,
2.5, 4.5,
0.5, 3.5,
1.5, 2.5,
0.5, 2.5,
2.5, 5.5};

imsls_f_sort_data (n_observations, n_variables, x, n_keys,
IMSLS_PASSIVE,
IMSLS_TABLE, &n_values, &values, &table,
0);

imsls_f_write_matrix("unchanged x", n_observations, n_variables,
x, 0);

n_rows = n_values[0];
n_columns = n_values[1];
imsls_f_write_matrix("row values", 1, n_rows, values, 0);
imsls_f_write_matrix("column values", 1, n_columns, &values[n_rows],

0);
imsls_f_write_matrix("table", n_rows, n_columns, table, 0);

}

Output
unchanged x

1 2
1 0.5 1.5
2 1.5 3.5
3 0.5 3.5
4 1.5 2.5
5 1.5 3.5
6 1.5 4.5
7 0.5 1.5
8 1.5 3.5
9 3.5 6.5

10 2.5 3.5
11 2.5 4.5
12 3.5 6.5
13 1.5 2.5
14 2.5 4.5
15 0.5 3.5
16 1.5 2.5
17 1.5 3.5
18 0.5 3.5
19 0.5 1.5
20 0.5 2.5
21 2.5 5.5
22 1.5 2.5
23 1.5 3.5
24 1.5 4.5

36 •••• ranks IMSL C/Stat/Library

25 4.5 5.5
26 2.5 4.5
27 0.5 3.5
28 1.5 2.5
29 0.5 2.5
30 2.5 5.5

row values
1 2 3 4 5

0.5 1.5 2.5 3.5 4.5

column values
1 2 3 4 5 6

1.5 2.5 3.5 4.5 5.5 6.5

table
1 2 3 4 5 6

1 3 2 4 0 0 0
2 0 5 5 2 0 0
3 0 0 1 3 2 0
4 0 0 0 0 0 2
5 0 0 0 0 1 0

ranks
Computes the ranks, normal scores, or exponential scores for a vector of
observations.

Synopsis
#include <imsls.h>

float *imsls_f_ranks (int n_observations, float x[], ..., 0)

The type double function is imsls_d_ranks.

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of length n_observations containing the observations to be
ranked.

Return Value
A pointer to a vector of length n_observations containing the rank (or
optionally, a transformation of the rank) of each observation.

Synopsis with Optional Arguments
#include <imsl.h>

Chapter 1: Basic Statistics ranks •••• 37

float* imsls_f_ranks (int n_observations, float x[],
IMSLS_AVERAGE_TIE, or
IMSLS_HIGHEST, or
IMSLS_LOWEST, or
IMSLS_RANDOM_SPLIT,
IMSLS_FUZZ, float fuzz_value,
IMSLS_RANKS, or
IMSLS_BLOM_SCORES, or
IMSLS_TUKEY_SCORES, or
IMSLS_VAN_DER_WAERDEN_SCORES, or
IMSLS_EXPECTED_NORMAL_SCORES, or
IMSLS_SAVAGE_SCORES,
IMSLS_RETURN_USER, float ranks[],
0)

Optional Arguments
IMSLS_AVERAGE_TIE, or

IMSLS_HIGHEST, or

IMSLS_LOWEST, or

IMSLS_RANDOM_SPLIT

Exactly one of these optional arguments can be used to change the
method used to assign a score to tied observations.

Argument Method
IMSLS_AVERAGE_TIE average of the scores of the tied

observations (default)
IMSLS_HIGHEST highest score in the group of ties
IMSLS_LOWEST lowest score in the group of ties
IMSLS_RANDOM_SPLIT tied observations are randomly split

using a random number generator

IMSLS_FUZZ, float fuzz_value (Input)
Value used to determine when two items are tied. If abs(x [i] − x [j]) is
less than or equal to fuzz_value, then x[i] and x[j] are said to be
tied.
Default: fuzz_value = 0.0

IMSLS_RANKS, or

IMSLS_BLOM_SCORES, or

IMSLS_TUKEY_SCORES, or

IMSLS_VAN_DER_WAERDEN_SCORES, or

IMSLS_EXPECTED_NORMAL_SCORES, or

38 •••• ranks IMSL C/Stat/Library

IMSLS_SAVAGE_SCORES

Exactly one of these optional arguments can be used to specify the type
of values returned.

Argument Result
IMSLS_RANKS ranks (default)
IMSLS_BLOM_SCORES Blom version of normal scores
IMSLS_TUKEY_SCORES Tukey version of normal scores
IMSLS_VAN_DER_WAERDEN_SCORES Van der Waerden version of normal

scores
IMSLS_EXPECTED_NORMAL_SCORES expected value of normal order

statistics (for tied observations, the
average of the expected normal
scores)

IMSLS_SAVAGE_SCORES Savage scores (the expected value of
exponential order statistics)

IMSLS_RETURN_USER, float ranks[] (Output)
If specified, the ranks are returned in the user-supplied array ranks.

Description

Ties

In data without ties, the output values are the ordinary ranks (or a transformation
of the ranks) of the data in x. If x[i] has the smallest value among the values in
x and there is no other element in x with this value, then ranks [i] = 1. If both
x[i] and x[j] have the same smallest value, the output value depends on the
option used to break ties.

Argument Result
IMSLS_AVERAGE_TIE ranks[i] = ranks[j] = 1.5
IMSLS_HIGHEST ranks[i] = ranks[j] = 2.0
IMSLS_LOWEST ranks[i] = ranks[j] = 1.0
IMSLS_RANDOM_SPLIT ranks[i] = 1.0 and ranks[j] = 2.0

or, randomly,
ranks[i] = 2.0 and ranks[j] = 1.0

When the ties are resolved randomly, function imsls_f_random_uniform
(Chapter 12) is used to generate random numbers. Different results may occur
from different executions of the program unless the �seed� of the random number
generator is set explicitly by use of the function imsls_f_random_seed_set
(Chapter 12).

Chapter 1: Basic Statistics ranks •••• 39

Scores

As an option, normal and other functions of the ranks can be returned. Normal
scores can be defined as the expected values, or approximations to the expected
values, of order statistics from a normal distribution. The simplest approximations
are obtained by evaluating the inverse cumulative normal distribution function,
function imsls_f_normal_inverse_cdf (Chapter 11), at the ranks scaled into
the open interval (0, 1). In the Blom version (see Blom 1958), the scaling
transformation for the rank ri (1 ≤ ri ≤ n, where n is the sample size,
n_observations) is (ri − 3/8)/(n + 1/4). The Blom normal score corresponding
to the observation with rank ri is

Φ− −
+
F
HG

I
KJ

1 3 8
1 4

r
n
i /

/

where Φ(·) is the normal cumulative distribution function.

Adjustments for ties are made after the normal score transformation. That is, if
x [i] equals x [j] (within fuzz_value) and their value is the k-th smallest in the
data set, the Blom normal scores are determined for ranks of k and k + 1. Then,
these normal scores are averaged or selected in the manner specified. (Whether
the transformations are made first or ties are resolved first makes no difference
except when IMSLS_AVERAGE_TIE is specified.)

In the Tukey version (see Tukey 1962), the scaling transformation for the rank
ri is (ri − 1/3)/(n + 1/3). The Tukey normal score corresponding to the
observation with rank ri is as follows:

Φ− −
+
F
HG

I
KJ

1 1 3
1 3

r
n
i /

/

Ties are handled in the same way as for the Blom normal scores.

In the Van der Waerden version (see Lehmann 1975, p. 97), the scaling
transformation for the rank ri is ri/(n + 1). The Van der Waerden normal score
corresponding to the observation with rank ri is as follows:

Φ−

+
F
HG
I
KJ

1

1
r

n
i

Ties are handled in the same way as for the Blom normal scores.

When option IMSLS_EXPECTED_NORMAL_SCORES is used, the output values are
the expected values of the normal order statistics from a sample of size
n_observations. If the value in x[i] is the k-th smallest, the value output in
ranks [i] is E(zk), where E(·) is the expectation operator and zk is the k-th order
statistic in a sample of size n_observations from a standard normal
distribution. Ties are handled in the same way as for the Blom normal scores.

40 •••• ranks IMSL C/Stat/Library

Savage scores are the expected values of the exponential order statistics from a
sample of size n_observations. These values are called Savage scores because
of their use in a test discussed by Savage 1956 (see also Lehmann 1975). If the
value in x[i] is the k-th smallest, the value output in ranks [i] is E(yk), where
yk is the k-th order statistic in a sample of size n_observations from a standard
exponential distribution. The expected value of the k-th order statistic from an
exponential sample of size n (n_observations) is as follows:

1 1
1

1
1n n n k

+
−

+ +
− +

�

Ties are handled in the same way as for the Blom normal scores.

Examples

Example 1
The data for this example, from Hinkley (1977), contains 30 observations. Note
that the fourth and sixth observations are tied and that the third and twentieth
observations are tied.

#include <imsls.h>

#define N_OBSERVATIONS 30

main()
{

float *ranks;
float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,

3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
4.75, 2.48, 0.96, 1.89, 0.90, 2.05};

ranks = imsls_f_ranks(N_OBSERVATIONS, x, 0);
imsls_f_write_matrix("Ranks", 1, N_OBSERVATIONS, ranks, 0);

}

Output
Ranks

1 2 3 4 5 6
5.0 18.0 6.5 11.5 21.0 11.5

7 8 9 10 11 12
2.0 15.0 29.0 24.0 27.0 28.0

13 14 15 16 17 18
16.0 23.0 3.0 17.0 13.0 1.0

19 20 21 22 23 24
4.0 6.5 26.0 19.0 10.0 14.0

25 26 27 28 29 30
30.0 25.0 9.0 20.0 8.0 22.0

Chapter 1: Basic Statistics ranks •••• 41

Example 2
This example uses all the score options with the same data set, which contains
some ties. Ties are handled in several different ways in this example.

#include <imsls.h>

#define N_OBSERVATIONS 30

void main()
{

float fuzz_value=0.0, score[4][N_OBSERVATIONS], *ranks;
float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,

3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
4.75, 2.48, 0.96, 1.89, 0.90, 2.05};

char *row_labels[] = {"Blom", "Tukey", "Van der Waerden",
"Expected Value"};

/* Blom scores using largest ranks */
/* for ties */

imsls_f_ranks(N_OBSERVATIONS, x,
IMSLS_HIGHEST,
IMSLS_BLOM_SCORES,
IMSLS_RETURN_USER, &score[0][0],
0);

/* Tukey normal scores using smallest */
/* ranks for ties */

imsls_f_ranks(N_OBSERVATIONS, x,
IMSLS_LOWEST,
IMSLS_TUKEY_SCORES,
IMSLS_RETURN_USER, &score[1][0],
0);

/* Van der Waerden scores using */
/* randomly resolved ties */

imsls_random_seed_set(123457);
imsls_f_ranks(N_OBSERVATIONS, x,

IMSLS_RANDOM_SPLIT,
IMSLS_VAN_DER_WAERDEN_SCORES,
IMSLS_RETURN_USER, &score[2][0],
0);

/* Expected value of normal order */
/* statistics using averaging to */
/* break ties */

imsls_f_ranks(N_OBSERVATIONS, x,
IMSLS_EXPECTED_NORMAL_SCORES,
IMSLS_RETURN_USER, &score[3][0],
0);

imsls_f_write_matrix("Normal Order Statistics", 4, N_OBSERVATIONS,
(float *)score,
IMSLS_ROW_LABELS, row_labels,
IMSLS_WRITE_FORMAT, "%9.3f",
0);

/* Savage scores using averaging */
/* to break ties */

ranks = imsls_f_ranks(N_OBSERVATIONS, x,
IMSLS_SAVAGE_SCORES,
0);

imsls_f_write_matrix("Expected values of exponential order "

42 •••• ranks IMSL C/Stat/Library

"statistics", 1,
N_OBSERVATIONS, ranks,
0);

}

Output
Normal Order Statistics
1 2 3 4 5

Blom -1.024 0.209 -0.776 -0.294 0.473
Tukey -1.020 0.208 -0.890 -0.381 0.471
Van der Waerden -0.989 0.204 -0.753 -0.287 0.460
Expected Value -1.026 0.209 -0.836 -0.338 0.473

6 7 8 9 10
Blom -0.294 -1.610 -0.041 1.610 0.776
Tukey -0.381 -1.599 -0.041 1.599 0.773
Van der Waerden -0.372 -1.518 -0.040 1.518 0.753
Expected Value -0.338 -1.616 -0.041 1.616 0.777

11 12 13 14 15
Blom 1.176 1.361 0.041 0.668 -1.361
Tukey 1.171 1.354 0.041 0.666 -1.354
Van der Waerden 1.131 1.300 0.040 0.649 -1.300
Expected Value 1.179 1.365 0.041 0.669 -1.365

16 17 18 19 20
Blom 0.125 -0.209 -2.040 -1.176 -0.776
Tukey 0.124 -0.208 -2.015 -1.171 -0.890
Van der Waerden 0.122 -0.204 -1.849 -1.131 -0.865
Expected Value 0.125 -0.209 -2.043 -1.179 -0.836

21 22 23 24 25
Blom 1.024 0.294 -0.473 -0.125 2.040
Tukey 1.020 0.293 -0.471 -0.124 2.015
Van der Waerden 0.989 0.287 -0.460 -0.122 1.849
Expected Value 1.026 0.294 -0.473 -0.125 2.043

26 27 28 29 30
Blom 0.893 -0.568 0.382 -0.668 0.568
Tukey 0.890 -0.566 0.381 -0.666 0.566
Van der Waerden 0.865 -0.552 0.372 -0.649 0.552
Expected Value 0.894 -0.568 0.382 -0.669 0.568

Expected values of exponential order statistics
1 2 3 4 5 6

0.179 0.892 0.240 0.474 1.166 0.474

7 8 9 10 11 12
0.068 0.677 2.995 1.545 2.162 2.495

13 14 15 16 17 18
0.743 1.402 0.104 0.815 0.555 0.033

19 20 21 22 23 24
0.141 0.240 1.912 0.975 0.397 0.614

25 26 27 28 29 30
3.995 1.712 0.350 1.066 0.304 1.277

Chapter 2: Regression Routines •••• 43

Chapter 2: Regression

Routines
2.1 Multivariate Linear Regression�Model Fitting

Generate regressors for a general
linear model.. regressors_for_glm 56
Fit a multivariate linear regression modelregression 64

2.2 Multivariate Linear Regression�Statistical
Inference and Diagnostics
Produce summary statistics for
a regression model... regression_summary 77
Compute predicted values,
confidence intervals, and diagnostics............ regression_prediction 85
Construction of a completely
testable hypothesis..hypothesis_partial 96
Sums of cross products for a
multivariate hypothesis..hypothesis_scph 101
Tests for the multivariate linear hypothesis.............hypothesis_test 106

2.3 Variable Selection
All best regressions ...regression_selection 112
Stepwise regression..regression_stepwise 123

2.4 Polynomial and Nonlinear Regression
Fit a polynomial regression model.......................... poly_regression 132
Compute predicted values, confidence intervals,
and diagnostics ..poly_prediction 140
Fit a nonlinear regression model. nonlinear_regression 149
Fit a nonlinear regression model using
Powell's algorithm...nonlinear_optimization 158

2.5 Alternatives to Least Squares Regression
LAV, Lpnorm, and LMV criteria regression Lnorm_regression 168

44 •••• Usage Notes IMSL C/Stat/Library

Usage Notes
The regression models in this chapter include the simple and multiple linear
regression models, the multivariate general linear model, the polynomial model,
and the nonlinear regression model. Functions for fitting regression models,
computing summary statistics from a fitted regression, computing diagnostics,
and computing confidence intervals for individual cases are provided. This
chapter also provides methods for building a model from a set of candidate
variables.

Simple and Multiple Linear Regression

The simple linear regression model is

yi = β0 + β1xi + εi i = 1, 2, ..., n

where the observed values of the yi�s constitute the responses or values of the
dependent variable, the xi�s are the settings of the independent (explanatory)
variable, β0 and β1 are the intercept and slope parameters (respectively) and the
εi�s are independently distributed normal errors, each with mean 0 and variance
σ2.

The multiple linear regression model is

yi = β0 + β1xi1 + β2xi2 + ... + βkxik + εi i = 1, 2, ..., n

where the observed values of the yi�s constitute the responses or values of the
dependent variable; the xi1�s, xi2�s, ..., xik�s are the settings of the k independent
(explanatory) variables; β0, β1, ..., βk are the regression coefficients; and the εi�s
are independently distributed normal errors, each with mean 0 and variance σ2.

Function imsls_f_regression (page 64) fits both the simple and multiple
linear regression models using a fast Given�s transformation and includes an
option for excluding the intercept β0. The responses are input in array y, and the
independent variables are input in array x, where the individual cases correspond
to the rows and the variables correspond to the columns.

After the model has been fitted using imsls_f_regression, function
imsls_f_regression_summary computes summary statistics and
imsls_f_regression_prediction computes predicted values, confidence
intervals, and case statistics for the fitted model. The information about the fit is
communicated from imsls_f_regression to
imsls_f_regression_summary and imsls_f_regression_prediction
by passing an argument of structure type Imsls_f_regression.

Chapter 2: Regression Usage Notes •••• 45

No Intercept Model

Several functions provide the option for excluding the intercept from a model. In
most practical applications, the intercept should be included in the model. For
functions that use the sums of squares and crossproducts matrix as input, the no-
intercept case can be handled by using the raw sums of squares and crossproducts
matrix as input in place of the corrected sums of squares and crossproducts. The
raw sums of squares and crossproducts matrix can be computed as (x1, x2, ..., xk,
y)T (x1, x2, ..., xk, y).

Variable Selection

Variable selection can be performed by imsls_f_regression_selection
(page 112), which computes all best-subset regressions, or by
imsls_f_regression_stepwise (page 123), which computes stepwise
regression. The method used by imsls_f_regression_selection is
generally preferred over that used by imsls_f_regression_stepwise
because imsls_f_regression_selection implicitly examines all possible
models in the search for a model that optimizes some criterion while stepwise
does not examine all possible models. However, the computer time and memory
requirements for imsls_f_regression_selection can be much greater than
that for imsls_f_regression_stepwise when the number of candidate
variables is large.

Polynomial Model

The polynomial model is

y x x x i ni i i k i
k

i� � � � � � �� � � � �0 1 2
2 1 2... , , ...,

where the observed values of the yi�s constitute the responses or values of the
dependent variable; the xi�s are the settings of the independent (explanatory)
variable; β0, β1, ..., βk are the regression coefficients; and the εi�s are
independently distributed normal errors each with mean 0 and variance σ2.

Function imsls_f_poly_regression (page 132) fits a polynomial regression
model with the option of determining the degree of the model and also produces
summary information. Function imsls_f_poly_prediction computes
predicted values, confidence intervals, and case statistics for the model fit by
imsls_f_poly_regression.

The information about the fit is communicated from imsls_f_poly_regression
to imsls_f_poly_prediction by passing an argument of structure type
Imsls_f_poly_regression.

Specification of X for the General Linear Model

Variables used in the general linear model are either continuous or classification
variables. Typically, multiple regression models use continuous variables,
whereas analysis of variance models use classification variables. Although the
notation used to specify analysis of variance models and multiple regression

46 •••• Usage Notes IMSL C/Stat/Library

models may look quite different, the models are essentially the same. The term
�general linear model� emphasizes that a common notational scheme is used for
specifying a model that may contain both continuous and classification variables.

A general linear model is specified by its effects (sources of variation). An effect
is referred to in this text as a single variable or a product of variables. (The term
�effect� is often used in a narrower sense, referring only to a single regression
coefficient.) In particular, an �effect� is composed of one of the following:

1. a single continuous variable

2. a single classification variable

3. several different classification variables

4. several continuous variables, some of which may be the same

5. continuous variables, some of which may be the same, and classification
variables, which must be distinct

Effects of the first type are common in multiple regression models. Effects of the
second type appear as main effects in analysis of variance models. Effects of the
third type appear as interactions in analysis of variance models. Effects of the
fourth type appear in polynomial models and response surface models as powers
and crossproducts of some basic variables. Effects of the fifth type appear in one-
way analysis of covariance models as regression coefficients that indicate lack of
parallelism of a regression function across the groups.

The analysis of a general linear model occurs in two stages. The first stage calls
function imsls_f_regressors_for_glm to specify all regressors except the
intercept. The second stage calls imsls_f_regression, at which point the
model will be specified as either having (default) or not having an intercept.

For this discussion, define a variable INTCEP as follows:

Option INTCEP Action

IMSLS_NO_INTERCEPT

IMSLS_INTERCEPT (default)

0

1

An intercept is not in the model.

An intercept is in the model.

The remaining variables (n_continuous, n_class, x_class_columns,
n_effects, n_var_effects, and indices_effects) are defined for function
imsls_f_regressors_for_glm. All these variables have defaults except for
n_continuous and n_class, both of which must be specified.
(See the documentation for imsls_f_regressors_for_glm on page 56 for a
discussion of the defaults.) The meaning of each of these arguments is as follows:

n_continuous (Input)
Number of continuous variables.

n_class (Input)
Number of classification variables.

Chapter 2: Regression Usage Notes •••• 47

x_class_columns (Input)
Index vector of length n_class containing the column numbers of
x that are the classification variables.

n_effects (Input)
Number of effects (sources of variation) in the model, excluding error.

n_var_effects (Input)
Vector of length n_effects containing the number of variables
associated with each effect in the model.

indices_effects (Input)
Index vector of length n_var_effects(0) + n_var_effects(1) +
... + n_var_effects (n_effects � 1). The first n_var_effects(0)
elements give the column numbers of x for each variable in the first
effect; the next n_var_effects(1) elements give the column numbers
for each variable in the second effect; and finally, the last
n_var_effects (n_effects � 1) elements give the column numbers
for each variable in the last effect.

Suppose the data matrix has as its first four columns two continuous variables in
Columns 0 and 1 and two classification variables in Columns 2 and 3. The data
might appear as follows:

Column 0 Column 1 Column 2 Column 3

11.23 1.23 1.0 5.0

12.12 2.34 1.0 4.0

12.34 1.23 1.0 4.0

4.34 2.21 1.0 5.0

5.67 4.31 2.0 4.0

4.12 5.34 2.0 1.0

4.89 9.31 2.0 1.0

9.12 3.71 2.0 1.0

Each distinct value of a classification variable determines a level. The
classification variable in Column 2 has two levels. The classification variable in
Column 3 has three levels. (Integer values are recommended, but not required, for
values of the classification variables. The values of the classification variables
corresponding to the same level must be identical.) Some examples of regression
functions and their specifications are as follows:

48 •••• Usage Notes IMSL C/Stat/Library

INTCEP n_class x_class_columns

β0 + β1x1 1 0

β β β0 1 1 2 1
2+ +x x 1 0

µ + αi 1 1 2

µ + αi + βj + γij 1 2 2, 3

µij 0 2 2, 3

β0 + β1x1 + β2x2 + β3x1x2 1 0

µ + αi + βx1i + βix1i 1 1 2

n_effects n_var_effects indices_effects

β0 + β1x1 1 1 0

β β β0 1 1 2 1
2+ +x x 2 1, 2 0, 0, 0

µ + αi 1 1 2

µ + αi + βj + γij 3 1, 1, 2 2, 3, 2, 3

µij 1 2 2, 3

β0 + β1x1 + β2x2 + β
3x1x2

3 1, 1, 2 0, 1, 0, 1

µ + αi + βx1i + βix1i 3 1, 1, 2 2, 0, 0, 2

Functions for Fitting the Model

Function imsls_f_regression (page 64) fits a multivariate general linear
model, where regressors for the general linear model have been generated using
function imsls_f_regressors_for_glm.

Linear Dependence and the R Matrix

Linear dependence of the regressors frequently arises in regression models�
sometimes by design and sometimes by accident. The functions in this chapter are
designed to handle linear dependence of the regressors; i.e., the

Chapter 2: Regression Usage Notes •••• 49

n × p matrix X (the matrix of regressors) in the general linear model can have
rank less than p. Often, the models are referred to as non-full rank models.

As discussed in Searle (1971, Chapter 5), be careful to correctly use the results of
the fitted non-full rank regression model for estimation and hypothesis testing. In
the non-full rank case, not all linear combinations of the regression coefficients
can be estimated. Those linear combinations that can be estimated are called
�estimable functions.� If the functions are used to attempt to estimate linear
combinations that cannot be estimated, error messages are issued. A good general
discussion of estimable functions is given by Searle (1971, pp. 180�188).

The check used by functions in this chapter for linear dependence is sequential.
The j-th regressor is declared linearly dependent on the preceding j − 1
regressors if

()
2

1,2, , 1...1 j jR −−

is less than or equal to tolerance. Here,

()1,2, , 1...j jR −

is the multiple correlation coefficient of the j-th regressor with the first j − 1
regressors. When a function declares the j-th regressor to be linearly dependent
on the first j − 1, the j-th regression coefficient is set to 0. Essentially, this
removes the j-th regressor from the model.

The reason a sequential check is used is that practitioners frequently include the
preferred variables to remain in the model first. Also, the sequential check is
based on many of the computations already performed as this does not degrade
the overall efficiency of the functions. There is no perfect test for linear
dependence when finite precision arithmetic is used. The optional argument
IMSLS_TOLERANCE allows the user some control over the check for linear
dependence. If a model is full rank, input tolerance = 0.0. However,
tolerance should be input as approximately 100 times the machine epsilon. The
machine epsilon is imsls_f_machine(4) in single precision and
imsls_d_machine(4) in double precision. (See functions imsls_f_machine
and imsls_d_machine in Chapter 14.)

Functions performing least squares are based on QR decomposition of X or on a
Cholesky factorization RTR of XTX. Maindonald (1984, Chapters 1−5) discusses
these methods extensively. The R matrix used by the regression function is a
p × p upper-triangular matrix, i.e., all elements below the diagonal are 0. The
signs of the diagonal elements of R are used as indicators of linearly dependent
regressors and as indicators of parameter restrictions imposed by fitting a
restricted model. The rows of R can be partitioned into three classes by the sign
of the corresponding diagonal element:

1. A positive diagonal element means the row corresponds to data.

50 •••• Usage Notes IMSL C/Stat/Library

2. A negative diagonal element means the row corresponds to a linearly
independent restriction imposed on the regression parameters by AB = Z
in a restricted model.

3. A zero diagonal element means a linear dependence of the regressors
was declared. The regression coefficients in the corresponding row of �B
are set to 0. This represents an arbitrary restriction that is imposed to
obtain a solution for the regression coefficients. The elements of the
corresponding row of R also are set to 0.

Nonlinear Regression Model
The nonlinear regression model is

yi = f(xi;θ) + εi i = 1, 2, …, n

where the observed values of the yi�s constitute the responses or values of the
dependent variable, the xi�s are the known vectors of values of the independent
(explanatory) variables, f is a known function of an unknown regression
parameter vector θ, and the εi�s are independently distributed normal errors each
with mean 0 and variance σ2.

Function imsls_f_nonlinear_regression (page 149) performs the least-
squares fit to the data for this model.

Weighted Least Squares
Functions throughout the chapter generally allow weights to be assigned to the
observations. The vector weights is used throughout to specify the weighting for
each row of X.

Computations that relate to statistical inference�e.g., t tests, F tests, and
confidence intervals�are based on the multiple regression model except that the
variance of εi is assumed to equal σ2 times the reciprocal of the corresponding
weight.

If a single row of the data matrix corresponds to ni observations, the vector
frequencies can be used to specify the frequency for each row of X. Degrees of
freedom for error are affected by frequencies but are unaffected by weights.

Summary Statistics
Function imsls_f_regression_summary can be used to compute and print
statistics related to a regression for each of the q dependent variables fitted by
imsls_f_regression (page 64). The summary statistics include the model
analysis of variance table, sequential sums of squares and F-statistics, coefficient
estimates, estimated standard errors, t-statistics, variance inflation factors, and
estimated variance-covariance matrix of the estimated regression coefficients.
Function imsls_f_poly_regression includes most of the same functionality
for polynomial regressions.

Chapter 2: Regression Usage Notes •••• 51

The summary statistics are computed under the model y = Xβ + ε, where y is the
n × 1 vector of responses, X is the n × p matrix of regressors with rank (X) = r, β
is the p × 1 vector of regression coefficients, and ε is the n × 1 vector of errors
whose elements are independently normally distributed with mean 0 and variance
σ2/wi.

Given the results of a weighted least-squares fit of this model (with the wi�s as the
weights), most of the computed summary statistics are output in the following
variables:

anova_table

One-dimensional array usually of length 15. In
imsls_f_regression_stepwise, anova_table is of length 13
because the last two elements of the array cannot be computed from the
input. The array contains statistics related to the analysis of variance.
The sources of variation examined are the regression, error, and total.
The first 10 elements of anova_table and the notation frequently used
for these is described in the following table (here, AOV replaces
anova_table):

Model Analysis of Variance Table
Source of
Variation

Degrees of
Freedom

Sum of
Squares Mean Square F p-value

Regression DFR = AOV[0] SSR = AOV[3] MSR = AOV[6] AOV[8] AOV[9]

Error DFE = AOV[1] SSE = AOV[4] s2 = AOV[7]

Total DFT = AOV[2] SST = AOV[5]

If the model has an intercept (default), the total sum of squares is the
sum of squares of the deviations of yi from its (weighted) mean y �the
so-called corrected total sum of squares, denoted by the following:

SST = −
=
�w y yi
i

n

i
1

2b g

If the model does not have an intercept (IMSLS_NO_INTERCEPT), the
total sum of squares is the sum of squares of yi�the so-called
uncorrected total sum of squares, denoted by the following:

SST =
=
�w yi
i

n

i
1

2

The error sum of squares is given as follows:

SSE = −
=
�w y yi
i

n

i i
1

2
�b g

52 •••• Usage Notes IMSL C/Stat/Library

The error degrees of freedom is defined by DFE = n � r.

The estimate of σ2 is given by s2 = SSE/DFE, which is the error mean
square.

The computed F statistic for the null hypothesis,
H0:β1 = β2 = ... = βk = 0, versus the alternative that at least one
coefficient is nonzero is given by F = MSR/s2. The p-value associated
with the test is the probability of an F larger than that computed under
the assumption of the model and the null hypothesis. A small p-value
(less than 0.05) is customarily used to indicate there is sufficient
evidence from the data to reject the null hypothesis.

The remaining five elements in anova_table frequently are displayed
together with the actual analysis of variance table. The quantities
R-squared (R2 = anova_table[10]) and adjusted R-squared

Ra
2 11= anova_tablec h

are expressed as a percentage and are defined as follows:

R2 = 100(SSR/SST) = 100(1 � SSE/SST)

R s
a
2

2
100 0 1= −

RS|T|
UV|W|

max ,
SST / DFT

The square root of s2(s = anova_table[12]) is frequently referred to as
the estimated standard deviation of the model error.

The overall mean of the responses y is output in anova_table[13].

The coefficient of variation (CV = anova_table[14]) is expressed as a
percentage and defined by CV = 100s/ y .

coef_t_tests

Two-dimensional matrix containing the regression coefficient vector β
as one column and associated statistics (estimated standard error, t
statistic and p-value) in the remaining columns.

coef_covariances

Estimated variance-covariance matrix of the estimated regression
coefficients.

Tests for Lack-of-Fit
Tests for lack-of-fit are computed for the polynomial regression by the function
imsls_f_poly_regression (page 132). The output array ssq_lof contains
the lack-of-fit F tests for each degree polynomial 1, 2, ..., k, that is fit to the data.
These tests are used to indicate the degree of the polynomial required to fit the
data well.

Chapter 2: Regression Usage Notes •••• 53

Diagnostics for Individual Cases
Diagnostics for individual cases (observations) are computed by two functions in
the regression chapter: imsls_f_regression_prediction for linear and
nonlinear regressions and imsls_f_poly_prediction for polynomial
regressions.

Statistics computed include predicted values, confidence intervals, and
diagnostics for detecting outliers and cases that greatly influence the fitted
regression.

The diagnostics are computed under the model y = Xβ + ε, where y is the n × 1
vector of responses, X is the n × p matrix of regressors with rank (X) = r, β is the
p × 1 vector of regression coefficients, and ε is the n × 1 vector of errors whose
elements are independently normally distributed with mean 0 and variance σ2/wi.

Given the results of a weighted least-squares fit of this model (with the wi�s as the
weights), the following five diagnostics are computed:

1. leverage

2. standardized residual

3. jackknife residual

4. Cook�s distance

5. DFFITS

The definition of these terms is given in the discussion that follows:

Let xi be a column vector containing the elements of the i-th row of X. A case can
be unusual either because of xi or because of the response yi. The leverage hi is a
measure of uniqueness of the xi. The leverage is defined by

h x X WX x wi i
T T

i i=
−

[]e j
where W = diag(w1, w2, …, wn) and (XTWX)- denotes a generalized inverse of
XTWX. The average value of the hi�s is r/n. Regression functions declare
xi unusual if hi > 2r/n. Hoaglin and Welsch (1978) call a data point highly
influential (i.e., a leverage point) when this occurs.

Let ei denote the residual

y yi i− �

for the i-th case. The estimated variance of ei is (1 � hi)s2/wi, where s2 is the
residual mean square from the fitted regression. The i-th standardized residual
(also called the internally studentized residual) is by definition

r e w
s hi i

i

i
=

−2 1b g
and ri follows an approximate standard normal distribution in large samples.

54 •••• Usage Notes IMSL C/Stat/Library

The i-th jackknife residual or deleted residual involves the difference between
yi and its predicted value, based on the data set in which the i-th case is deleted.
This difference equals ei/(1 − hi). The jackknife residual is obtained by
standardizing this difference. The residual mean square for the regression in
which the i-th case is deleted is as follows:

s
n r s w e h

n ri
i i i2

2 2 1
1

=
− − −

− −
b g b g/

The jackknife residual is defined as

t e w
s hi i

i

i i
=

−2 1b g
and ti follows a t distribution with n � r − 1 degrees of freedom.

Cook�s distance for the i-th case is a measure of how much an individual case
affects the estimated regression coefficients. It is given as follows:

D w h e

rs h
i

i i i

i

=
−

2

2 21b g
Weisberg (1985) states that if Di exceeds the 50-th percentile of the F(r, n − r)
distribution, it should be considered large. (This value is about 1. This statistic
does not have an F distribution.)

DFFITS, like Cook�s distance, is also a measure of influence. For the i-th case,
DFFITS is computed by the formula below.

DFFITSi i
i i

i i

e w h
s h

=
−2 21b g

Hoaglin and Welsch (1978) suggest that DFFITS greater than

2 r n/

is large.

Transformations
Transformations of the independent variables are sometimes useful in order to
satisfy the regression model. The inclusion of squares and crossproducts of the
variables

x x x x x x1 2 1
2

2
2

1 2, , , ,c h
is often needed. Logarithms of the independent variables are used also. (See
Draper and Smith 1981, pp. 218−222; Box and Tidwell 1962; Atkinson 1985,
pp. 177−180; Cook and Weisberg 1982, pp. 78−86.)

Chapter 2: Regression Usage Notes •••• 55

When the responses are described by a nonlinear function of the parameters, a
transformation of the model equation often can be selected so that the
transformed model is linear in the regression parameters. For example, by taking
natural logarithms on both sides of the equation, the exponential model

y e x= +β β ε0 1 1

can be transformed to a model that satisfies the linear regression model provided
the εi�s have a log-normal distribution (Draper and Smith, pp. 222−225).

When the responses are nonnormal and their distribution is known, a
transformation of the responses can often be selected so that the transformed
responses closely satisfy the regression model, assumptions. The square-root
transformation for counts with a Poisson distribution and the arc-sine
transformation for binomial proportions are common examples
(Snedecor and Cochran 1967, pp. 325−330; Draper and Smith, pp. 237−239).

Alternatives to Least Squares
The method of least squares has desirable characteristics when the errors are
normally distributed, e.g., a least-squares solution produces maximum likelihood
estimates of the regression parameters. However, when errors are not normally
distributed, least squares may yield poor estimators. Function
imsls_f_lnorm_regression offers three alternatives to least squares
methodology, Least Absolute Value , Lp Norm , and Least Maximum Value.

The least absolute value (LAV, L1) criterion yields the maximum likelihood
estimate when the errors follow a Laplace distribution. Option
IMSLS_METHOD_LAV (page 169) is often used when the errors have a heavy
tailed distribution or when a fit is needed that is resistant to outliers.

A more general approach, minimizing the Lp norm (p ≤ 1), is given by option
IMSLS_METHOD_LLP (page 169). Although the routine requires about 30 times
the CPU time for the case p = 1 than would the use of IMSLS_METHOD_LAV, the
generality of IMSLS_METHOD_LLP allows the user to try several choices for p ≥ 1
by simply changing the input value of p in the calling program. The CPU time
decreases as p gets larger. Generally, choices of p between 1 and 2 are of interest.
However, the Lp norm solution for values of p larger than 2 can also be
computed.

The minimax (LMV, L�, Chebyshev) criterion is used by IMSLS_METHOD_LMV
(page 169). Its estimates are very sensitive to outliers, however, the minimax
estimators are quite efficient if the errors are uniformly distributed.

Missing Values
NaN (Not a Number) is the missing value code used by the regression functions.
Use function imsls_f_machine(6), Chapter 14 (or function
imsls_d_machine(6) with double-precision regression functions) to retrieve
NaN. Any element of the data matrix that is missing must be set to

56 •••• regressors_for_glm IMSL C/Stat/Library

imsls_f_machine(6) (or imsls_d_machine(6) for double precision). In
fitting regression models, any observation containing NaN for the independent,
dependent, weight, or frequency variables is omitted from the computation of the
regression parameters.

regressors_for_glm
Generates regressors for a general linear model.

Synopsis
#include <imsls.h>

int imsls_f_regressors_for_glm (int n_observations, float x[],
int n_class, int n_continuous, ..., 0)

The type double function is imsls_d_regressors_for_glm.

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
An n_observations × (n_class + n_continuous) array containing
the data. The columns must be ordered such that the first n_class
columns contain the class variables and the next n_continuous
columns contain the continuous variables. (Exception: see optional
argument IMSLS_X_CLASS_COLUMNS.)

int n_class (Input)
Number of classification variables.

int n_continuous (Input)
Number of continuous variables.

Return Value
An integer (n_regressors) indicating the number of regressors generated.

Synopsis with Optional Arguments
#include <imsls.h>

int imsls_f_regressors_for_glm (int n_observations, float x[],
int n_class, int n_continuous,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_CLASS_COLUMNS, int x_class_columns[],
IMSLS_MODEL_ORDER, int model_order,
IMSLS_INDICES_EFFECTS, int n_effects,

int n_var_effects[], int indices_effects[],
IMSLS_DUMMY, Imsls_dummy_method dummy_method,

Chapter 2: Regression regressors_for_glm •••• 57

IMSLS_REGRESSORS, float **regressors,
IMSLS_REGRESSORS_USER, float regressors[],
IMSLS_REGRESSORS_COL_DIM, int regressors_col_dim,
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of x.
Default: x_col_dim = n_class + n_continuous

IMSLS_X_CLASS_COLUMNS, int x_class_columns[] (Input)
Index array of length n_class containing the column numbers of x that
are the classification variables. The remaining variables are assumed to
be continuous.
Default: x_class_columns = 0, 1, ..., n_class − 1

IMSLS_MODEL_ORDER, int model_order (Input)
Order of the model. Model order can be specified as 1 or 2. Use optional
argument IMSLS_INDICES_EFFECTS to specify more complicated
models.
Default: model_order = 1
or

IMSLS_INDICES_EFFECTS, int n_effects, int n_var_effects[],
int indices_effects[] (Input)
Variable n_effects is the number of effects (sources of variation) in
the model. Variable n_var_effects is an array of length n_effects
containing the number of variables associated with each effect in the
model. Argument indices_effects is an index array of length
n_var_effects[0] + n_var_effects[1] + … + n_var_effects
(n_effects − 1). The first n_var_effects[0] elements give the
column numbers of x for each variable in the first effect. The next
n_var_effects[1] elements give the column numbers for each
variable in the second effect. … The last n_var_effects [n_effects
− 1] elements give the column numbers for each variable in the last
effect.

IMSLS_DUMMY, Imsls_dummy_method dummy_method (Input)
Dummy variable option. Indicator variables are defined for each class
variable as described in the �Description� section.

Dummy variables are then generated from the n indicator variables in
one of the following three ways:

dummy_method Method

IMSLS_ALL The n indicator variables are the dummy
variables (default).

58 •••• regressors_for_glm IMSL C/Stat/Library

dummy_method Method

IMSLS_LEAVE_OUT_LAST The dummies are the first n − 1 indicator
variables.

IMSLS_SUM_TO_ZERO The n − 1 dummies are defined in terms of the
indicator variables so that for balanced data,
the usual summation restrictions are imposed
on the regression coefficients.

IMSLS_REGRESSORS, float **regressors (Output)
Address of a pointer to the internally allocated array of size
n_observations × n_regressors containing the regressor variables
generated from x.

IMSLS_REGRESSORS_USER, float regressors[] (Output)
Storage for array regressors is provided by the user. See
IMSLS_REGRESSORS.

IMSLS_REGRESSORS_COL_DIM, int regressors_col_dim (Input)
Column dimension of regressors.
Default: regressors_col_dim = n_regressors

Description
Function imsls_f_regressors_for_glm generates regressors for a general
linear model from a data matrix. The data matrix can contain classification
variables as well as continuous variables. Regressors for effects composed solely
of continuous variables are generated as powers and crossproducts. Consider a
data matrix containing continuous variables as Columns 3 and 4. The effect
indices (3, 3) generate a regressor whose i-th value is the square of the i-th value
in Column 3. The effect indices (3, 4) generates a regressor whose i-th value is
the product of the i-th value in Column 3 with the i-th value in Column 4.

Regressors for an effect (source of variation) composed of a single classification
variable are generated using indicator variables. Let the classification variable A
take on values a1, a2, ..., an. From this classification variable,
imsls_f_regressors_for_glm creates n indicator variables. For
k = 1, 2, ..., n, we have

I
a

k
k=

=RST
1
0
 if A
 otherwise

For each classification variable, another set of variables is created from the
indicator variables. These new variables are called dummy variables. Dummy
variables are generated from the indicator variables in one of three manners:

1. The dummies are the n indicator variables.

2. The dummies are the first n � 1 indicator variables.

Chapter 2: Regression regressors_for_glm •••• 59

3. The n � 1 dummies are defined in terms of the indicator variables so that
for balanced data, the usual summation restrictions are imposed on the
regression coefficients.

In particular, for dummy_method = IMSLS_ALL, the dummy variables are
Ak = Ik(k = 1, 2, ..., n). For dummy_method = IMSLS_LEAVE_OUT_LAST, the
dummy variables are Ak = Ik(k = 1, 2, ..., n − 1). For
dummy_method = IMSLS_SUM_TO_ZERO, the dummy variables are
Ak = Ik − In(k = 1, 2, ..., n − 1). The regressors generated for an effect composed
of a single-classification variable are the associated dummy variables.

Let mj be the number of dummies generated for the j-th classification variable.
Suppose there are two classification variables A and B with dummies

A A Am1 2 1
, , ...,

and

B B Bm1 2 2
, , ...,

The regressors generated for an effect composed of two classification variables
A and B are

A B A A A B B B

A B A B A B A B A B

A B A B A B A B

m m

m

m m m m m

� � �

�

1 2 1 2

1 1 1 2 1 2 1 2 2

2 1 2

1 2

2

2 1 1 1 2

, , ..., , , ...,

(, , ..., , , , ...,

, ..., , , ...,)

d i d i

More generally, the regressors generated for an effect composed of several
classification variables and several continuous variables are given by the
Kronecker products of variables, where the order of the variables is specified in
indices_effects. Consider a data matrix containing classification variables in
Columns 0 and 1 and continuous variables in Columns 2 and 3. Label these four
columns A, B, X1, and X2. The regressors generated by the effect indices
(0, 1, 2, 2, 3) are A ⊗ B ⊗ X1X1X2.

Remarks
Let the data matrix x = (A, B, X1), where A and B are classification variables and
X1 is a continuous variable. The model containing the effects A, B, AB, X1,
AX1, BX1, and ABX1 is specified as follows (use optional keyword
IMSLS_INDICES_EFFECTS):

n_class = 2
n_continuous = 1
n_effects = 7

n_var_effects = (1, 1, 2, 1, 2, 2, 3)
indices_effects = (0, 1, 0, 1, 2, 0, 2, 1, 2, 0, 1, 2)

60 •••• regressors_for_glm IMSL C/Stat/Library

For this model, suppose that variable A has two levels, A1 and A2, and that
variable B has three levels, B1, B2, and B3. For each dummy_method option, the
regressors in their order of appearance in regressors are given below.

dummy_method regressors

IMSLS_ALL A1, A2, B1, B2, B3, A1B1, A1B2, A1B3, A2B1, A2B2,
A2B3, X1, A1X1, A2X1, B1X1, B2X1, B3X1, A1B1X1,
A1B2X1, A1B3X1, A2B1X1, A2B2X1, A2B3X1

IMSLS_LEAVE_OUT_LAST A1, B1, B2, A1B1, A1B2, X1, A1X1, B1X1, B2X1,
A1B1X1, A1B2X1

IMSLS_SUM_TO_ZERO A1 − A2, B1 − B3, B2 − B3, (A1 − A2) (B1 − B2),
(A1 − A2) (B2 − B3), X1, (A1 − A2) X1,
(B1 − B3)X1, (B2 − B3)X1, (A1 − A2) (B1 − B2)X1,
(A1 − A2) (B2 − B3)X1

Within a group of regressors corresponding to an interaction effect, the indicator
variables composing the regressors vary most rapidly for the last classification
variable, next most rapidly for the next to last classification variable, etc.

By default, imsls_f_regressors_for_glm internally generates values for
n_effects, n_var_effects, and indices_effects, which correspond to a
first order model with NEF = n_continuous + n_class. The variables then are
used to create the regressor variables. The effects are ordered such that the first
effect corresponds to the first column of x, the second effect corresponds to the
second column of x, etc. A second order model corresponding to the columns
(variables) of x is generated if IMSLS_MODEL_ORDER with model_order = 2 is
specified.

There are

NEF = + 2 +
NVAR

2
 n_class n_continuous∗

F
HG
I
KJ

effects, where NVAR = n_continuous + n_class. The first NVAR effects
correspond to the columns of x, such that the first effect corresponds to the first
column of x, the second effect corresponds to the second column of x, ..., the
NVAR-th effect corresponds to the NVAR-th column of x (i.e. x[NVAR − 1]).
The next n_continuous effects correspond to squares of the continuous
variables. The last

2
NVARe j

effects correspond to the two-variable interactions.

Chapter 2: Regression regressors_for_glm •••• 61

• Let the data matrix x = (A, B, X1), where A and B are classification
variables and X1 is a continuous variable. The effects generated and
order of appearance is

A B X X AB AX BX, , , , , ,1 1
2

1 1

• Let the data matrix x = (A, X1, X2), where A is a classification variable
and X1 and X2 are continuous variables. The effects generated and order
of appearance is

A X X X X AX AX X X, , , , , , ,1 2 1
2

2
2

1 2 1 2

• Let the data matrix x = (X1, A, X2) (see IMSLS_CLASS_COLUMNS),
where A is a classification variable and X1 and X2 are continuous
variables. The effects generated and order of appearance is

X A X X X X A X X AX1 2 1
2

2
2

1 1 2 2, , , , , , ,

Higher-order and more complicated models can be specified using
IMSLS_INDICES_EFFECTS.

Examples

Example 1
In the following example, there are two classification variables, A and B, with two
and three values, respectively. Regressors for a one-way model (the default model
order) are generated using the IMSLS_ALL dummy method (the default dummy
method). The five regressors generated are A1, A2, B1, B2, and B3.

#include <imsls.h>
void main() {

int n_observations = 6;
int n_class = 2;
int n_cont = 0;
int n_regressors;
float x[12] = {

10.0, 5.0,
20.0, 15.0,
20.0, 10.0,
10.0, 10.0,
10.0, 15.0,
20.0, 5.0};

n_regressors = imsls_f_regressors_for_glm (n_observations, x,
n_class, n_cont, 0);

printf("Number of regressors = %3d\n", n_regressors);
}

Output

Number of regressors = 5

62 •••• regressors_for_glm IMSL C/Stat/Library

Example 2
In this example, a two-way analysis of covariance model containing all the
interaction terms is fit. First, imsls_f_regressors_for_glm is called to
produce a matrix of regressors, regressors, from the data x. Then,
regressors is used as the input matrix into imsls_f_regression to produce
the final fit. The regressors, generated using
dummy_method = IMSLS_LEAVE_OUT_LAST, are the model whose mean
function is

µ + αi + βj + ϒij + δxij + ζixij + ηjxij + θijxij i = 1, 2; j = 1, 2, 3

where α2 = β3 = ϒ21 = ϒ22 = ϒ23 = ζ2 = η3 = θ21 = θ22 = θ23 = 0.

#include <imsls.h>
void main() {
#define N_OBSERVATIONS 18

int n_class = 2;
int n_cont = 1;
float anova[15], *regressors;
int n_regressors;
float x[54] = {

1.0, 1.0, 1.11,
1.0, 1.0, 2.22,
1.0, 1.0, 3.33,
1.0, 2.0, 1.11,
1.0, 2.0, 2.22,
1.0, 2.0, 3.33,
1.0, 3.0, 1.11,
1.0, 3.0, 2.22,
1.0, 3.0, 3.33,
2.0, 1.0, 1.11,
2.0, 1.0, 2.22,
2.0, 1.0, 3.33,
2.0, 2.0, 1.11,
2.0, 2.0, 2.22,
2.0, 2.0, 3.33,
2.0, 3.0, 1.11,
2.0, 3.0, 2.22,
2.0, 3.0, 3.33};

float y[N_OBSERVATIONS] = {
1.0, 2.0, 2.0, 4.0, 4.0, 6.0,
3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
2.0, 3.0, 4.0, 5.0, 6.0, 7.0};

int class_col[2] = {0,1};
int n_effects = 7;
int n_var_effects[7] = {1, 1, 2, 1, 2, 2, 3};
int indices_effects[12] = {0, 1, 0, 1, 2, 0, 2, 1, 2, 0, 1, 2};
float *coef;
char *reg_labels[] = {

" ", "Alpha1", "Beta1", "Beta2", "Gamma11", "Gamma12",
"Delta", "Zeta1", "Eta1", "Eta2", "Theta11", "Theta12"};

char *labels[] = {
"degrees of freedom for the model",
"degrees of freedom for error",
"total (corrected) degrees of freedom",
"sum of squares for the model",

Chapter 2: Regression regressors_for_glm •••• 63

"sum of squares for error",
"total (corrected) sum of squares",
"model mean square", "error mean square",
"F-statistic", "p-value",
"R-squared (in percent)","adjusted R-squared (in percent)",
"est. standard deviation of the model error",
"overall mean of y",
"coefficient of variation (in percent)"};

n_regressors = imsls_f_regressors_for_glm (N_OBSERVATIONS, x,
n_class, n_cont,
IMSLS_X_CLASS_COLUMNS, class_col,
IMSLS_DUMMY, IMSLS_LEAVE_OUT_LAST,
IMSLS_INDICES_EFFECTS, n_effects, n_var_effects, indices_effects,
IMSLS_REGRESSORS, ®ressors,
0);

printf("Number of regressors = %3d", n_regressors);

imsls_f_write_matrix ("regressors", N_OBSERVATIONS, n_regressors,
 regressors,

IMSLS_COL_LABELS, reg_labels,
0);

coef = imsls_f_regression (N_OBSERVATIONS, n_regressors, regressors,
 y,

IMSLS_ANOVA_TABLE_USER, anova,
0);

imsls_f_write_matrix ("* * * Analysis of Variance * * *\n", 15, 1,
anova,
IMSLS_ROW_LABELS, labels,
IMSLS_WRITE_FORMAT, "%11.4f",
0);

}

Output

Number of regressors = 11
regressors

Alpha1 Beta1 Beta2 Gamma11 Gamma12 Delta
1 1.00 1.00 0.00 1.00 0.00 1.11
2 1.00 1.00 0.00 1.00 0.00 2.22
3 1.00 1.00 0.00 1.00 0.00 3.33
4 1.00 0.00 1.00 0.00 1.00 1.11
5 1.00 0.00 1.00 0.00 1.00 2.22
6 1.00 0.00 1.00 0.00 1.00 3.33
7 1.00 0.00 0.00 0.00 0.00 1.11
8 1.00 0.00 0.00 0.00 0.00 2.22
9 1.00 0.00 0.00 0.00 0.00 3.33
10 0.00 1.00 0.00 0.00 0.00 1.11
11 0.00 1.00 0.00 0.00 0.00 2.22
12 0.00 1.00 0.00 0.00 0.00 3.33
13 0.00 0.00 1.00 0.00 0.00 1.11
14 0.00 0.00 1.00 0.00 0.00 2.22
15 0.00 0.00 1.00 0.00 0.00 3.33
16 0.00 0.00 0.00 0.00 0.00 1.11

64 •••• regression IMSL C/Stat/Library

17 0.00 0.00 0.00 0.00 0.00 2.22
18 0.00 0.00 0.00 0.00 0.00 3.33

Zeta1 Eta1 Eta2 Theta11 Theta12
1 1.11 1.11 0.00 1.11 0.00
2 2.22 2.22 0.00 2.22 0.00
3 3.33 3.33 0.00 3.33 0.00
4 1.11 0.00 1.11 0.00 1.11
5 2.22 0.00 2.22 0.00 2.22
6 3.33 0.00 3.33 0.00 3.33
7 1.11 0.00 0.00 0.00 0.00
8 2.22 0.00 0.00 0.00 0.00
9 3.33 0.00 0.00 0.00 0.00
10 0.00 1.11 0.00 0.00 0.00
11 0.00 2.22 0.00 0.00 0.00
12 0.00 3.33 0.00 0.00 0.00
13 0.00 0.00 1.11 0.00 0.00
14 0.00 0.00 2.22 0.00 0.00
15 0.00 0.00 3.33 0.00 0.00
16 0.00 0.00 0.00 0.00 0.00
17 0.00 0.00 0.00 0.00 0.00
18 0.00 0.00 0.00 0.00 0.00

* * * Analysis of Variance * * *

degrees of freedom for the model 11.0000
degrees of freedom for error 6.0000
total (corrected) degrees of freedom 17.0000
sum of squares for the model 43.9028
sum of squares for error 0.8333
total (corrected) sum of squares 44.7361
model mean square 3.9912
error mean square 0.1389
F-statistic 28.7364
p-value 0.0003
R-squared (in percent) 98.1372
adjusted R-squared (in percent) 94.7221
est. standard deviation of the model error 0.3727
overall mean of y 3.9722
coefficient of variation (in percent) 9.3821

regression
Fits a multivariate linear regression model using least squares.

Synopsis
#include <imsls.h>

float *imsls_f_regression (int n_rows, int n_independent, float x[],
float y[], ..., 0)

The type double function is imsls_d_regression.

Chapter 2: Regression regression •••• 65

Required Arguments

int n_rows (Input)
Number of rows in x.

int n_independent (Input)
Number of independent (explanatory) variables.

float x[] (Input)
Array of size n_rows × n_independent containing the independent
(explanatory) variables(s). The i-th column of x contains the i-th
independent variable.

float y[] (Input)
Array of size n_rows × n_dependent containing the dependent
(response) variables(s). The i-th column of y contains the i-th dependent
variable. See optional argument IMSL_S_DEPENDENT to set the value
of n_dependent.

Return Value
If the optional argument IMSLS_NO_INTERCEPT is not used, regression
returns a pointer to an array of length n_dependent × (n_independent + 1)
containing a least-squares solution for the regression coefficients. The estimated
intercept is the initial component of each row, where the i-th row contains the
regression coefficients for the i-th dependent variable.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_regresssion (int n_rows, int n_independent,
float x[], float y[],
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_Y_COL_DIM, int y_col_dim,
IMSLS_N_DEPENDENT, int n_dependent,
IMSLS_X_INDICES, int indind[], int inddep[], int ifrq,

int iwt,
IMSLS_IDO, int ido,
IMSLS_ROWS_ADD, or
IMSLS_ROWS_DELETE,
IMSLS_INTERCEPT, or
IMSLS_NO_INTERCEPT,
IMSLS_TOLERANCE, float tolerance,
IMSLS_RANK, int *rank,
IMSLS_COEF_COVARIANCES, float **coef_covariances,
IMSLS_COEF_COVARIANCES_USER, float coef_covariances[],
IMSLS_COV_COL_DIM, int cov_col_dim,
IMSLS_X_MEAN, float **x_mean,
IMSLS_X_MEAN_USER, float x_mean[],
IMSLS_RESIDUAL, float **residual,

66 •••• regression IMSL C/Stat/Library

IMSLS_RESIDUAL_USER, float residual[],
IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_WEIGHTS, float weights[],
IMSLS_REGRESSION_INFO,

Imsls_f_regression **regression_info,
IMSLS_RETURN_USER, float coefficients[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of x.
Default: x_col_dim = n_independent

IMSLS_Y_COL_DIM, int y_col_dim (Input)
Column dimension of y.
Default: y_col_dim = n_dependent

IMSLS_N_DEPENDENT, int n_dependent (Input)
Number of dependent variables. Input matrix y must be declared of size
n_rows by n_dependent, where column i of y contains the i-th
dependent variable.
Default: n_dependent = 1

IMSLS_X_INDICES, int indind[], int inddep, int ifrq, int iwt (Input)
This argument allows an alternative method for data specification. Data
(independent, dependent, frequencies, and weights) is all stored in the
data matrix x. Argument y, and keywords IMSLS_FREQUENCIES and
IMSLS_WEIGHTS are ignored.

Each of the four arguments contains indices indicating column numbers
of x in which particular types of data are stored. Columns are numbered
0 … x_col_dim − 1.

Parameter indind contains the indices of the independent variables..

Parameter inddep contains the indices of the dependent variables.

Parameters ifrq and iwt contain the column numbers of x in which the
frequencies and weights, respectively, are stored. Set ifrq = −1 if there
will be no column for frequencies. Set iwt = −1 if there will be no
column for weights. Weights are rounded to the nearest integer.
Negative weights are not allowed.

Note that required input argument y is not referenced, and can be
declared a vector of length 1.

IMSLS_IDO, int ido (Input)
Processing option.

Chapter 2: Regression regression •••• 67

ido Action

0 This is the only invocation; all the data are input at once. (Default)

1 This is the first invocation with this data; additional calls will be
made. Initialization and updating for the n_rows observations of x
will be performed.

2 This is an intermediate invocation; updating for the n_rows
observations of x will be performed.

3 This is the final invocation of this function. Updating for the data in
x and wrap-up computations are performed. Workspace is released.
No further call to regression with ido greater than 1 should be
made without first calling regression with ido = 1

Default: ido = 0

IMSLS_ROWS_ADD, or
IMSLS_ROWS_DELETE

By default (or if IMSLS_ROWS_ADD is specified), the observations in x
are added to the discriminant statistics. If IMSLS_ROWS_DELETE is
specified, then the observations are deleted.

If ido = 0, these optional arguments are ignored (data is always added if
there is only one invocation).

IMSLS_INTERCEPT, or
IMSLS_NO_INTERCEPT

IMSLS_INTERCEPT is the default where the fitted value for observation
i is

� � �β β β0 1 1+ + +x xk k�

where k = n_independent. If IMSLS_NO_INTERCEPT is specified, the intercept
term

�β0e j
is omitted from the model and the return value from regression is a
pointer to an array of length n_dependent × n_independent.

IMSLS_TOLERANCE, float tolerance (Input)
Tolerance used in determining linear dependence. For regression,
tolerance = 100 × imsls_f_machine(4) is the default choice. For
imsls_d_regression, tolerance = 100 × imsls_d_machine(4) is
the default. (See imsls_f_machine Chapter 14.)

68 •••• regression IMSL C/Stat/Library

IMSLS_RANK, int *rank (Output)
Rank of the fitted model is returned in *rank.

IMSLS_COEF_COVARIANCES, float **coef_covariances (Output)
Address of a pointer to the n_dependent × m × m internally allocated
array containing the estimated variances and covariances of the
estimated regression coefficients. Here, m is the number of regression
coefficients in the model. If IMSLS_NO_INTERCEPT is specified,
n = n_independent; otherwise, n = n_independent + 1.

The first m × m elements contain the matrix for the first dependent
variable, the next m × m elements contain the matrix for the next
dependent variable, ... and so on.

IMSLS_COEF_COVARIANCES_USER, float coef_covariances[] (Output)
Storage for arrays coef_covariances is provided by the user. See
IMSLS_COEF_COVARIANCES.

IMSLS_COV_COL_DIM, int cov_col_dim (Input)
Column dimension of array coef_covariances.
Default: cov_col_dim = m, where m is the number of regression
coefficients in the model

IMSLS_X_MEAN, float **x_mean (Output)
Address of a pointer to the internally allocated array containing the
estimated means of the independent variables.

IMSLS_X_MEAN_USER, float x_mean[] (Output)
Storage for array x_mean is provided by the user.
See IMSLS_X_MEAN.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to the internally allocated array of size n_rows by
n_dependent containing the residuals. Residuals may not be requested
if ido > 0.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user.
See IMSLS_RESIDUAL.

IMSLS_ANOVA_TABLE, float **anova_table (Output)
Address of a pointer to the internally allocated array of size
15 × n_dependent containing the analysis of variance table for each
dependent variable. The i-th column corresponds to the analysis for the
i-th dependent variable.

Chapter 2: Regression regression •••• 69

The analysis of variance statistics are given as follows:

Element Analysis of Variance Statistics

0 degrees of freedom for the model

1 degrees of freedom for error

2 total (corrected) degrees of freedom

3 sum of squares for the model

4 sum of squares for error

5 total (corrected) sum of squares

6 model mean square

7 error mean square

8 overall F-statistic

9 p-value

10 R2 (in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation

13 overall mean of y

14 coefficient of variation (in percent)

The anova statistics may not be requested if ido > 0.

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for array anova_table is provided by the user. See
IMSLS_ANOVA_TABLE.

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_rows containing the frequency for each observation.
Default: frequencies[] = 1

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_rows containing the weight for each observation.
Default: weights[] = 1

70 •••• regression IMSL C/Stat/Library

IMSLS_REGRESSION_INFO, Imsls_f_regression **regression_info

(Output)
Address of the pointer to an internally allocated structure of type
Imsls_f_regression containing information about the regression fit. This
structure is required as input for functions
imsls_f_regression_prediction and
imsls_f_regression_summary.

IMSLS_RETURN_USER, float coefficients[] (Output)
If specified, the least-squares solution for the regression coefficients is
stored in array coefficients provided by the user. If
IMSLS_NO_INTERCEPT is specified, the array requires
n_dependent × n units of memory, where n = n_independent;
otherwise, n = n_independent + 1.

Description
Function imsls_f_regression fits a multivariate multiple linear regression
model with or without an intercept. The multiple linear regression model is

yi = β0 + β1xi1 + β2xi2 + … + βkxik + εi i = 1, 2, …, n

where the observed values of the yi�s are the responses or values of the dependent
variable; the xi1�s, xi2�s, …, xik�s are the settings of the k (input in
n_independent) independent variables; β0, β1, …, βk are the regression
coefficients whose estimated values are to be output by imsls_f_regression;
and the εi�s are independently distributed normal errors each with mean 0 and
variance s2. Here, n is the sum of the frequencies for all nonmissing observations,
i.e.,

n fi
i

=
F
HG

I
KJ=

−

�
0

1n_rows

where fi is equal to frequencies[i] if optional argument IMSLS_FREQUENCIES
is specified and equal to 1.0 otherwise. Note that by default, β0 is included in the
model.

More generally, imsls_f_regression fits a multivariate regression model. See
the chapter introduction for a description of the multivariate model.

Function imsls_f_regression computes estimates of the regression
coefficients by minimizing the sum of squares of the deviations of the observed
response yi from the fitted response

�yi

for the n observations. This minimum sum of squares (the error sum of squares) is
output as one of the analysis of variance statistics if IMSLS_ANOVA_TABLE (or
IMSLS_ANOVA_TABLE_USER) is specified and is computed as follows:

Chapter 2: Regression regression •••• 71

()2

1
�

n

i i i
i

SSE w y y
=

= −�

Another analysis of variance statistic is the total sum of squares. By default, the
total sum of squares is the sum of squares of the deviations of yi from its mean

y

the so-called corrected total sum of squares. This statistic is computed as follows:

SST wi iy y
i

n

� �

�

� c h2
1

When IMSLS_NO_INTERCEPT is specified, the total sum of squares is the sum of
squares of yi, the so-called uncorrected total sum of squares. This is computed as
follows:

SST =
=
�w yi i
i

n
2

1

See Draper and Smith (1981) for a good general treatment of the multiple linear
regression model, its analysis, and many examples.

In order to compute a least-squares solution, imsls_f_regression performs an
orthogonal reduction of the matrix of regressors to upper-triangular form. The
reduction is based on one pass through the rows of the augmented matrix (x, y)
using fast Givens transformations. (See Golub and Van Loan 1983, pp. 156�162;
Gentleman 1974.) This method has the advantage that the loss of accuracy
resulting from forming the crossproduct matrix used in the normal equations is
avoided.

By default, the current means of the dependent and independent variables are
used to internally center the data for improved accuracy. Let xi be a column
vector containing the j-th row of data for the independent variables. Let xi
represent the mean vector for the independent variables given the data for rows 1,
2, …, i. The current mean vector is defined as follows:

x

w f x

w f
i

j j j
j

i

j j
j

i= =

=

�

�

1

1

where the wj�s and the fj�s are the weights and frequencies. The i-th row of data
has

xi

subtracted from it and is multiplied by

72 •••• regression IMSL C/Stat/Library

w f a
ai i

i

i−1

where

a w fi j j
j

i

=
=
�

1

Although a crossproduct matrix is not computed, the validity of this centering
operation can be seen from the following formula for the sum of squares and
crossproducts matrix:

w f x x x x a
a

w f x x x xi i
i

n

i n i n
T i

ii

n

i i i i i i
T

= −=
� �− − = − −

1 12

b gb g b gb g

An orthogonal reduction on the centered matrix is computed. When the final
computations are performed, the intercept estimate and the first row and column
of the estimated covariance matrix of the estimated coefficients are updated (if
IMSLS_COEF_COVARIANCES or IMSLS_COEF_COVARIANCES_USER is
specified) to reflect the statistics for the original (uncentered) data. This means
that the estimate of the intercept is for the uncentered data.

As part of the final computations, imsls_f_regression checks for linearly
dependent regressors. In particular, linear dependence of the regressors is
declared if any of the following three conditions are satisfied:

• A regressor equals 0.

• Two or more regressors are constant.

2
1,2, , 1...1 i iR ⋅ −−

is less than or equal to tolerance. Here,

1,2, , 1...i iR ⋅ −

is the multiple correlation coefficient of the i-th independent variable
with the first i � 1 independent variables. If no intercept is in the model,
the multiple correlation coefficient is computed without adjusting for the
mean.

On completion of the final computations, if the i-th regressor is declared to be
linearly dependent upon the previous i − 1 regressors, the i-th coefficient estimate
and all elements in the i-th row and i-th column of the estimated variance-
covariance matrix of the estimated coefficients (if IMSLS_COEF_COVARIANCES
or IMSLS_COEF_COVARIANCES_USER is specified) are set to 0. Finally, if a
linear dependence is declared, an informational (error) message, code
IMSLS_RANK_DEFICIENT, is issued indicating the model is not full rank.

Chapter 2: Regression regression •••• 73

Examples

Example 1
A regression model

yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi i = 1, 2, …, 9

is fitted to data taken from Maindonald (1984, pp. 203�204).

#include <imsls.h>

#define INTERCEPT 1
#define N_INDEPENDENT 3
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_OBSERVATIONS 9

main()
{

float *coefficients;
float x[][N_INDEPENDENT] = {7.0, 5.0, 6.0,

2.0,-1.0, 6.0,
7.0, 3.0, 5.0,
-3.0, 1.0, 4.0,
2.0,-1.0, 0.0,
2.0, 1.0, 7.0,
-3.0,-1.0, 3.0,
2.0, 1.0, 1.0,
2.0, 1.0, 4.0};

float y[] = {7.0,-5.0, 6.0, 5.0, 5.0, -2.0, 0.0, 8.0, 3.0};

coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
(float *)x, y, 0);

imsls_f_write_matrix("Least-Squares Coefficients", 1, N_COEFFICIENTS,
coefficients,
IMSLS_COL_NUMBER_ZERO,
0);

}

Output

Least-Squares Coefficients
0 1 2 3

7.733 -0.200 2.333 -1.667

Example 2
A weighted least-squares fit is computed using the model

yi = β0 + β1xi1 + β2xi2 + εi i = 1, 2, …, 4

and weights 1/i2 discussed by Maindonald (1984, pp. 67−68).

In the example, IMSLS_WEIGHTS is specified. The minimum sum of squares for
error in terms of the original untransformed regressors and responses for this
weighted regression is

74 •••• regression IMSL C/Stat/Library

SSE =
=

w y yi i i
i

−� �b g2
1

4

where wi = 1/i2, represented in the C code as array w.

#include <imsls.h>
#include <math.h>

#define N_INDEPENDENT 2
#define N_COEFFICIENTS N_INDEPENDENT + 1
#define N_OBSERVATIONS 4

main()
{

int i;
float *coefficients, w[N_OBSERVATIONS], anova_table[15],

power;
float x[][N_INDEPENDENT] = {

-2.0, 0.0,
-1.0, 2.0,
2.0, 5.0,
7.0, 3.0};

float y[] = {-3.0, 1.0, 2.0, 6.0};
char *anova_row_labels[] = {

"degrees of freedom for regression",
"degrees of freedom for error",
"total (uncorrected) degrees of freedom",
"sum of squares for regression",
"sum of squares for error",
"total (uncorrected) sum of squares",
"regression mean square",
"error mean square", "F-statistic",
"p-value", "R-squared (in percent)",
"adjusted R-squared (in percent)",
"est. standard deviation of model error",
"overall mean of y",
"coefficient of variation (in percent)"};

/* Calculate weights */
power = 0.0;
for (i = 0; i < N_OBSERVATIONS; i++) {

power += 1.0;
w[i] = 1.0 / (power*power);

}

/*Perform analysis */
coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,

(float *) x, y,
IMSLS_WEIGHTS, w,
IMSLS_ANOVA_TABLE_USER, anova_table,
0);

/* Print results */
imsls_f_write_matrix("Least Squares Coefficients", 1,

N_COEFFICIENTS, coefficients, 0);
imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,

anova_table,
IMSLS_ROW_LABELS, anova_row_labels,

Chapter 2: Regression regression •••• 75

IMSLS_WRITE_FORMAT, "%10.2f",
0);

}

Output

Least Squares Coefficients
1 2 3

-1.431 0.658 0.748

* * * Analysis of Variance * * *

degrees of freedom for regression 2.00
degrees of freedom for error 1.00
total (uncorrected) degrees of freedom 3.00
sum of squares for regression 7.68
sum of squares for error 1.01
total (uncorrected) sum of squares 8.69
regression mean square 3.84
error mean square 1.01
F-statistic 3.79
p-value 0.34
R-squared (in percent) 88.34
adjusted R-squared (in percent) 65.03
est. standard deviation of model error 1.01
overall mean of y -1.51
coefficient of variation (in percent) -66.55

Example 3
A multivariate regression is performed for a data set with two dependent
variables. Also, usage of the keyword IMSLS_X_INDICES is demonstrated. Note
that the required input variable y is not referenced and is declared as a pointer to
a float.

#include <imsls.h>

#define INTERCEPT 1
#define N_INDEPENDENT 3
#define N_DEPENDENT 2
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_OBSERVATIONS 9

main()
{

float coefficients[N_DEPENDENT*N_COEFFICIENTS];
float *dummy;
float scpe[N_DEPENDENT*N_DEPENDENT];
float anova_table[15*N_DEPENDENT];
static float x[] = { 7.0, 5.0, 6.0, 7.0, 1.0,

2.0,-1.0, 6.0, -5.0, 4.0,
7.0, 3.0, 5.0, 6.0, 10.0,
-3.0, 1.0, 4.0, 5.0, 5.0,
2.0,-1.0, 0.0, 5.0, -2.0,
2.0, 1.0, 7.0, -2.0, 4.0,
-3.0,-1.0, 3.0, 0.0, -6.0,

76 •••• regression IMSL C/Stat/Library

2.0, 1.0, 1.0, 8.0, 2.0,
2.0, 1.0, 4.0, 3.0, 0.0};

int ifrq = -1, iwt=-1;
static int indind[N_INDEPENDENT] = {0, 1, 2};
static int inddep[N_DEPENDENT] = {3, 4};
char *fmt = "%10.4f";
char *anova_row_labels[] = {

"d.f. regression",
"d.f. error",
"d.f. total (uncorrected)",
"ssr",
"sse",
"sst (uncorrected)",
"msr",
"mse", "F-statistic",
"p-value", "R-squared (in percent)",
"adj. R-squared (in percent)",
"est. s.t.d. of model error",
"overall mean of y",
"coefficient of variation (in percent)"};

imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
(float *) x, dummy,
IMSLS_X_COL_DIM, N_INDEPENDENT+N_DEPENDENT,
IMSLS_N_DEPENDENT, N_DEPENDENT,
IMSLS_X_INDICES, indind, inddep, ifrq, iwt,
IMSLS_SCPE_USER, scpe,
IMSLS_ANOVA_TABLE_USER, anova_table,
IMSLS_RETURN_USER, coefficients,
0);

imsls_f_write_matrix("Least Squares Coefficients", N_DEPENDENT,
N_COEFFICIENTS, coefficients,
IMSLS_COL_NUMBER_ZERO, 0);

imsls_f_write_matrix("SCPE", N_DEPENDENT, N_DEPENDENT, scpe,
IMSLS_WRITE_FORMAT, "%10.4f", 0);

imsls_f_write_matrix("* * * Analysis of Variance * * *\n",
15, N_DEPENDENT,
anova_table,
IMSLS_ROW_LABELS, anova_row_labels,
IMSLS_WRITE_FORMAT, "%10.2f",
0);

}

Output

Least Squares Coefficients
0 1 2 3

1 7.733 -0.200 2.333 -1.667
2 -1.633 0.400 0.167 0.667

SCPE
1 2

1 4.0000 20.0000
2 20.0000 110.0000

Chapter 2: Regression regression_summary •••• 77

* * * Analysis of Variance * * *

1 2
d.f. regression 3.00 3.00
d.f. error 5.00 5.00
d.f. total (uncorre 8.00 8.00

cted)
ssr 152.00 56.00
sse 4.00 110.00
sst (uncorrected) 156.00 166.00
msr 50.67 18.67
mse 0.80 22.00
F-statistic 63.33 0.85
p-value 0.00 0.52
R-squared (in 97.44 33.73

percent)
adj. R-squared 95.90 0.00

(in percent)
est. s.t.d. of 0.89 4.69

model error
overall mean of y 3.00 2.00
coefficient of 29.81 234.52

variation (in
percent)

Warning Errors
IMSLS_RANK_DEFICIENT The model is not full rank. There is not a

unique least-squares solution.

Fatal Errors
IMSLS_BAD_IDO_6 �ido� = #. Initial allocations must be

performed by making a call to function
regression with �ido� = 1.

IMSLS_BAD_IDO_7 �ido� = #. A new analysis may not begin
until the previous analysis is terminated by
a call to function regression with �ido� = 3.

regression_summary
Produces summary statistics for a regression model given the information from
the fit.

Synopsis

#include <imsls.h>

void imsls_f_regression_summary
(Imsls_f_regression *regression_info, ..., 0)

The type double function is imsls_d_regression_summary.

78 •••• regression_summary IMSL C/Stat/Library

Required Argument

Imsls_f_regression *regression_info (Input)
Pointer to a structure of type Imsls_f_regression containing information
about the regression fit. See imsls_f_regression.

Synopsis with Optional Arguments
#include <imsls.h>

void imsls_f_regression_summary
(Imsls_f_regression *regression_info,
IMSLS_INDEX_REGRESSION, int idep,
IMSLS_COEF_T_TESTS, float **coef_t_tests
IMSLS_COEF_T_TESTS_USER, float coef_t_tests[],
IMSLS_COEF_COL_DIM, int coef_col_dim,
IMSLS_COEF_VIF, float **coef_vif,
IMSLS_COEF_VIF_USER, float coef_vif[],
IMSLS_COEF_COVARIANCES, float **coef_covariances,
IMSLS_COEF_COVARIANCES_USER, float coef_covariances[],
IMSLS_COEF_COV_COL_DIM, int coef_cov_col_dim,
IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
0)

Optional Arguments
IMSLS_INDEX_REGRESSION, int idep (Input)

Given a multivariate regression fit, this option allows the user to specify
for which regression summary statistics will be computed.
Default: idep = 0

IMSLS_COEF_T_TESTS, float **coef_t_tests (Output)
Address of a pointer to the npar × 4 array containing statistics relating
to the regression coefficients, where npar is equal to the number of
parameters in the model.

Each row (for each dependent variable) corresponds to a coefficient in
the model, where npar is the number of parameters in the model. Row
i + intcep corresponds to the i-th independent variable, where intcep is
equal to 1 if an intercept is in the model and 0 otherwise, for
i = 0, 1, 2, …, npar � 1.

Chapter 2: Regression regression_summary •••• 79

The statistics in the columns are as follows:

Column Description

0 coefficient estimate

1 estimated standard error of the coefficient estimate

2 t-statistic for the test that the coefficient is 0

3 p-value for the two-sided t test

IMSLS_COEF_T_TESTS_USER, float coef_t_tests[] (Output)
Storage for array coef_t_tests is provided by the user. See
IMSLS_COEF_T_TESTS.

IMSLS_COEF_COL_DIM, int coef_col_dim (Input)
Column dimension of coef_t_tests.
Default: coef_col_dim = 4

IMSLS_COEF_VIF, float **coef_vif (Output)
Address of a pointer to an internally allocated array of length npar
containing the variance inflation factor, where npar is the number of
parameters. The i + intcep-th column corresponds to the i-th independent
variable, where i = 0, 1, 2, …, npar � 1, and intcep is equal to 1 if an
intercept is in the model and 0 otherwise.

The square of the multiple correlation coefficient for the i-th regressor
after all others can be obtained from coef_vif by

10 10. .−
coef_vif[]i

If there is no intercept, or there is an intercept and j = 0, the multiple
correlation coefficient is not adjusted for the mean.

IMSLS_COEF_VIF_USER, float coef_vif[] (Output)
Storage for array coef_t_tests is provided by the user. See
IMSLS_COEF_VIF.

IMSLS_COEF_COVARIANCES, float **coef_covariances (Output)
An npar by npar (where npar is equal to the number of parameters in the
model) array that is the estimated variance-covariance matrix of the
estimated regression coefficients when R is nonsingular and is from an
unrestricted regression fit. See �Remarks� on page 82 for an explanation
of coef_covariances when R is singular and is from a restricted
regression fit.

IMSLS_COEF_COVARIANCES_USER, float coef_covariances[] (Output)
Storage for coef_covariances is provided by the user. See
IMSLS_COEF_COVARIANCES.

80 •••• regression_summary IMSL C/Stat/Library

IMSLS_COEF_COV_COL_DIM, int coef_cov_col_dim (Input)
Column dimension of coef_covariances.
Default: coef_cov_col_dim = the number of parameters in the model

IMSLS_ANOVA_TABLE, float **anova_table (Output)
Address of a pointer to the array of size 15 containing the analysis of
variance table.

Row Analysis of Variance Statistic

0 degrees of freedom for the model

1 degrees of freedom for error

2 total (corrected) degrees of freedom

3 sum of squares for the model

4 sum of squares for error

5 total (corrected) sum of squares

6 model mean square

7 error mean square

8 overall F-statistic

9 p-value

10 R2(in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation

13 overall mean of y

14 coefficient of variation (in percent)

If the model has an intercept, the regression and total are corrected for
the mean; otherwise, the regression and total are not corrected for the
mean, and anova_table[13] and anova_table[14] are set to NaN.

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for array anova_table is provided by the user. See
IMSLS_ANOVA_TABLE.

Chapter 2: Regression regression_summary •••• 81

Description
Function imsls_f_regression_summary computes summary statistics from a
fitted general linear model. The model is y = Xβ + ε, where y is the n × 1 vector
of responses, X is the n × p matrix of regressors, β is the p × 1 vector of
regression coefficients, and ε is the n × 1 vector of errors whose elements are
each independently distributed with mean 0 and variance σ2. Function
regression can be used to compute the fit of the model. Next,
imsls_f_regression_summary uses the results of this fit to compute
summary statistics, including analysis of variance, sequential sum of squares,
t tests, and an estimated variance-covariance matrix of the estimated regression
coefficients.

Some generalizations of the general linear model are allowed. If the i-th element
of ε has variance of

σ 2

wi

and the weights wi are used in the fit of the model,
imsls_f_regression_summary produces summary statistics from the
weighted least-squares fit. More generally, if the variance-covariance matrix of ε
is σ2V, imsls_f_regression_summary can be used to produce summary
statistics from the generalized least-squares fit. Function regression can be
used to perform a generalized least-squares fit, by regressing y* on X* where
y* = (T-1)Ty, X* = (T-1)TX and T satisfies TTT = V.
The sequential sum of squares for the i-th regression parameter is given by

R
i

�βe j
2

The regression sum of squares is given by the sum of the sequential sums of
squares. If an intercept is in the model, the regression sum of squares is adjusted
for the mean, i.e.,

R �βe j
0

2

is not included in the sum.
The estimate of σ2 is s2 (stored in anova_table[7]) that is computed as
SSE/DFE.
If R is nonsingular, the estimated variance-covariance matrix of

�β

(stored in coef_covariances) is computed by s2R-1(R-1)T.
If R is singular, corresponding to rank(X) < p, a generalized inverse is used. For a
matrix G to be a gi (i = 1, 2, 3, or 4) inverse of a matrix A, G must satisfy
conditions j (for j ≤ i) for the Moore-Penrose inverse but generally must fail
conditions k (for k > i). The four conditions for G to be a Moore-Penrose inverse
of A are as follows:

82 •••• regression_summary IMSL C/Stat/Library

1. AGA = A
2. GAG = G
3. AG is symmetric
4. GA is symmetric

In the case where R is singular, the method for obtaining coef_covariances
follows the discussion of Maindonald (1984, pp. 101�103). Let Z be the diagonal
matrix with diagonal elements defined by the following:

zii
ii

ii
=

≠
=

RST
1 0
0 0
 if r
 if r

Let G be the solution to RG = Z obtained by setting the i-th ({i : rii = 0}) row of G
to 0. Argument coef_covariances is set to s2GGT. (G is a g3 inverse of R,
represented by,

R g3

the result

R Rg g T
3 3

is a symmetric g2 inverse of RTR = XTX. See Sallas and Lionti 1988.)

Note that argument coef_covariances can be used only to get variances and
covariances of estimable functions of the regression coefficients, i.e.,
nonestimable functions (linear combinations of the regression coefficients not in
the space spanned by the nonzero rows of R) must not be used. See, for example,
Maindonald (1984, pp. 166�168) for a discussion of estimable functions.

The estimated standard errors of the estimated regression coefficients (stored in
Column 1 of coef_t_tests) are computed as square roots of the corresponding
diagonal entries in coef_covariances.

For the case where an intercept is in the model, put R equal to the matrix R with
the first row and column deleted. Generally, the variance inflation factor (VIF)
for the i-th regression coefficient is computed as the product of the i-th diagonal
element of RTR and the i-th diagonal element of its computed inverse. If an
intercept is in the model, the VIF for those coefficients not corresponding to the
intercept uses the diagonal elements of R RT (see Maindonald 1984, p. 40).

Remarks
When R is nonsingular and comes from an unrestricted regression fit,
coef_covariances is the estimated variance-covariance matrix of the
estimated regression coefficients, and coef_covariances = (SSE/DFE) (RTR).
Otherwise, variances and covariances of estimable functions of the regression
coefficients can be obtained using coef_covariances, and
coef_covariances = (SSE/DFE) (GDGT). Here, D is the diagonal matrix with
diagonal elements equal to 0 if the corresponding rows of R are restrictions and

Chapter 2: Regression regression_summary •••• 83

with diagonal elements equal to 1 otherwise. Also, G is a particular generalized
inverse of R.

Example
#include <imsls.h>

main()
{
#define INTERCEPT 1
#define N_INDEPENDENT 4
#define N_OBSERVATIONS 13
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_DEPENDENT 1

Imsls_f_regression *regression_info;
float *anova_table, *coef_t_tests, *coef_vif,

*coefficients, *coef_covariances;
float x[][N_INDEPENDENT] = {

7.0, 26.0, 6.0, 60.0,
1.0, 29.0, 15.0, 52.0,
11.0, 56.0, 8.0, 20.0,
11.0, 31.0, 8.0, 47.0,
7.0, 52.0, 6.0, 33.0,
11.0, 55.0, 9.0, 22.0,
3.0, 71.0, 17.0, 6.0,
1.0, 31.0, 22.0, 44.0,
2.0, 54.0, 18.0, 22.0,
21.0, 47.0, 4.0, 26.0,
1.0, 40.0, 23.0, 34.0,
11.0, 66.0, 9.0, 12.0,
10.0, 68.0, 8.0, 12.0};

float y[] = {78.5, 74.3, 104.3, 87.6, 95.9, 109.2,
102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};

char *anova_row_labels[] = {
"degrees of freedom for regression",
"degrees of freedom for error",
"total (uncorrected) degrees of freedom",
"sum of squares for regression",
"sum of squares for error",
"total (uncorrected) sum of squares",
"regression mean square",
"error mean square", "F-statistic",
"p-value", "R-squared (in percent)",
"adjusted R-squared (in percent)",
"est. standard deviation of model error",
"overall mean of y",
"coefficient of variation (in percent)"};

/* Fit the regression model */
coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,

(float *)x, y,
IMSLS_REGRESSION_INFO, ®ression_info,
0);

/* Generate summary statistics */
imsls_f_regression_summary (regression_info,

IMSLS_ANOVA_TABLE, &anova_table,

84 •••• regression_summary IMSL C/Stat/Library

IMSLS_COEF_T_TESTS, &coef_t_tests,
IMSLS_COEF_VIF, &coef_vif,
IMSLS_COEF_COVARIANCES, &coef_covariances,
0);

/* Print results */
imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,

anova_table,
IMSLS_ROW_LABELS, anova_row_labels,
IMSLS_WRITE_FORMAT, "%10.2f", 0);

imsls_f_write_matrix("* * * Inference on Coefficients * * *\n",
N_COEFFICIENTS, 4, coef_t_tests,
IMSLS_WRITE_FORMAT, "%10.2f", 0);

imsls_f_write_matrix("* * * Variance Inflation Factors * * *\n",
N_COEFFICIENTS, 1, coef_vif,
IMSLS_WRITE_FORMAT, "%10.2f", 0);

imsls_f_write_matrix("* * * Variance-Covariance Matrix * * *\n",
N_COEFFICIENTS, N_COEFFICIENTS,
coef_covariances,
IMSLS_WRITE_FORMAT, "%10.2f", 0);

}

Output

* * * Analysis of Variance * * *
degrees of freedom for regression 4.00
degrees of freedom for error 8.00
total (uncorrected) degrees of freedom 12.00
sum of squares for regression 2667.90
sum of squares for error 47.86
total (uncorrected) sum of squares 2715.76
regression mean square 666.97
error mean square 5.98
F-statistic 111.48
p-value 0.00
R-squared (in percent) 98.24
adjusted R-squared (in percent) 97.36
est. standard deviation of model error 2.45
overall mean of y 95.42
coefficient of variation (in percent) 2.56

* * * Inference on Coefficients * * *

1 2 3 4
1 62.41 70.07 0.89 0.40
2 1.55 0.74 2.08 0.07
3 0.51 0.72 0.70 0.50
4 0.10 0.75 0.14 0.90
5 -0.14 0.71 -0.20 0.84

* * * Variance Inflation Factors * * *

1 10668.53
2 38.50
3 254.42

Chapter 2: Regression regression_prediction •••• 85

4 46.87
5 282.51

* * * Variance-Covariance Matrix * * *

1 2 3 4 5
1 4909.95 -50.51 -50.60 -51.66 -49.60
2 -50.51 0.55 0.51 0.55 0.51
3 -50.60 0.51 0.52 0.53 0.51
4 -51.66 0.55 0.53 0.57 0.52
5 -49.60 0.51 0.51 0.52 0.50

regression_prediction
Computes predicted values, confidence intervals, and diagnostics after fitting a
regression model.

Synopsis

#include <imsls.h>

float *imsls_f_regression_prediction
(Imsls_f_regression *regression_info, int n_predict, float x[],
..., 0)

The type double function is imsls_d_regression_prediction.

Required Argument

Imsls_f_regression *regression_info (Input)
Pointer to a structure of type Imsls_f_regression containing information
about the regression fit. See imsls_f_regression.

int n_predict (Input)
Number of rows in x.

float x[] (Input)
Array of size n_predict by the number of independent variables
containing the combinations of independent variables in each row for
which calculations are to be performed.

Return Value
Pointer to an internally allocated array of length n_predict containing the
predicted values.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_regression_prediction

(Imsls_f_regression *regression_info, int n_predict, float x[],

86 •••• regression_prediction IMSL C/Stat/Library

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_Y_COL_DIM, int y_col_dim,
IMSLS_INDEX_REGRESSION, int idep,
IMSLS_X_INDICES, int indind[], int inddep[], int ifrq,

int iwt,
IMSLS_WEIGHTS, float weights[],
IMSLS_CONFIDENCE, float confidence,
IMSLS_SCHEFFE_CI, float **lower_limit,

float **upper_limit,
IMSLS_SCHEFFE_CI_USER, float lower_limit[],

float upper_limit[],
IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit,

float **upper_limit,
IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[],

float upper_limit[],
IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit,

float **upper_limit,
IMSLS_POINTWISE_CI_NEW_SAMPLE_USER,

float lower_limit[], float upper_limit[],
IMSLS_LEVERAGE, float **leverage,
IMSLS_LEVERAGE_USER, float leverage[],
IMSLS_RETURN_USER, float y_hat[],
IMSLS_Y, float y[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_STANDARDIZED_RESIDUAL,

float **standardized_residual,
IMSLS_STANDARDIZED_RESIDUAL_USER,

float standardized_residual[],
IMSLS_DELETED_RESIDUAL, float **deleted_residual,
IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[],
IMSLS_COOKSD, float **cooksd,
IMSLS_COOKSD_USER, float cooksd[],
IMSLS_DFFITS, float **dffits,
IMSLS_DFFITS_USER, float dffits[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Number of columns in x.
Default: x_col_dim is equal to the number of independent variables,
which is input from the structure regression_info

IMSLS_Y_COL_DIM, int y_col_dim (Input)
Number of columns in y.
Default: y_col_dim = 1

Chapter 2: Regression regression_prediction •••• 87

IMSLS_INDEX_REGRESSION, int idep (Input)
Given a multivariate regression fit, this option allows the user to specify
for which regression statistics will be computed.
Default: idep = 0

IMSLS_X_INDICES, int indind[], int inddep, int ifrq, int iwt (Input)
This argument allows an alternative method for data specification. Data
(independent, dependent, frequencies, and weights) is all stored in the
data matrix x. Argument y, and keyword IMSLS_WEIGHTS are ignored.

Each of the four arguments contains indices indicating column numbers
of x in which particular types of data are stored. Columns are numbered
0, …, x_col_dim − 1.

Parameter indind contains the indices of the independent variables.

Parameter inddep contains the indices of the dependent variables. If
there is to be no dependent variable, this must be indicated by setting the
first element of the vector to −1.

Parameters ifrq and iwt contain the column numbers of x in which the
frequencies and weights, respectively, are stored. Set ifrq = −1 if there
will be no column for frequencies. Set iwt = −1 if there will be no
column for weights. Weights are rounded to the nearest integer.
Negative weights are not allowed.

Note that frequencies are not referenced by function
regression_prediction, and is included here only for the sake of
keyword consistency.

Finally, note that IMSL_X_INDICES and IMSLS_Y are mutually
exclusive keywords, and may not be specified in the same call to
regression_prediction.

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_predict containing the weight for each row of x.
The computed prediction interval uses SSE/(DFE*weights[i]) for the
estimated variance of a future response.
Default: weights[] = 1

IMSLS_CONFIDENCE, float confidence (Input)
Confidence level for both two-sided interval estimates on the mean and
for two-sided prediction intervals, in percent. Argument confidence
must be in the range [0.0, 100.0). For one-sided intervals with
confidence level onecl, where 50.0 ≤ onecl < 100.0, set
confidence = 100.0 − 2.0* (100.0 − onecl).
Default: confidence = 95.0

IMSLS_SCHEFFE_CI, float **lower_limit, float **upper_limit

(Output)
Array lower_limit is the address of a pointer to an internally allocated
array of length n_predict containing the lower confidence limits of

88 •••• regression_prediction IMSL C/Stat/Library

Scheffé confidence intervals corresponding to the rows of x. Array
upper_limit is the address of a pointer to an internally allocated array
of length n_predict containing the upper confidence limits of Scheffé
confidence intervals corresponding to the rows of x.

IMSLS_SCHEFFE_CI_USER, float lower_limit[], float upper_limit[]

(Output)
Storage for arrays lower_limit and upper_limit is provided by the
user. See IMSLS_SCHEFFE_CI.

IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit,
float **upper_limit (Output)
Array lower_limit is the address of a pointer to an internally allocated
array of length n_predict containing the lower-confidence limits of the
confidence intervals for two-sided interval estimates of the means,
corresponding to the rows of x. Array upper_limit is the address of a
pointer to an internally allocated array of length n_predict containing
the upper-confidence limits of the confidence intervals for two-sided
interval estimates of the means, corresponding to the rows of x.

IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[],
float upper_limit[] (Output)
Storage for arrays lower_limit and upper_limit is provided by the
user. See IMSLS_POINTWISE_CI_POP_MEAN.

IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit,
float **upper_limit (Output)
Array lower_limit is the address of a pointer to an internally allocated
array of length n_predict containing the lower-confidence limits of the
confidence intervals for two-sided prediction intervals, corresponding to
the rows of x. Array upper_limit is the address of a pointer to an
internally allocated array of length n_predict containing the upper-
confidence limits of the confidence intervals for two-sided prediction
intervals, corresponding to the rows of x.

IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, float lower_limit[],
float upper_limit[] (Output)
Storage for arrays lower_limit and upper_limit is provided by the
user. See IMSLS_POINTWISE_CI_NEW_SAMPLE.

IMSLS_LEVERAGE, float **leverage (Output)
Address of a pointer to an internally allocated array of length
n_predict containing the leverages.

IMSLS_LEVERAGE_USER, float leverage[] (Output)
Storage for array leverage is provided by the user. See
IMSLS_LEVERAGE.

IMSLS_RETURN_USER, float y_hat[] (Output)
Storage for array y_hat is provided by the user. The length n_predict
array contains the predicted values.

Chapter 2: Regression regression_prediction •••• 89

IMSLS_Y, float y[] (Input)
Array of length n_predict containing the observed responses.

Note: IMSLS_Y (or IMSLS_X_INDICES) must be specified if any of the
following optional arguments are specified.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to an internally allocated array of length
n_predict containing the residuals.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See
IMSLS_RESIDUAL.

IMSLS_STANDARDIZED_RESIDUAL, float **standardized_residual

(Output)
Address of a pointer to an internally allocated array of length
n_predict containing the standardized residuals.

IMSLS_STANDARDIZED_RESIDUAL_USER, float standardized_residual[]
(Output)
Storage for array standardized_residual is provided by the user.
See IMSLS_STANDARDIZED_RESIDUAL.

IMSLS_DELETED_RESIDUAL, float **deleted_residual (Output)
Address of a pointer to an internally allocated array of length
n_predict containing the deleted residuals.

IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[] (Output)
Storage for array deleted_residual is provided by the user. See
IMSLS_DELETED_RESIDUAL.

IMSLS_COOKSD, float **cooksd (Output)
Address of a pointer to an internally allocated array of length
n_predict containing the Cook�s D statistics.

IMSLS_COOKSD_USER, float cooksd[] (Output)
Storage for array cooksd is provided by the user. See IMSLS_COOKSD.

IMSLS_DFFITS, float **dffits (Output)
Address of a pointer to an internally allocated array of length
n_predict containing the DFFITS statistics.

IMSLS_DFFITS_USER, float dffits[] (Output)
Storage for array dffits is provided by the user. See IMSLS_DFFITS.

90 •••• regression_prediction IMSL C/Stat/Library

Description
The general linear model used by function imsls_f_regression_prediction is

y = Xβ + ε

where y is the n × 1 vector of responses, X is the n × p matrix of regressors,
β is the p × 1 vector of regression coefficients, and ε is the n × 1 vector of errors
whose elements are independently normally distributed with mean 0 and the
variance below.

σ 2

wi

From a general linear model fit using the wi�s as the weights, function
imsls_f_regression_prediction computes confidence intervals and
statistics for the individual cases that constitute the data set. Let xi be a column
vector containing elements of the i-th row of X. Let W = diag (w1, w2, …, wn).
The leverage is defined as

h x X WX x wi i
T T

i i= FH
I
K

−e j
Put D = diag (d1, d2, …, dn) with dj = 1 if the j-th diagonal element of R is
positive and 0 otherwise. The leverage is computed as hi = (aTDa) wi where
a is a solution to RTa = xi. The estimated variance of

� �y x Bi
T=

is given by the following:

h s
w
i

i

2

where

s2 = SSE
DFE

The computation of the remainder of the case statistics follow easily from their
definitions. See case diagnostics (page 53).

Informational errors can occur if the input matrix x is not consistent with the
information from the fit (contained in regression_info), or if excess rounding
has occurred. The warning error IMSLS_NONESTIMABLE arises when x contains a
row not in the space spanned by the rows of R. An examination of the model that
was fitted and the x for which diagnostics are to be computed is required in order
to ensure that only linear combinations of the regression coefficients that can be
estimated from the fitted model are specified in x. For further details, see the
discussion of estimable functions given in Maindonald (1984, pp. 166−168) and
Searle (1971, pp. 180−188).

Often predicted values and confidence intervals are desired for combinations of
settings of the independent variables not used in computing the regression fit.

Chapter 2: Regression regression_prediction •••• 91

This can be accomplished by defining a new data matrix. Since the information
about the model fit is input in regression_info, it is not necessary to send in
the data set used for the original calculation of the fit, i.e., only variable
combinations for which predictions are desired need be entered in x.

Examples

Example 1
#include <imsls.h>

main()
{
#define INTERCEPT 1
#define N_INDEPENDENT 4
#define N_OBSERVATIONS 13
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_DEPENDENT 1

float *y_hat, *coefficients;
Imsls_f_regression *regression_info;
float x[][N_INDEPENDENT] = {

7.0, 26.0, 6.0, 60.0,
1.0, 29.0, 15.0, 52.0,
11.0, 56.0, 8.0, 20.0,
11.0, 31.0, 8.0, 47.0,
7.0, 52.0, 6.0, 33.0,
11.0, 55.0, 9.0, 22.0,
3.0, 71.0, 17.0, 6.0,
1.0, 31.0, 22.0, 44.0,
2.0, 54.0, 18.0, 22.0,
21.0, 47.0, 4.0, 26.0,
1.0, 40.0, 23.0, 34.0,
11.0, 66.0, 9.0, 12.0,
10.0, 68.0, 8.0, 12.0};

float y[] = {78.5, 74.3, 104.3, 87.6, 95.9, 109.2,
102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};

/* Fit the regression model */
coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,

(float *)x, y,
IMSLS_REGRESSION_INFO, ®ression_info,
0);

/* Generate case statistics */
y_hat = imsls_f_regression_prediction(regression_info,

N_OBSERVATIONS, (float*)x, 0);

/* Print results */
imsls_f_write_matrix("Predicted Responses", 1, N_OBSERVATIONS,

y_hat, 0);
}

Output

Predicted Responses
1 2 3 4 5 6

92 •••• regression_prediction IMSL C/Stat/Library

78.5 72.8 106.0 89.3 95.6 105.3

7 8 9 10 11 12
104.1 75.7 91.7 115.6 81.8 112.3

13
111.7

Example 2
#include <imsls.h>

main()
{
#define INTERCEPT 1
#define N_INDEPENDENT 4
#define N_OBSERVATIONS 13
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_DEPENDENT 1

float *y_hat, *leverage, *residual, *standardized_residual,
*deleted_residual, *dffits, *cooksd, *mean_lower_limit,
*mean_upper_limit, *new_sample_lower_limit,
*new_sample_upper_limit, *scheffe_lower_limit,
*scheffe_upper_limit, *coefficients;

Imsls_f_regression *regression_info;
float x[][N_INDEPENDENT] = {

7.0, 26.0, 6.0, 60.0,
1.0, 29.0, 15.0, 52.0,
11.0, 56.0, 8.0, 20.0,
11.0, 31.0, 8.0, 47.0,
7.0, 52.0, 6.0, 33.0,
11.0, 55.0, 9.0, 22.0,
3.0, 71.0, 17.0, 6.0,
1.0, 31.0, 22.0, 44.0,
2.0, 54.0, 18.0, 22.0,
21.0, 47.0, 4.0, 26.0,
1.0, 40.0, 23.0, 34.0,
11.0, 66.0, 9.0, 12.0,
10.0, 68.0, 8.0, 12.0};

float y[] = {78.5, 74.3, 104.3, 87.6, 95.9, 109.2,
102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};

/* Fit the regression model */
coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,

(float *)x, y,
IMSLS_REGRESSION_INFO, ®ression_info,
0);

/* Generate the case statistics */
y_hat = imsls_f_regression_prediction(regression_info,

N_OBSERVATIONS, (float*)x,
IMSLS_Y, y,
IMSLS_LEVERAGE, &leverage,
IMSLS_RESIDUAL, &residual,
IMSLS_STANDARDIZED_RESIDUAL, &standardized_residual,
IMSLS_DELETED_RESIDUAL, &deleted_residual,
IMSLS_COOKSD, &cooksd,

Chapter 2: Regression regression_prediction •••• 93

IMSLS_DFFITS, &dffits,
IMSLS_POINTWISE_CI_POP_MEAN, &mean_lower_limit,

&mean_upper_limit,
IMSLS_POINTWISE_CI_NEW_SAMPLE, &new_sample_lower_limit,

&new_sample_upper_limit,
IMSLS_SCHEFFE_CI, &scheffe_lower_limit,

&scheffe_upper_limit,
0);

/* Print results */
imsls_f_write_matrix("Predicted Responses", 1, N_OBSERVATIONS,

y_hat, 0);
imsls_f_write_matrix("Residuals", 1, N_OBSERVATIONS, residual, 0);
imsls_f_write_matrix("Standardized Residuals", 1, N_OBSERVATIONS,

standardized_residual, 0);
imsls_f_write_matrix("Leverages", 1, N_OBSERVATIONS, leverage, 0);
imsls_f_write_matrix("Deleted Residuals", 1, N_OBSERVATIONS,

deleted_residual, 0);
imsls_f_write_matrix("Cooks D", 1, N_OBSERVATIONS, cooksd, 0);
imsls_f_write_matrix("DFFITS", 1, N_OBSERVATIONS, dffits, 0);
imsls_f_write_matrix("Scheffe Lower Limit", 1, N_OBSERVATIONS,

scheffe_lower_limit, 0);
imsls_f_write_matrix("Scheffe Upper Limit", 1, N_OBSERVATIONS,

scheffe_upper_limit, 0);
imsls_f_write_matrix("Population Mean Lower Limit", 1,

N_OBSERVATIONS, mean_lower_limit, 0);
imsls_f_write_matrix("Population Mean Upper Limit", 1,

N_OBSERVATIONS, mean_upper_limit, 0);
imsls_f_write_matrix("New Sample Lower Limit", 1, N_OBSERVATIONS,

new_sample_lower_limit, 0);
imsls_f_write_matrix("New Sample Upper Limit", 1, N_OBSERVATIONS,

new_sample_upper_limit, 0);
}

Output

Predicted Responses
1 2 3 4 5 6

78.5 72.8 106.0 89.3 95.6 105.3

7 8 9 10 11 12
104.1 75.7 91.7 115.6 81.8 112.3

13
111.7

Residuals
1 2 3 4 5 6

0.005 1.511 -1.671 -1.727 0.251 3.925

7 8 9 10 11 12
-1.449 -3.175 1.378 0.282 1.991 0.973

13
-2.294

Standardized Residuals
1 2 3 4 5 6

0.003 0.757 -1.050 -0.841 0.128 1.715

94 •••• regression_prediction IMSL C/Stat/Library

7 8 9 10 11 12
-0.744 -1.688 0.671 0.210 1.074 0.463

13
-1.124

Leverages
1 2 3 4 5 6

0.5503 0.3332 0.5769 0.2952 0.3576 0.1242

7 8 9 10 11 12
0.3671 0.4085 0.2943 0.7004 0.4255 0.2630

13
0.3037

Deleted Residuals
1 2 3 4 5 6

0.003 0.735 -1.058 -0.824 0.120 2.017

7 8 9 10 11 12
-0.722 -1.967 0.646 0.197 1.086 0.439

13
-1.146

Cooks D
1 2 3 4 5 6

0.0000 0.0572 0.3009 0.0593 0.0018 0.0834

7 8 9 10 11 12
0.0643 0.3935 0.0375 0.0207 0.1708 0.0153

13
0.1102

DFFITS
1 2 3 4 5 6

0.003 0.519 -1.236 -0.533 0.089 0.759

7 8 9 10 11 12
-0.550 -1.635 0.417 0.302 0.935 0.262

13
-0.757

Scheffe Lower Limit
1 2 3 4 5 6

70.7 66.7 98.0 83.6 89.4 101.6

7 8 9 10 11 12
97.8 69.0 86.0 106.8 75.0 106.9

13
105.9

Scheffe Upper Limit
1 2 3 4 5 6

86.3 78.9 113.9 95.0 101.9 109.0

Chapter 2: Regression regression_prediction •••• 95

7 8 9 10 11 12
110.5 82.4 97.4 124.4 88.7 117.7

13
117.5

Population Mean Lower Limit
1 2 3 4 5 6

74.3 69.5 101.7 86.3 92.3 103.3

7 8 9 10 11 12
100.7 72.1 88.7 110.9 78.1 109.4

13
108.6

Population Mean Upper Limit
1 2 3 4 5 6

82.7 76.0 110.3 92.4 99.0 107.3

7 8 9 10 11 12
107.6 79.3 94.8 120.3 85.5 115.2

13
114.8

New Sample Lower Limit
1 2 3 4 5 6

71.5 66.3 98.9 82.9 89.1 99.3

7 8 9 10 11 12
97.6 69.0 85.3 108.3 75.1 106.0

13
105.3

New Sample Upper Limit
1 2 3 4 5 6

85.5 79.3 113.1 95.7 102.2 111.3

7 8 9 10 11 12
110.7 82.4 98.1 123.0 88.5 118.7

13
118.1

Warning Errors
IMSLS_NONESTIMABLE Within the preset tolerance, the

linear combination of regression
coefficients is nonestimable.

IMSLS_LEVERAGE_GT_1 A leverage (= #) much greater than
1.0 is computed. It is set to 1.0.

96 •••• hypothesis_partial IMSL C/Stat/Library

IMSLS_DEL_MSE_LT_0 A deleted residual mean square
(= #) much less than 0 is
computed. It is set to 0.

Fatal Errors
IMSLS_NONNEG_WEIGHT_REQUEST_2 The weight for row # was #.

Weights must be nonnegative.

hypothesis_partial
Constructs an equivalent completely testable multivariate general linear
hypothesis HβU = G from a partially testable hypothesis HpβU = Gp.

Synopsis

#include <imsls.h>

int imsls_f_hypothesis_partial

(Imsls_f_regression *regression_info, int nhp, float hp[], ...,
0)

The type double function is imsls_d_hypothesis_partial.

Required Argument

Imsls_f_regression *regression_info (Input)
Pointer to a structure of type Imsls_f_regression containing information
about the regression fit. See function imsls_f_regression.

int nhp (Input)
Number of rows in the hypothesis matrix, hp.

float hp[] (Input)
The Hp array of size nhp by n_coefficients with each row corresponding
to a row in the hypothesis and containing the constants that specify a
linear combination of the regression coefficients. Here, n_coefficients is
the number of coefficients in the fitted regression model.

Return Value
Number of rows in the completely testable hypothesis, nh. This value is also the
degrees of freedom for the hypothesis. The value nh classifies the hypothesis
HpβU = Gp as nontestable (nh = 0), partially testable (0 < nh < rank_hp) or
completely testable (0 < nh = rank_hp), where rank_hp is the rank of Hp (see
keyword IMSLS_RANK_HP).

Synopsis with Optional Arguments
#include <imsls.h>

Chapter 2: Regression hypothesis_partial •••• 97

int imsls_f_hypothesis_partial
(Imsls_f_regression *regression_info, int nhp, float hp[],
IMSLS_GP, float gp[],
IMSLS_U, int nu, float u[],
IMSLS_RANK_HP, int rank_hp
IMSLS_H_MATRIX, float **h,
IMSLS_H_MATRIX_USER, float h[],
IMSLS_G, float **g,
IMSLS_G_USER, float g[],
0)

Optional Arguments
IMSLS_GP, float gp[] (Input)

Array of size nhp by nu containing the Gp matrix, the null hypothesis
values. By default, each value of Gp is equal to 0.

IMSLS_U, int nu, float u[] (Input)
Argument nu is the number of linear combinations of the dependent
variables to be considered. The value nu must be greater than 0 and less
than or equal to n_dependent.

Argument u contains the n_dependent by nu U matrix for the test
HpBU = Gp. This argument is not referenced by
imsls_f_hypothesis_partial and is included only for consistency
with functions imsls_f_hypothesis_scph and
imsls_f_hypothesis_test. A dummy array of length 1 may be
substituted for this argument.

Default: nu = n_dependent and u is the identity matrix.

IMSLS_RANK_HP, int*rank_hp (Output)
Rank of Hp.

IMSLS_H_MATRIX, float **h (Output)
Address of a pointer to the internally allocated array of size nhp by
n_parameters containing the H matrix. Each row of h corresponds to a
row in the completely testable hypothesis and contains the constants that
specify an estimable linear combination of the regression coefficients.

IMSLS_H_MATRIX_USER, float h[] (Output)
Storage for array h is provided by the user. See IMSLS_H.

IMSLS_G, float **g (Output)
Address of a pointer to the internally allocated array of size nph ny
n_dependent containing the G matrix. The elements of g contain the
null hypothesis values for the completely testable hypothesis.

IMSLS_G_USER, float g[] (Output)
Storage for array g is provided by the user. See IMSLS_G.

98 •••• hypothesis_partial IMSL C/Stat/Library

Description
Once a general linear model y = Xβ + ε is fitted, particular hypothesis tests are
frequently of interest. If the matrix of regressors X is not full rank (as evidenced
by the fact that some diagonal elements of the R matrix output from the fit are
equal to zero), methods that use the results of the fitted model to compute the
hypothesis sum of squares (see function imsls_f_hypothesis_scph,
page 101) require specification in the hypothesis of only linear combinations of
the regression parameters that are estimable. A linear combination of regression
parameters cTβ is estimable if there exists some vector a such that cT = aTX, i.e.,
cT is in the space spanned by the rows of X. For a further discussion of estimable
functions, see Maindonald (1984, pp. 166−168) and Searle (1971, pp. 180−188).
Function imsls_f_hypothesis_partial is only useful in the case of non-full
rank regression models, i.e., when the problem of estimability arises.

Peixoto (1986) noted that the customary definition of testable hypothesis in the
context of a general linear hypothesis test Hβ = g is overly restrictive. He
extended the notion of a testable hypothesis (a hypothesis composed of estimable
functions of the regression parameters) to include partially testable and
completely testable hypothesis. A hypothesis Hβ = g is partially testable if the
intersection of the row space H (denoted by ℜ (H)) and the row space of X (ℜ (X))
is not essentially empty and is a proper subset of ℜ (H), i.e.,
{0} ⊂ ℜ (H) ∩ ℜ (X) ⊂ ℜ (H). A hypothesis Hβ = g is completely testable if
{0} ⊂ ℜ (H) ∩ ℜ (H) ⊂ ℜ (X). Peixoto also demonstrated a method for converting
a partially testable hypothesis to one that is completely testable so that the usual
method for obtaining sums of squares for the hypothesis from the results of the
fitted model can be used. The method replaces Hp in the partially testable
hypothesis Hpβ = gp by a matrix H whose rows are a basis for the intersection of
the row space of Hp and the row space of X. A corresponding conversion of the
null hypothesis values from gp to g is also made. A sum of squares for the
completely testable hypothesis can then be computed (see function
imsls_f_hypothesis_scph). The sum of squares that is computed for the
hypothesis Hβ = g equals the difference in the error sums of squares from two
fitted models�the restricted model with the partially testable hypothesis
Hpβ = gp and the unrestricted model.

For the general case of the multivariate model Y = Xβ + ε with possible linear
equality restrictions on the regression parameters,
imsls_f_hypothesis_partial converts the partially testable hypothesis
Hpβ = gp to a completely testable hypothesis HβU = G. For the case of the linear
model with linear equality restrictions, the definitions of the estimable functions,
nontestable hypothesis, partially testable hypothesis, and completely testable
hypothesis are similar to those previously given for the unrestricted model with
the exception that ℜ (X) is replaced by ℜ (R) where R is the upper triangular
matrix based on the linear equality restrictions. The nonzero rows of R form a
basis for the rowspace of the matrix (XT, AT)T. The rows of H form an
orthonormal basis for the intersection of two subspaces�the subspace spanned
by the rows of Hp and the subspace spanned by the rows of R. The algorithm used

Chapter 2: Regression hypothesis_partial •••• 99

for computing the intersection of these two subspaces is based on an algorithm for
computing angles between linear subspaces due to Björk and Golub (1973). (See
also Golub and Van Loan 1983, pp. 429−430). The method is closely related to a
canonical correlation analysis discussed by Kennedy and Gentle (1980, pp. 561−
565). The algorithm is as follows:

1. Compute a QR factorization of

HP
T

with column permutations so that

H Q R PP
T T= 1 1 1

Here, P1 is the associated permutation matrix that is also an orthogonal
matrix. Determine the rank of Hp as the number of nonzero diagonal
elements of R1, for example n1. Partition Q1 = (Q11, Q12) so that Q11 is
the first n1 column of Q1. Set rank_hp = n.

2. Compute a QR factorization of the transpose of the R matrix (input
through regression_info) with column permuations so that

R Q R PT T= 2 2 2

Determine the rank of R from the number of nonzero diagonal elements
of R, for example n2. Partition Q2 = (Q21, Q22) so that Q21 is the first n2
columns of Q2.

3. Form

A Q QT= 11 21

4. Compute the singular values of A

σ σ σ1 2 1 2
≥ ≥ ≥� min ,n nb g

and the left singular vectors W of the singular value decomposition of A
so that

W AVT
n n= diag σ σ1 1 2

, min ,� b ge j
If σ1 < 1, then the dimension of the intersection of the two subspaces is
s = 0. Otherwise, assume the dimension of the intersection to be
s if σs = 1 > σs+1. Set nh = s.

5. Let W1 be the first s columns of W. Set H = (Q1W1)T.

6. Assume R11 to be a nhp by nhp matrix related to R1 as follows: If
nhp < n_parameters, R11 equals the first nhp rows of R1. Otherwise,
R11 contains R1 in its first n_parameters rows and zeros in the remaining
rows. Compute a solution Z to the linear system

R Z P GT T
p11 1=

100 •••• hypothesis_partial IMSL C/Stat/Library

If this linear system is delcared inconsistent, an error message with error
code equal to 2 is issued.

7. Partition

Z Z ZT T T= 1 2,e j
so that Z1 is the first n1 rows of Z. Set

G W ZT= 1 1

The degrees of freedom (nh) classify the hypothesis HpβU =Gp as
nontestable (nh = 0), partially testable (0 < nh < rank_hp), or
completely testable (0 < nh = rank_hp).

For further details concerning the algorithm, see Sallas and Lionti (1988).

Example
A one-way analysis-of-variance model discussed by Peixoto (1986) is fitted to
data. The model is

yii = µ + αi + εii (i, j) = (1, 1) (2, 1) (2, 2)

The model is fitted using function imsls_f_regression (page 64). The
partially testable hypothesis

H0 3
5

2
1: α

α
=
=

is converted to a completely testable hypothesis.

#include <imsls.h>
#define N_ROWS 3
#define N_INDEPENDENT 1
#define N_DEPENDENT 1
#define N_PARAMETERS 3
#define NHP 2

main() {
Imsls_f_regression *info;
int n_class = 1;
int n_continuous = 0;
int nh, nreg, rank_hp;
float *coefficients, *x, *g, *h;
static float z[N_ROWS*N_INDEPENDENT] = { 1, 2, 2 };
static float y[] = {17.3, 24.1, 26.3};
static float gp[] = {5, 3};
static float hp[NHP*N_PARAMETERS] = {0, 1, 0,

0, 0, 1};

nreg = imsls_f_regressors_for_glm(N_ROWS, z,
n_class, n_continuous,
IMSLS_REGRESSORS, &x, 0);

coefficients = imsls_f_regression(N_ROWS, nreg, x, y,
IMSLS_N_DEPENDENT, N_DEPENDENT,
IMSLS_REGRESSION_INFO, &info,

Chapter 2: Regression hypothesis_scph •••• 101

0);

nh = imsls_f_hypothesis_partial(info, NHP, hp,
IMSLS_GP, gp,
IMSLS_H_MATRIX, &h,
IMSLS_G, &g,
IMSLS_RANK_HP, &rank_hp, 0);

if (nh == 0) {
printf("Nontestable Hypothesis\n");

} else if (nh < rank_hp) {
printf("Partially Testable Hypothesis\n");

} else {
printf("Completely Testable Hypothesis\n");

}

imsls_f_write_matrix("H Matrix", nh, N_PARAMETERS, h, 0);

imsls_f_write_matrix("G", nh, N_DEPENDENT, g, 0);

free(coefficients);
free(info);
free(x);
free(h);
free(g);

}

Output

Partially Testable Hypothesis

H Matrix
1 2 3

0.0000 0.7071 -0.7071

G
1.414

Warning Errors
IMSLS_HYP_NOT_CONSISTENT The hypothesis is inconsistent within the

computed tolerance.

hypothesis_scph
Computes the matrix of sums of squares and crossproducts for the multivariate
general linear hypothesis HβU = G given the regression fit.

Synopsis

#include <imsls.h>

float *imsls_f_hypothesis_scph
(Imsls_f_regression *regression_info, int nh, float h[],
float *dfh, ..., 0)

102 •••• hypothesis_scph IMSL C/Stat/Library

The type double function is imsls_d_hypothesis_scph.

Required Argument

Imsls_f_regression *regression_info (Input)
Pointer to a structure of type Imsls_f_regression containing information
about the regression fit. See function imsls_f_regression.

int nh (Input)
Number of rows in the hypothesis matrix, h.

float h[] (Input)
The H array of size nh by n_coefficients with each row corresponding to
a row in the hypothesis and containing the constants that specify a linear
combination of the regression coefficients. Here, n_coefficients is the
number of coefficients in the fitted regression model.

float *dfh (Output)
Degrees of freedom for the sums of squares and crossproducts matrix.
This is equal to the rank of input matrix h.

Return Value
Array of size nu by nu containing the sums of squares and crossproducts
attributable to the hypothesis.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_regression_scph

(Imsls_f_regression *regression_info, int nh, float h[],
float *dfh,
IMSLS_G, float g[],
IMSLS_U, int nu, float u[],
IMSLS_RETURN_USER, scph[],
0)

Optional Arguments
IMSLS_G, float g[] (Input)

Array of size nh by nu containing the G matrix, the null hypothesis
values. By default, each value of G is equal to 0.

IMSLS_U, int nu, float u[] (Input)
Argument nu is the number of linear combinations of the dependent
variables to be considered. The value nu must be greater than 0 and less
than or equal to n_dependent.

Argument u contains the n_dependent by nu U matrix for the test
HpβU = Gp.

Default: nu = n_dependent and u is the identity matrix

Chapter 2: Regression hypothesis_scph •••• 103

IMSLS_RETURN_USER, float scph[] (Output)
If specified, the sums of squares and crossproducts matrix is stored in
array scph provided by the user, where scph is of size nu by nu.

Description
Function imsls_f_hypothesis_scph computes the matrix of sums of squares
and crossproducts for the general linear hypothesis HβU = G for the multivariate
general linear model Y = Xβ + ε.

The rows of H must be linear combinations of the rows of R, i.e., Hβ = G must be
completely testable. If the hypothesis is not completely testable, function
imsls_f_hypothesis_partial (page 96) can be used to construct an
equivalent completely testable hypothesis.

Computations are based on an algorithm discussed by Kennedy and Gentle (1980,
p. 317) that is extended by Sallas and Lionti (1988) for mulitvariate non-full rank
models with possible linear equality restrictions. The algorithm is as follows:

1. Form W H U G= −�β .

2. Find C as the solution of RTC = HT. If the equations are declared
inconsistent within a computed tolerance, a warning error message is
issued that the hypothesis is not completely testable.

3. For all rows of R corresponding to restrictions, i.e., containing negative
diagonal elements from a restricted least-squares fit, zero out the
corresponding rows of C, i.e., from DC.

4. Decompose DC using Householder transformations and column pivoting
to yield a square, upper triangular matrix T with diagonal elements of
nonincreasing magnitude and permutation matrix P such that

DCP Q
T

=
L
NM
O
QP0

where Q is an orthogonal matrix.

5. Determine the rank of T, say r. If t11 = 0, then r = 0. Otherwise, the rank
of T is r if

| trr | > | t11 | ε ≥ | tr + 1, r + 1 |

where ε = 10.0 × imsls_f_machine(4)
(10.0 × imsls_d_machine(4) for the double-precision version).

Then, zero out all rows of T below r. Set the degrees of freedom for the
hypothesis, dfh, to r.

6. Find V as a solution to TTV = PTW. If the equations are inconsistent, a
warning error message is issued that the hypothesis is inconsistent within
a computed tolerance, i.e., the linear system

HβU = G

104 •••• hypothesis_scph IMSL C/Stat/Library

Aβ = Z

does not have a solution for β.

Form VTV, which is the required matrix of sum of squares and
crossproducts, scph.

In general, the two warning errors described above are serious user
errors that require the user to correct the hypothesis before any
meaningful sums of squares from this function can be computed.
However, in some cases, the user may know the hypothesis is consistent
and completely testable, but the checks in
imsls_f_hypothesis_scph are too tight. For this reason,
imsls_f_hypothesis_scph continues with the calculations.

Function imsls_f_hypothesis_scph gives a matrix of sums of
squares and crossproducts that could also be obtained from separate
fittings of the two models:

Y¹ = Xβ¹ + ε¹ (1)

Aβ¹ = Z¹

Hβ¹ = G

and

Y¹ = Xβ¹ + ε¹ (2)

Aβ¹ = Z¹

where Y¹ = YU, β¹ = βU, ε¹ = εU, and Z¹ = ZU. The error sum of
squares and crossproducts matrix for (1) minus that for (2) is the matrix
sum of squares and crossproducts output in scph. Note that this
approach avoids the question of testability.

Example
The data for this example are from Maindonald (1984, pp. 203−204). A
multivariate regression model containing two dependent variables and three
independent variables is fit using function imsls_f_regression and the results
stored in the structure info. The sum of squares and crossproducts matrix, scph,
is then computed by calling imsls_f_hypothesis_scph for the test that the
third independent variable is in the model (determined by the specification of h).
The degrees of freedom for scph also is computed.

#include <imsls.h>
main()
{

Imsls_f_regression *info;
float *coefficients, *scph;
float dfh;
float x[] = { 7.0, 5.0, 6.0,

2.0,-1.0, 6.0,

Chapter 2: Regression hypothesis_scph •••• 105

7.0, 3.0, 5.0,
-3.0, 1.0, 4.0,
2.0,-1.0, 0.0,
2.0, 1.0, 7.0,
-3.0,-1.0, 3.0,
2.0, 1.0, 1.0,
2.0, 1.0, 4.0 };

float y[] = { 7.0, 1.0,
-5.0, 4.0,
6.0, 10.0,
5.0, 5.0,
5.0, -2.0,
-2.0, 4.0,
0.0, -6.0,
8.0, 2.0,
3.0, 0.0 };

int n_observations = 9;
int n_independent = 3;
int n_dependent = 2;
int nh = 1;
float h[] = { 0, 0, 0, 1 };

coefficients = imsls_f_regression(n_observations, n_independent,
x, y,
IMSLS_N_DEPENDENT, n_dependent,
IMSLS_REGRESSION_INFO, &info,
0);

scph = imsls_f_hypothesis_scph(info, nh, h, &dfh, 0);

printf("Degrees of Freedom Hypothesis = %4.0f\n", dfh);

imsls_f_write_matrix("Sum of Squares and Crossproducts",
n_dependent, n_dependent, scph,
IMSLS_NO_COL_LABELS, IMSLS_NO_ROW_LABELS,
0);

}

Output

Degrees of Freedom Hypothesis = 1

Sum of Squares and Crossproducts
100 -40
-40 16

Warning Errors
IMSLS_HYP_NOT_TESTABLE The hypothesis is not completely testable

within the computed tolerance. Each row of
�h� must be a linear combination of the
rows of �r�.

IMSLS_HYP_NOT_CONSISTENT The hypothesis is inconsistent within the
computed tolerance.

106 •••• hypothesis_test IMSL C/Stat/Library

hypothesis_test
Performs tests for a multivariate general linear hypothesis HβU = G given the
hypothesis sums of squares and crossproducts matrix SH.

Synopsis

#include <imsls.h>

float imsls_f_hypothesis_test (Imsls_f_regression *regression_info,
float dfh, float *scph, ..., 0)

The type double function is imsls_d_hypothesis_test.

Required Argument

Imsls_f_regression *regression_info (Input)
Pointer to a structure of type Imsls_f_regression containing information
about the regression fit. See function imsls_f_regression.

float dfh (Input)
Degrees of freedom for the sums of squares and crossproducts matrix.

float *scph (Input)
Array of size nu by nu containing SH, the sums of squares and
crossproducts attributable to the hypothesis.

Return Value
The p-value corresponding to Wilks� lambda test.

Synopsis with Optional Arguments
#include <imsls.h>

float imsls_f_hypothesis_test (Imsls_f_regression *regression_info,
float dfh, float *scph,
IMSLS_U, int nu, float u[],
IMSLS_WILK_LAMBDA, float *value, float *p_value,
IMSLS_ROY_MAX_ROOT, float *value, float *p_value,
IMSLS_HOTELLING_TRACE, float *value, float *p_value,
IMSLS_PILLAI_TRACE, float *value, float *p_value,
0)

Optional Arguments
IMSLS_U, int nu, float u[] (Input)

Argument nu is the number of linear combinations of the dependent
variables to be considered. The value nu must be greater than 0 and less
than or equal to n_dependent. Argument u contains the n_dependent by
nu U matrix for the test HpβU = Gp.
Default: nu = n_dependent and u is the identity matrix

Chapter 2: Regression hypothesis_test •••• 107

IMSLS_WILK_LAMBDA, float *value, float *p_value (Output)
Wilk�s lamda and p-value.

IMSLS_ROY_MAX_ROOT, float *value, float *p_value (Output)
Roy�s maximum root criterion and p-value.

IMSLS_HOTELLING_TRACE, float *value, float *p_value (Output)
Hotelling�s trace and p-value.

IMSLS_PILLAI_TRACE, float *value, float *p_value (Output)
Pillai�s trace and p-value.

Description
Function imsls_f_hypothesis_test computes test statistics and p-values for
the general linear hypothesis HβU = G for the multivariate general linear model.

The hypothesis sum of squares and crossproducts matrix input in scph is

S H U G C DC H U GH
T T= − −

−
� �β βe j e j e j

where C is a solution to RTC = H and where D is a diagonal matrix with diagonal
elements

dii
ii=
>RST

1 0
0

if r
otherwise

See the section �Linear Dependence and the R Matrix� in the introduction
(page 48).

The error sum of squares and crossproducts matrix for the model Y = Xβ + ε is

Y X Y X
T

− −� �β βe j e j
which is input in regression_info. The error sum of squares and
crossproducts matrix for the hypothesis HβU = G computed by
imsls_f_hypothesis_test is

S U Y X Y X UE
T T

= − −� �β βe j e j
Let p equal the order of the matrices SE and SH, i.e.,

p =
>RST
UVW

NU NU
NDEP

if
otherwise

0

Let q (stored in dfh) be the degrees of freedom for the hypothesis. Let v (input in
regression_info) be the degrees of freedom for error. Function
imsls_f_hypothesis_test computed three test statistics based on
eigenvalues λi (i = 1, 2, …, p) of the generalized eigenvalue problem SHx = λSEx.
These test statistics are as follows:

108 •••• hypothesis_test IMSL C/Stat/Library

Wilk�s lambda

Λ =
+

=
+=

∏det
det

S
S S

E

H E ii

pb g
b g

1
11 λ

The associated p-value is based on an approximation discussed by Rao (1973,
p. 556). The statistic

F ms pq
pq

s

s= − + −/ /

/
2 1 1 1

1
Λ

Λ

has an approximate F distribution with pq and ms − pq / 2 + 1 numerator and
denominator degrees of freedom, respectively, where

s p q
p q

=

= =

−
+ −

R
S|

T|

1 1 1

4
5

2 2

2 2

if p or q

otherwise

and

m
p q

= −
+ −

υ
1

2
b g

The F test is exact if min (p, q) ≤ 2 (Kshirsagar, 1972, Theorem 4, p. 299−300).

Roy�s maximum root

c = max λi over all i

where c is output as value. The p-value is based on the approximation

F q s
s

c= + −υ

where s = max (p, q) has an approximate F distribution with s and υ + q − s
numerator and denominator degrees of freedom, respectively. The F test is exact
if s = 1; the p-value is also exact. In general, the value output in p_value is
lower bound on the actual p-value.

Hotelling�s trace

U HE i
i

p

= =−

=
�tr 1

1
e j λ

U is output as value. The p-value is based on the approximation of McKeon
(1974) that supersedes the approximation of Hughes and Saw (1972). McKeon�s
approximation is also discussed by Seber (1984, p. 39). For

b pq
q p

p p

= + +
+ − − −
− − −

4 2
1 1

3
υ υ
υ υ
b gb g
b gb g

Chapter 2: Regression hypothesis_test •••• 109

the p-value is based on the result that

F
b p

b pq
U=

− −
−

υ 1
2

b g
b g

has an approximate F distribution with pq and b degrees of freedom. The test is
exact if min (p, q) = 1. For υ ≤ p + 1, the approximation is not valid, and
p_value is set to NaN.

These three test statistics are valid when SE is positive definite. A necessary
condition for SE to be positive definite is υ ≥ p. If SE is not positive definite, a
warning error message is issued, and both value and p_value are set to NaN.

Because the requirement υ ≥ p can be a serious drawback,
imsls_f_hypothesis_test computes a fourth test statistic based on
eigenvalues θi (i = 1, 2, …, p) of the generalized eigenvalue problem
SHw = θ(SH + SE) w. This test statistic requires a less restrictive assumption�
SH + SE is positive definite. A necessary condition for SH + SE to be positive
definite is υ + q ≥ p. If SE is positive definite, imsls_f_hypothesis_test
avoids the computation of the generalized eigenvalue problem from scratch. In
this case, the eigenvalues θi are obtained from λi by

θ λ
λi
i

i
=

+1

The fourth test statistic is as follows:

Pillai�s trace

V S S SH H E i
i

p

= + =−

=
�tr b g 1

1

θ

V is output as value. The p-value is based on an approximation discussed by
Pillai (1985). The statistic

F n s
m s

V
s V

= + +
+ + −

2 1
2 1

has an approximate F distribution with s(2m + s + 1) and s(2n + s + 1) numerator
and denominator degrees of freedom, respectively, where

s = min (p, q)

m = ½(|p − q| −1)

n = ½(υ − p − 1)

The F test is exact if min (p, q) = 1.

110 •••• hypothesis_test IMSL C/Stat/Library

Examples

Example 1
The data for this example are from Maindonald (1984, p. 203−204). A
multivariate regression model containing two dependent variables and three
independent variables is fit using function imsls_f_regression and the results
stored in the structure regression_info. The sum of squares and crossproducts
matrix, scph, is then computed with a call to imsls_f_hypothesis_scph for
the test that the third independent variable is in the model (determined by
specification of h). Finally, function imsls_f_hypothesis_test is called to
compute the p-value for the test statistic (Wilk�s lambda).

#include <imsls.h>
main()
{

Imsls_f_regression *info;
float *coefficients, *scph;
float dfh, p_value;
float x[] = { 7.0, 5.0, 6.0,

2.0,-1.0, 6.0,
7.0, 3.0, 5.0,
-3.0, 1.0, 4.0,
2.0,-1.0, 0.0,
2.0, 1.0, 7.0,
-3.0,-1.0, 3.0,
2.0, 1.0, 1.0,
2.0, 1.0, 4.0 };

float y[] = { 7.0, 1.0,
-5.0, 4.0,
6.0, 10.0,
5.0, 5.0,
5.0, -2.0,
-2.0, 4.0,
0.0, -6.0,
8.0, 2.0,
3.0, 0.0 };

int n_observations = 9;
int n_independent = 3;
int n_dependent = 2;
int nh = 1;
float h[] = { 0, 0, 0, 1 };

coefficients = imsls_f_regression(n_observations, n_independent,
x, y,
IMSLS_N_DEPENDENT, n_dependent,
IMSLS_REGRESSION_INFO, &info,
0);

scph = imsls_f_hypothesis_scph(info, nh, h, &dfh, 0);

p_value = imsls_f_hypothesis_test(info, dfh, scph, 0);

printf("P-value = %10.6f\n", p_value);

}

Chapter 2: Regression hypothesis_test •••• 111

Output

P-value = 0.000010

Example 2
This example is the same as the first example, but more statistics are computed.
Also, the U matrix, u, is explicitly specified as the identity matrix (which is the
same default configuration of U).

#include <imsls.h>
main()
{

Imsls_f_regression *info;
float *coefficients, *scph;
float dfh, p_value;
float x[] = { 7.0, 5.0, 6.0,

2.0,-1.0, 6.0,
7.0, 3.0, 5.0,
-3.0, 1.0, 4.0,
2.0,-1.0, 0.0,
2.0, 1.0, 7.0,
-3.0,-1.0, 3.0,
2.0, 1.0, 1.0,
2.0, 1.0, 4.0 };

float y[] = { 7.0, 1.0,
-5.0, 4.0,
6.0, 10.0,
5.0, 5.0,
5.0, -2.0,
-2.0, 4.0,
0.0, -6.0,
8.0, 2.0,
3.0, 0.0 };

int n_observations = 9;
int n_independent = 3;
int n_dependent = 2;
int nh = 1;
float h[] = { 0, 0, 0, 1 };
int nu = 2;
float u[4]={1, 0, 0, 1};
float v1, v2, v3, v4, p1, p2, p3, p4;

coefficients = imsls_f_regression(n_observations, n_independent,
x, y,
IMSLS_N_DEPENDENT, n_dependent,
IMSLS_REGRESSION_INFO, &info,
0);

scph = imsls_f_hypothesis_scph(info, nh, h, &dfh, 0);

p_value = imsls_f_hypothesis_test(info, dfh, scph,
IMSLS_U, nu, u,
IMSLS_WILK_LAMBDA, &v1, &p1,
IMSLS_ROY_MAX_ROOT, &v2, &p2,
IMSLS_HOTELLING_TRACE, &v3, &p3,
IMSLS_PILLAI_TRACE, &v4, &p4,
0);

112 •••• regression_selection IMSL C/Stat/Library

printf("Wilk value = %10.6f p-value = %10.6f\n", v1, p1);
printf("Roy value = %10.6f p-value = %10.6f\n", v2, p2);
printf("Hotelling value = %10.6f p-value = %10.6f\n", v3, p3);
printf("Pillai value = %10.6f p-value = %10.6f\n", v4, p4);

}

Output

Wilk value = 0.003149 p-value = 0.000010
Roy value = 316.600861 p-value = 0.000010
Hotelling value = 316.600861 p-value = 0.000010
Pillai value = 0.996851 p-value = 0.000010

Warning Errors
IMSLS_SINGULAR_1 �u�*�scpe�*�u� is singular. Only Pillai�s

trace can be computed. Other statistics are
set to NaN.

Fatal Errors
IMSLS_NO_STAT_1 �scpe� + �scph� is singular. No tests can be

computed.

IMSLS_NO_STAT_2 No statistics can be computed. Iterations for
eigenvalues for the generalized eigenvalue
problem �scph�*x =
(lambda)*(�scph�+�scpe�)*x failed to
converge.

IMSLS_NO_STAT_3 No statistics can be computed. Iterations
for eigenvalues for the generalized
eigenvalue problem �scph�
x = (lambda)(�scph�+�u�*�scpe�*�u�)*x
failed to converge.

IMSLS_SINGULAR_2 �u�*�scpe�*�u� + �scph� is singular. No
tests can be computed.

IMSLS_SINGULAR_TRI_MATRIX The input triangular matrix is singular. The
index of the first zero diagonal element is
equal to #.

regression_selection
Selects the best multiple linear regression models.

Synopsis
#include <imsls.h>

Chapter 2: Regression regression_selection •••• 113

void imsls_f_regression_selection (int n_rows, int n_candidate,
float x[], float y[], ..., 0)

The type double function is imsls_d_regression_selection.

Required Arguments

int n_rows (Input)
Number of observations or rows in x and y.

int n_candidate (Input)
Number of candidate variables (independent variables) or columns in x.

float x[] (Input)
Array of size n_rows × n_candidate containing the data for the
candidate variables.

float y[] (Input)
Array of length n_rows containing the responses for the dependent
variable.

Synopsis with Optional Arguments
#include <imsls.h>

void imsls_f_regression_selection (int n_rows, int n_candidate,
float x[], float y[],
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_PRINT, or
IMSLS_NO_PRINT,
IMSLS_WEIGHTS, float weights[],
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_R_SQUARED, int max_subset_size, or
IMSLS_ADJ_R_SQUARED, or
IMSLS_MALLOWS_CP,
IMSLS_MAX_N_BEST, int max_n_best,
IMSLS_MAX_N_GOOD_SAVED, int max_n_good_saved,
IMSLS_CRITERIONS, int **index_criterions,

float **criterions,
IMSLS_CRITERIONS_USER, int index_criterions[],

float criterions[],
IMSLS_INDEPENDENT_VARIABLES, int **index_variables,

int **independent_variables,
IMSLS_INDEPENDENT_VARIABLES_USER,

int index_variables[],
int independent_variables[],

IMSLS_COEF_STATISTICS, int **index_coefficients,
float **coefficients,

IMSLS_COEF_STATISTICS_USER, int index_coefficients[],
float coefficients[],

114 •••• regression_selection IMSL C/Stat/Library

IMSLS_INPUT_COV, int n_observations, float cov[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

The column dimension of x.
Default: x_col_dim = n_candidate

IMSLS_PRINT

Printing is performed. This is the default.
or

IMSLS_NO_PRINT

Printing is not performed.

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_rows containing the weight for each row of x.
Default: weights[] = 1

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_rows containing the frequency for each row of x.
Default: frequencies[] = 1

IMSLS_R_SQUARED, int max_subset_size (Input)
The R2 criterion is used, where subset sizes
1, 2, ..., max_subset_size are examined.
This option is the default with max_subset_size = n_candidate.
or

IMSLS_ADJ_R_SQUARED

The adjusted R2 criterion is used, where subset sizes
1, 2, ..., n_candidate are examined.
or

IMSLS_MALLOWS_CP

Mallows Cp criterion is used, where subset sizes
1, 2, ..., n_candidate are examined.

IMSLS_MAX_N_BEST, int max_n_best (Input)
Number of best regressions to be found. If the R2 criterions are selected,
the max_n_best best regressions for each subset size examined are
found. If the adjusted R2 or Mallows Cp criterion is selected, the
max_n_best overall regressions are found.
Default: max_n_best = 1

IMSLS_MAX_N_GOOD_SAVED, int max_n_good_saved (Input)
Maximum number of good regressions of each subset size to be saved in
finding the best regressions. Argument max_n_good_saved must be
greater than or equal to max_n_best. Normally, max_n_good_saved
should be less than or equal to 10. It doesn't ever need to be larger than
the maximum number of subsets for any subset size. Computing time

Chapter 2: Regression regression_selection •••• 115

required is inversely related to max_n_good_saved.
Default: max_n_good_saved = 10

IMSLS_CRITERIONS, int **index_criterions, float **criterions

(Output)
Argument index_criterions is the address of a pointer to the
internally allocated array of length nsize + 1(where nsize is equal to
max_subset_size if optional argument IMSLS_R_SQUARED is
specified; otherwise, nsize is equal to n_candidate) containing the
locations in criterions of the first element for each subset size. For
I = 0, 1, ..., nsize −1, element numbers index_criterions[I],
index_criterions[I] + 1, ..., index_criterions[I + 1] − 1 of
criterions correspond to the (I + 1)-st subset size. Argument
criterions is the address of a pointer to the internally allocated array
of length max (index_criterions [nsize] − 1 , n_candidate)
containing in its first index_criterions [nsize] − 1 elements the
criterion values for each subset considered, in increasing subset size
order.

IMSLS_CRITERIONS_USER, int index_criterions[],
float criterions[] (Output)
Storage for arrays index_criterions and criterions is provided
by the user. An upper bound on the length of criterions is
max(max_n_good_saved × nsize, n_candidate). See
IMSLS_CRITERIONS.

IMSLS_INDEPENDENT_VARIABLES, int **index_variables,
int **independent_variables (Output)
Argument index_variables is the address of a pointer to the
internally allocated array of length nsize + 1 (where nsize is equal to
max_subset_size if optional argument IMSLS_R_SQUARED is
specified; otherwise, nsize is equal to n_candidate) containing the
locations in independent_variables of the first element for each
subset size. For I = 0, 1, ..., nsize − 1, element numbers
index_variables[I], index_variables[I] + 1, ...,
index_variables[I + 1] − 1 of independent_variables
correspond to the (I+1)-st subset size. Argument
independent_variables is the address of a pointer to the internally
allocated array of length index_variables [nsize] − 1 containing the
variable numbers for each subset considered and in the same order as in
criterions.

IMSLS_INDEPENDENT_VARIABLES_USER, int index_variables[],
int independent_variables[] (Output)
Storage for arrays index_variables and independent_variables
is provided by the user. An upper bound for the length of
independent_variables is as follows:

116 •••• regression_selection IMSL C/Stat/Library

max_n_good_saved × × +nsize nsize()1
2

where nsize is equal to max_subset_size.

See IMSLS_INDEPENDENT_VARIABLES.

IMSLS_COEF_STATISTICS, int **index_coefficients,
float **coefficients (Output)
Argument index_coefficients is the address of a pointer to the
internally allocated array of length ntbest + 1 containing the locations in
coefficients or the first row for each of the best regressions. Here,
ntbest is the total number of best regression found and is equal to
max_subset_size × max_n_best if IMSLS_R_SQUARED is specified,
equal to max_n_best if either IMSLS_MALLOWS_CP or
IMSLS_ADJ_R_SQUARED is specified, and equal to max_n_best ×
 n_candidate, otherwise. For I = 0, 1, ..., ntbest − 1, rows
index_coefficients[I], index_coefficients[I] + 1, ...,
index_coefficients[I + 1] � 1 of coefficients correspond to the
(I + 1)-st regression. Argument coefficients is the address of a
pointer to the internally allocated array of size (index_coefficients
[ntbest] − 1) × 5 containing statistics relating to the regression
coefficients of the best models. Each row corresponds to a coefficient
for a particular regression. The regressions are in order of increasing
subset size. Within each subset size, the regressions are ordered so that
the better regressions appear first. The statistic in the columns are as
follows (inferences are conditional on the selected model):

Column Description

0 variable number

1 coefficient estimate

2 estimated standard error of the estimate

3 t-statistic for the test that the coefficient is 0

4 p-value for the two-sided t test

IMSLS_COEF_STATISTICS_USER, int index_coefficients[],
float coefficients[] (Output)
Storage for arrays index_coefficients and coefficients is
provided by the user. See IMSLS_COEF_STATISTICS.

IMSLS_INPUT_COV, int n_observations, float cov[] (Input)
Argument n_observations is the number of observations associated
with array cov. Argument cov is an (n_candidate + 1) by
(n_candidate + 1) array containing a variance-covariance or sum of
squares and crossproducts matrix, in which the last column must
correspond to the dependent variable. Array cov can be computed using
imsls_f_covariances. Arguments x and y, and optional arguments

Chapter 2: Regression regression_selection •••• 117

frequencies and weights are not accessed when this option is
specified. Normally, imsls_f_regression_selection computes
cov from the input data matrices x and y. However, there may be cases
when the user will wish to calculate the covariance matrix and
manipulate it before calling imsls_f_regression_selection. See
the description section below for a discussion of such cases.

Description
Function imsls_f_regression_selection finds the best subset regressions
for a regression problem with n_candidate independent variables. Typically,
the intercept is forced into all models and is not a candidate variable. In this case,
a sum of squares and crossproducts matrix for the independent and dependent
variables corrected for the mean is computed internally. There may be cases when
it is convenient for the user to calculate the matrix; see the description of optional
argument IMSLS_INPUT_COV.

�Best� is defined, on option, by one of the following three criteria:

• R2 (in percent)

R p2 100 1= −()
SSE
SST

• Ra
2 (adjusted R2 in percent)

R n
n pa

p2 100 1 1= − −
−

L
NM

O
QP

()
SSE
SST

Note that maximizing the criterion is equivalent to minimizing the
residual mean square:

SSE p

n p−b g
• Mallows� Cp statistic

C
s

p np
p= + −

SSE

n_candidate
2 2

Here, n is equal to the sum of the frequencies (or n_rows if
IMSLS_FREQUENCIES is not specified) and SST is the total sum of squares.
SSEp is the error sum of squares in a model containing p regression parameters
including β0 (or p − 1 of the n_candidate candidate variables). Variable

sn_candidate
2

is the error mean square from the model with all n_candidate variables in the
model. Hocking (1972) and Draper and Smith (1981, pp. 296−302) discuss these
criteria.

118 •••• regression_selection IMSL C/Stat/Library

Function imsls_f_regression_selection is based on the algorithm of
Furnival and Wilson (1974). This algorithm finds max_n_good_saved candidate
regressions for each possible subset size. These regressions are used to identify a
set of best regressions. In large problems, many regressions are not computed.
They may be rejected without computation based on results for other subsets; this
yields an efficient technique for considering all possible regressions.

There are cases when the user may want to input the variance-covariance matrix
rather than allow the function imsls_f_regression_selection to calculate
it. This can be accomplished using optional argument IMSLS_INPUT_COV. Three
situations in which the user may want to do this are as follows:

1. The intercept is not in the model. A raw (uncorrected) sum of squares
and crossproducts matrix for the independent and dependent variables is
required. Argument n_observations must be set to 1 greater than the
number of observations. Form ATA, where A = [A, Y], to compute the
raw sum of squares and crossproducts matrix.

2. An intercept is a candidate variable. A raw (uncorrected) sum of squares
and crossproducts matrix for the constant regressor (= 1.0), independent,
and dependent variables is required for cov. In this case, cov contains
one additional row and column corresponding to the constant regressor.
This row/column contains the sum of squares and crossproducts of the
constant regressor with the independent and dependent variables. The
remaining elements in cov are the same as in the previous case.
Argument n_observations must be set to 1 greater than the number of
observations.

3. There are m variables to be forced into the models. A sum of squares
and crossproducts matrix adjusted for the m variables is required
(calculated by regressing the candidate variables on the variables to be
forced into the model). Argument n_observations must be set to m
less than the number of observations.

Programming Notes
Function imsls_f_regression_selection can save considerable CPU time
over explicitly computing all possible regressions. However, the function has
some limitations that can cause unexpected results for users who are unaware of
the limitations of the software.

1. For n_candidate + 1 > −log2 (ε), where ε is imsls_f_machine(4)
(imsls_d_machine(4) for double precision; see Chapter 14), some
results can be incorrect. This limitation arises because the possible
models indicated (the model numbers 1, 2, ..., 2n_candidate) are stored
as floating-point values; for sufficiently large n_candidate, the model
numbers cannot be stored exactly. On many computers, this means
imsls_f_regression_selection (for n_candidate > 24) and
imsls_d_regression_selection (for n_candidate > 49) can
produce incorrect results.

Chapter 2: Regression regression_selection •••• 119

2. Function imsls_f_regression_selection eliminates some subsets
of candidate variables by obtaining lower bounds on the error sum of
squares from fitting larger models. First, the full model containing all
n_candidate is fit sequentially using a forward stepwise procedure in
which one variable enters the model at a time, and criterion values and
model numbers for all the candidate variables that can enter at each step
are stored. If linearly dependent variables are removed from the full
model, error IMSLS_VARIABLES_DELETED is issued. If this error is
issued, some submodels that contain variables removed from the full
model because of linear dependency can be overlooked if they have not
already been identified during the initial forward stepwise procedure. If
error IMSLS_VARIABLES_DELETED is issued and you want the
variables that were removed from the full model to be considered in
smaller models, you can rerun the program with a set of linearly
independent variables.

Examples

Example 1
This example uses a data set from Draper and Smith (1981, pp. 629−630).
Function imsls_f_regression_selection is invoked to find the best
regression for each subset size using the R2 criterion. By default, the function
prints the results.

#include <imsls.h>
#define N_OBSERVATIONS 13
#define N_CANDIDATE 4
main()
{

float x[N_OBSERVATIONS][N_CANDIDATE] =
{7., 26., 6., 60.,
1., 29., 15., 52.,
11., 56., 8., 20.,
11., 31., 8., 47.,
7., 52., 6., 33.,
11., 55., 9., 22.,
3., 71., 17., 6.,
1., 31., 22., 44.,
2., 54., 18., 22.,
21., 47., 4., 26.,
1., 40., 23., 34.,
11., 66., 9., 12.,
10., 68., 8., 12.};

float y[N_OBSERVATIONS] = {78.5, 74.3, 104.3, 87.6, 95.9,
109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};

imsls_f_regression_selection(N_OBSERVATIONS, N_CANDIDATE, x, y, 0);
}

Output

Regressions with 1 variable(s) (R-squared)

120 •••• regression_selection IMSL C/Stat/Library

Criterion Variables
67.5 4
66.6 2
53.4 1
28.6 3

Regressions with 2 variable(s) (R-squared)

Criterion Variables
97.9 1 2
97.2 1 4
93.5 3 4
68 2 4

54.8 1 3

Regressions with 3 variable(s) (R-squared)

Criterion Variables
98.2 1 2 4
98.2 1 2 3
98.1 1 3 4
97.3 2 3 4

Regressions with 4 variable(s) (R-squared)

Criterion Variables
98.2 1 2 3 4

Best Regression with 1 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value

4 -0.7382 0.1546 -4.775 0.0006

Best Regression with 2 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value

1 1.468 0.1213 12.10 0.0000
2 0.662 0.0459 14.44 0.0000

Best Regression with 3 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value

1 1.452 0.1170 12.41 0.0000
2 0.416 0.1856 2.24 0.0517
4 -0.237 0.1733 -1.36 0.2054

Best Regression with 4 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value

1 1.551 0.7448 2.083 0.0708
2 0.510 0.7238 0.705 0.5009
3 0.102 0.7547 0.135 0.8959
4 -0.144 0.7091 -0.203 0.8441

Chapter 2: Regression regression_selection •••• 121

Example 2
This example uses the same data set as the first example, but Mallow�s Cp
statistic is used as the criterion rather than R2. Note that when Mallow�s Cp
statistic (or adjusted R2) is specified, the variable max_n_best indicates the total
number of �best� regressions (rather than indicating the number of best
regressions per subset size, as in the case of the R2 criterion). In this example, the
three best regressions are found to be (1, 2), (1, 2, 4), and (1, 2, 3).

#include <imsls.h>
#define N_OBSERVATIONS 13
#define N_CANDIDATE 4
main()
{

float x[N_OBSERVATIONS][N_CANDIDATE] =
{7., 26., 6., 60.,
1., 29., 15., 52.,
11., 56., 8., 20.,
11., 31., 8., 47.,
7., 52., 6., 33.,
11., 55., 9., 22.,
3., 71., 17., 6.,
1., 31., 22., 44.,
2., 54., 18., 22.,
21., 47., 4., 26.,
1., 40., 23., 34.,
11., 66., 9., 12.,
10., 68., 8., 12.};

float y[N_OBSERVATIONS] = {78.5, 74.3, 104.3, 87.6, 95.9,
109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};

int max_n_best = 3;

imsls_f_regression_selection(N_OBSERVATIONS, N_CANDIDATE,
(float *) x, y,
IMSLS_MALLOWS_CP,
IMSLS_MAX_N_BEST, max_n_best,
0);

}

Output

1

Regressions with 1 variable(s) (Mallows CP)
Criterion Variables

139 4
142 2
203 1
315 3

Regressions with 2 variable(s) (Mallows CP)

Criterion Variables
2.68 1 2
5.5 1 4

122 •••• regression_selection IMSL C/Stat/Library

22.4 3 4
138 2 4
198 1 3

Regressions with 3 variable(s) (Mallows CP)

Criterion Variables
3.02 1 2 4
3.04 1 2 3
3.5 1 3 4
7.34 2 3 4

Regressions with 4 variable(s) (Mallows CP)

Criterion Variables
5 1 2 3 4

1

Best Regression with 2 variable(s) (Mallows CP)
Variable Coefficient Standard Error t-statistic p-value

1 1.468 0.1213 12.10 0.0000
2 0.662 0.0459 14.44 0.0000

Best Regression with 3 variable(s) (Mallows CP)
Variable Coefficient Standard Error t-statistic p-value

1 1.452 0.1170 12.41 0.0000
2 0.416 0.1856 2.24 0.0517
4 -0.237 0.1733 -1.36 0.2054

2nd Best Regression with 3 variable(s) (Mallows CP)
Variable Coefficient Standard Error t-statistic p-value

1 1.696 0.2046 8.29 0.0000
2 0.657 0.0442 14.85 0.0000
3 0.250 0.1847 1.35 0.2089

Warning Errors
IMSLS_VARIABLES_DELETED At least one variable is deleted from the full

model because the variance-covariance
matrix �cov� is singular.

Fatal Errors
IMSLS_NO_VARIABLES No variables can enter any model.

Chapter 2: Regression regression_stepwise •••• 123

regression_stepwise
Builds multiple linear regression models using forward selection, backward
selection, or stepwise selection.

Synopsis
#include <imsls.h>

void imsls_f_regression_stepwise (int n_rows, int n_candidate,
float x[], float y[], ..., 0)

The type double function is imsls_d_regression_stepwise.

Required Arguments

int n_rows (Input)
Number of rows in x and the number of elements in y.

int n_candidate (Input)
Number of candidate variables (independent variables) or columns in x.

float x[] (Input)
Array of size n_rows × n_candidate containing the data for the
candidate variables.

float y[] (Input)
Array of length n_rows containing the responses for the dependent
variable.

Synopsis with Optional Arguments
#include <imsls.h>

void imsls_f_regression_stepwise (int n_rows, int n_candidate,
float x[], float y[],
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_WEIGHTS, float weights[],
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_FIRST_STEP, or
IMSLS_INTERMEDIATE_STEP, or
IMSLS_LAST_STEP, or
IMSLS_ALL_STEPS,
IMSLS_N_STEPS, int n_steps,
IMSLS_FORWARD, or
IMSLS_BACKWARD, or
IMSLS_STEPWISE,
IMSLS_P_VALUE_IN, float p_value_in,
IMSLS_P_VALUE_OUT, float p_value_out,
IMSLS_TOLERANCE, float tolerance,
IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],

124 •••• regression_stepwise IMSL C/Stat/Library

IMSLS_COEF_T_TESTS, float **coef_t_tests,
IMSLS_COEF_T_TESTS_USER, float coef_t_tests[],
IMSLS_COEF_VIF, float **coef_vif,
IMSLS_COEF_VIF_USER, float coef_vif[],
IMSLS_LEVEL, int level[],
IMSLS_FORCE, int n_force,
IMSLS_IEND, int *iend,
IMSLS_SWEPT_USER, int swept[],
IMSLS_HISTORY_USER, float history[],
IMSLS_COV_SWEPT_USER, float *covs
IMSLS_INPUT_COV, int n_observations, float *cov,
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of x.
Default: x_col_dim = n_candidate

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_rows containing the weight for each row of x.
Default: weights[] = 1

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_rows containing the frequency for each row of x.
Default: frequencies[] = 1

IMSLS_FIRST_STEP, or
IMSLS_INTERMEDIATE_STEP, or
IMSLS_LAST_STEP, or
IMSLS_ALL_STEPS

One or none of these options can be specified. If none of these is
specified, the action defaults to IMSLS_ALL_STEPS.

Argument Action

IMSLS_FIRST_STEP This is the first invocation; additional
calls will be made. Initialization and
stepping is performed.

IMSLS_INTERMEDIATE_STEP This is an intermediate invocation.
Stepping is performed.

IMSLS_LAST_STEP This is the final invocation. Stepping
and wrap-up computations are
performed.

IMSLS_ALL_STEPS This is the only invocation.
Initialization, stepping, and wrap-up
computations are performed.

Chapter 2: Regression regression_stepwise •••• 125

IMSLS_N_STEPS, int n_steps (Input)
For nonnegative n_steps, n_steps steps are taken. If n_steps = −1,
stepping continues until completion.

IMSLS_FORWARD, or
IMSLS_BACKWARD, or
IMSLS_STEPWISE

One or none of these options can be specified. If none is specified, the
action defaults to IMSLS_BACKWARD.

Keyword Action

IMSLS_FORWARD An attempt is made to add a variable to the model. A
variable is added if its p-value is less than
p_value_in. During initialization, only the forced
variables enter the model.

IMSLS_BACKWARD An attempt is made to remove a variable from the
model. A variable is removed if its p-value exceeds
p_value_out. During initialization, all candidate
independent variables enter the model.

IMSLS_STEPWISE A backward step is attempted. If a variable is not
removed, a forward step is attempted. This is a
stepwise step. Only the forced variables enter the
model during initialization.

IMSLS_P_VALUE_IN, float p_value_in (Input)
Largest p-value for variables entering the model. Variables with p-values
less than p_value_in may enter the model.
Default: p_value_in = 0.05

IMSLS_P_VALUE_OUT, float p_value_out (Input)
Smallest p-value for removing variables. Variables with p_values
greater than p_value_out may leave the model. Argument
p_value_out must be greater than or equal to p_value_in. A
common choice for p_value_out is 2*p_value_in.
Default: p_value_out = 0.10

IMSLS_TOLERANCE, float tolerance (Input)
Tolerance used in determining linear dependence.
Default: tolerance = 100*eps, where eps = imsls_f_machine(4) for
single precision and eps = imsls_d_machine(4) for double precision

126 •••• regression_stepwise IMSL C/Stat/Library

IMSLS_ANOVA_TABLE, float **anova_table (Output)
Address of a pointer to the internally allocated array containing the
analysis of variance table. The analysis of variance statistics are as
follows:

Element Analysis of Variance Statistic

0 degrees of freedom for regression

1 degrees of freedom for error

2 total degrees of freedom

3 sum of squares for regression

4 sum of squares for error

5 total sum of squares

6 regression mean square

7 error mean square

8 F-statistic

9 p-value

10 R2 (in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for anova_table is provided by the user. See
IMSLS_ANOVA_TABLE.

IMSLS_COEF_T_TESTS, float **coef_t_tests (Output)
Address to a pointer to the internally allocated array containing statistics
relating to the regression coefficient for the final model in this
invocationing. The rows correspond to the n_candidate independent
variables. The rows are in the same order as the variables in x (or, if
IMSLS_INPUT_COV is specified, the rows are in the same order as the
variables in cov). Each row corresponding to a variable not in the model
contains statistics for a model which includes the variables of the final
model and the variable corresponding to the row in question.

Column Description

0 coefficient estimate

1 estimated standard error of the coefficient
estimate

Chapter 2: Regression regression_stepwise •••• 127

Column Description

2 t-statistic for the test that the coefficient is 0

3 p-value for the two-sided t test

IMSLS_COEF_T_TESTS_USER, float coef_t_tests[] (Output)
Storage for array coef_t_tests is provided by the user. See
IMSLS_COEF_T_TESTS.

IMSLS_COEF_VIF, float **coef_vif (Output)
Address to a pointer to the internally allocated array containing variance
inflation factors for the final model in this invocation. The elements
correspond to the n_candidate dependent variables. The elements are
in the same order as the variables in x (or, if IMSLS_INPUT_COV is
specified, the elements are in the same order as the variables in cov).
Each element corresponding to a variable not in the model contains
statistics for a model which includes the variables of the final model and
the variables corresponding to the element in question.

The square of the multiple correlation coefficient for the I-th regressor
after all others can be obtained from coef_vif[I] by the following
formula:

10 10. .−
VIF

IMSLS_COEF_VIF_USER, float coef_vif[] (Output)
Storage for array coef_vif is provided by the user. See
IMSLS_COEF_VIF.

IMSLS_LEVEL, int level[] (Input)
Array of length n_candidate + 1 containing levels of priority for
variables entering and leaving the regression. Each variable is assigned a
positive value which indicates its level of entry into the model. A
variable can enter the model only after all variables with smaller nonzero
levels of entry have entered. Similarly, a variable can only leave the
model after all variables with higher levels of entry have left. Variables
with the same level of entry compete for entry (deletion) at each step.
Argument level[I] = 0 means the I-th variable is never to enter the
model. Argument level[I] = −1 means the I-th variable is the
dependent variable. Argument level[n_candidate] must correspond
to the dependent variable, except when IMSLS_INPUT_COV is specified.
Default: 1, 1, ..., 1, −1 where −1 corresponds to level[n_candidate]

IMSLS_FORCE, int n_force (Input)
Variable with levels 1, 2, ..., n_force are forced into the model as
independent variables. See IMSLS_LEVEL.

IMSLS_IEND, int *iend (Output)
Variable which indicates whether additional steps are possible.

128 •••• regression_stepwise IMSL C/Stat/Library

iend Meaning

0 Additional steps may be possible.

1 No additional steps are possible.

IMSLS_SWEPT_USER, int swept[] (Output)
A user-allocated array of length n_candidate + 1 with information to
indicate the independent variables in the model. Argument
swept[n_candidate] usually corresponds to the dependent variable.
See IMSLS_LEVEL.

swept[i] Status of i-th Variable

−1 Variable i is not in model.

1 Variable i is in model.

IMSLS_HISTORY_USER, float history[] (Output)
User-allocated array of length n_candidate + 1 containing the recent
history of the independent variables. Element history[n_candidate]
usually corresponds to the dependent variable. See IMSLS_LEVEL.

history[i] Status of i-th Variable

0.0 Variable has never been added to model.

0.5 Variable was added into the model during
initialization.

k > 0.0 Variable was added to the model during the k-th
step.

k < 0.0 Variable was deleted from model during the k-th
step.

IMSLS_COV_SWEPT_USER, float *covs (Output)
User-allocated array of length
(n_candidate + 1) × (n_candidate + 1) that results after cov has
been swept on the columns corresponding to the variables in the model.
The estimated variance-covariance matrix of the estimated regression
coefficients in the final model can be obtained by extracting the rows
and columns of covs corresponding to the independent variables in the
final model and multiplying the elements of this matrix by
anova_table[7].

IMSLS_INPUT_COV, int n_observations float *cov (Input)
An (n_candidate + 1) by (n_candidate + 1) array containing a

Chapter 2: Regression regression_stepwise •••• 129

variance-covariance or sum of squares and crossproducts matrix, in
which the last column must correspond to the dependent variable.
Argument n_observations is an integer specifying the number of
observations associated with cov. Argument cov can be computed using
imsls_f_covariances. Arguments x, y, weights, and
frequencies are not accessed when this option is specified.

By default, imsls_regression_stepwise computes cov from the
input data matrices x and y.

Description
Function imsls_f_regression_stepwise builds a multiple linear regression
model using forward selection, backward selection, or forward stepwise (with a
backward glance) selection. Function imsls_f_regression_stepwise is
designed so the user can monitor, and perhaps change, the variables added
(deleted) to (from) the model after each step. In this case, multiple calls to
imsls_f_regression_stepwise (using optional arguments
IMSLS_FIRST_STEP, IMSLS_INTERMEDIATE_STEP, ..., IMSLS_LAST_STEP)
are made. Alternatively, imsls_f_regression_stepwise can be invoked
once (default, or specify optional argument IMSLS_ALL_STEPS) in order to
perform the stepping until a final model is selected.

Levels of priority can be assigned to the candidate independent variables (use
optional argument IMSLS_LEVEL). All variables with a priority level of 1 must
enter the model before variables with a priority level of 2. Similarly, variables
with a level of 2 must enter before variables with a level of 3, etc. Variables also
can be forced into the model (see optional argument IMSLS_FORCE). Note that
specifying optional argument IMSLS_FORCE without also specifying optional
argument IMSLS_LEVEL will result in all variables being forced into the model.

Typically, the intercept is forced into all models and is not a candidate variable.
In this case, a sum-of-squares and crossproducts matrix for the independent and
dependent variables corrected for the mean is required. Other possibilities are as
follows:

1. The intercept is not in the model. A raw (uncorrected) sum-of-squares
and crossproducts matrix for the independent and dependent variables is
required as input in cov (see optional argument IMSLS_INPUT_COV).
Argument n_observations must be set to one greater than the number
of observations.

2. An intercept is a candidate variable. A raw (uncorrected) sum-of-squares
and crossproducts matrix for the constant regressor (=1), independent
and dependent variables are required for cov. In this case, cov contains
one additional row and column corresponding to the constant regressor.
This row/column contains the sum-of-squares and crossproducts of the
constant regressor with the independent and dependent variables. The
remaining elements in cov are the same as in the previous case.

130 •••• regression_stepwise IMSL C/Stat/Library

Argument n_observations must be set to one greater than the number
of observations.

The stepwise regression algorithm is due to Efroymson (1960). Function
imsls_f_regression_stepwise uses sweeps of the covariance matrix (input
in cov, if optional argument IMSLS_INPUT_COV is specified, or generated
internally by default) to move variables in and out of the model (Hemmerle 1967,
Chapter 3). The SWEEP operator discussed in Goodnight (1979) is used. A
description of the stepwise algorithm is also given by Kennedy and Gentle (1980,
pp. 335−340). The advantage of stepwise model building over all possible
regression (see function imsls_f_regression_selection, page 112) is that
it is less demanding computationally when the number of candidate independent
variables is very large. However, there is no guarantee that the model selected
will be the best model (highest R2) for any subset size of independent variables.

Example
This example uses a data set from Draper and Smith (1981, pp. 629−630).
Backwards stepping is performed by default.

#include <imsls.h>
#define N_OBSERVATIONS 13
#define N_CANDIDATE 4
main()
{

char *labels[] = {
"degrees of freedom for regression",
"degrees of freedom for error",
"total degrees of freedom",
"sum of squares for regression",
"sum of squares for error",
"total sum of squares",
"regression mean square",
"error mean square",
"F-statistic",
"p-value",
"R-squared (in percent)",
"adjusted R-squared (in percent)",
"est. standard deviation of within error"

};
char *c_labels[] = {

"variable",
"estimate",
"s.e.",
"t",
"prob > t"

};
float *aov, *tt;
float x[N_OBSERVATIONS][N_CANDIDATE] =

{7., 26., 6., 60.,
1., 29., 15., 52.,
11., 56., 8., 20.,
11., 31., 8., 47.,
7., 52., 6., 33.,
11., 55., 9., 22.,
3., 71., 17., 6.,

Chapter 2: Regression regression_stepwise •••• 131

1., 31., 22., 44.,
2., 54., 18., 22.,
21., 47., 4., 26.,
1., 40., 23., 34.,
11., 66., 9., 12.,
10., 68., 8., 12.};

float y[N_OBSERVATIONS] = {78.5, 74.3, 104.3, 87.6, 95.9,
109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};

imsls_f_regression_stepwise(N_OBSERVATIONS, N_CANDIDATE, x, y,
IMSLS_ANOVA_TABLE, &aov,
IMSLS_COEF_T_TESTS, &tt,
0);

imsls_f_write_matrix("* * * Analysis of Variance * * *\n",
13, 1, aov,
IMSLS_ROW_LABELS, labels,
IMSLS_WRITE_FORMAT, "%9.2f",
0);

imsls_f_write_matrix("* * * Inference on Coefficients * * *\n",
4, 4, tt,
IMSLS_COL_LABELS, c_labels,
IMSLS_WRITE_FORMAT, "%9.2f",
0);

return;
}

Output

* * * Analysis of Variance * * *

degrees of freedom for regression 2.00
degrees of freedom for error 10.00
total degrees of freedom 12.00
sum of squares for regression 2657.86
sum of squares for error 57.90
total sum of squares 2715.76
regression mean square 1328.93
error mean square 5.79
F-statistic 229.50
p-value 0.00
R-squared (in percent) 97.87
adjusted R-squared (in percent) 97.44
est. standard deviation of within error 2.41

* * * Inference on Coefficients * * *

variable estimate s.e. t prob > t
1 1.47 0.12 12.10 0.00
2 0.66 0.05 14.44 0.00
3 0.25 0.18 1.35 0.21
4 -0.24 0.17 -1.36 0.21

132 •••• poly_regression IMSL C/Stat/Library

Warning Errors
IMSLS_LINEAR_DEPENDENCE_1 Based on �tolerance� = #, there are linear

dependencies among the variables to be
forced.

Fatal Errors
IMSLS_NO_VARIABLES_ENTERED No variables entered the model. All

elements of �anova_table� are set to NaN.

poly_regression
Performs a polynomial least-squares regression.

Synopsis
#include <imsls.h>

float *imsls_f_poly_regression (int n_observations, float x[],
float y[], int degree, ..., 0)

The type double function is imsls_d_poly_regression.

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of length n_observations containing the independent variable.

float y[] (Input)
Array of length n_observations containing the dependent variable.

int degree (Input)
Degree of the polynomial.

Return Value
A pointer to the array of size degree + 1 containing the coefficients of the fitted
polynomial. If a fit cannot be computed, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_poly_regression (int n_observations, float x[],
float y[], int degree,
IMSLS_WEIGHTS, float weights[],
IMSLS_SSQ_POLY, float **ssq_poly,
IMSLS_SSQ_POLY_USER, float ssq_poly[],
IMSLS_SSQ_POLY_COL_DIM, int ssq_poly_col_dim,

Chapter 2: Regression poly_regression •••• 133

IMSLS_SSQ_LOF, float **ssq_lof,
IMSLS_SSQ_LOF_USER, float ssq_lof[],
IMSLS_SSQ_LOF_COL_DIM, int ssq_lof_col_dim,
IMSLS_X_MEAN, float *x_mean,
IMSLS_X_VARIANCE, float *x_variance,
IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
IMSLS_DF_PURE_ERROR, int *df_pure_error,
IMSLS_SSQ_PURE_ERROR, float *ssq_pure_error,
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_POLY_REGRESSION_INFO,

Imsls_f_poly_regression **poly_info,
IMSLS_RETURN_USER, float coefficients[],
0)

Optional Arguments
IMSLS_WEIGHTS, float weights[] (Input)

Array with n_observations components containing the array of
weights for the observation.
Default: weights[] = 1

IMSLS_SSQ_POLY, float **ssq_poly (Output)
Address of a pointer to the internally allocated array containing the
sequential sums of squares and other statistics. Row i corresponds to
xi, i = 0, ..., degree − 1, and the columns are described as follows:

Column Description

0 degrees of freedom

1 sums of squares

2 F-statistic

3 p-value

IMSLS_SSQ_POLY_USER, float ssq_poly[] (Output)
Storage for array ssq_poly is provided by the user. See
IMSLS_SSQ_POLY.

IMSLS_SSQ_POLY_COL_DIM, int ssq_poly_col_dim (Input)
Column dimension of ssq_poly.
Default: ssq_poly_col_dim = 4

IMSLS_SSQ_LOF, float **ssq_lof (Output)
Address of a pointer to the internally allocated array containing the lack-
of-fit statistics. Row i corresponds to xi, i = 0, ..., degree − 1, and the
columns are described in the following table:

134 •••• poly_regression IMSL C/Stat/Library

Column Description

0 degrees of freedom

1 lack-of-fit sums of squares

2 F-statistic for testing lack-of-fit for a
polynomial model of degree i

3 p-value for the test

IMSLS_SSQ_LOF_USER, float ssq_lof[] (Output)
Storage for array ssq_lof is provided by the user. See
IMSLS_SSQ_LOF.

IMSLS_SSQ_LOF_COL_DIM, int ssq_lof_col_dim (Input)
Column dimension of ssq_lof.
Default: ssq_lof_col_dim = 4

IMSLS_X_MEAN, float *x_mean (Output)
Mean of x.

IMSLS_X_VARIANCE, float *x_variance (Output)
Variance of x.

IMSLS_ANOVA_TABLE, float **anova_table (Output)
Address of a pointer to the array containing the analysis of variance
table.

Column Description

0 degrees of freedom for the model

1 degrees of freedom for error

2 total (corrected) degrees of freedom

3 sum of squares for the model

4 sum of squares for error

5 total (corrected) sum of squares

6 model mean square

7 error mean square

8 overall F-statistic

Chapter 2: Regression poly_regression •••• 135

Column Description

9 p-value

10 R2 (in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation

13 overall mean of y

14 coefficient of variation (in percent)

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for anova_table is provided by the user. See
IMSLS_ANOVA_TABLE.

IMSLS_DF_PURE_ERROR, int *df_pure_error (Output)
If specified, the degrees of freedom for pure error are returned in
df_pure_error.

IMSLS_SSQ_PURE_ERROR, float *ssq_pure_error (Output)
If specified, the sums of squares for pure error are returned in
ssq_pure_error.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to the array containing the residuals.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See
IMSLS_RESIDUAL.

IMSLS_POLY_REGRESSION_INFO, Imsls_f_poly_regression **poly_info

(Output)
Address of a pointer to an internally allocated structure containing the
information about the polynomial fit required as input for IMSL function
imsls_f_poly_prediction.

IMSLS_RETURN_USER, float coefficients[] (Output)
If specified, the least-squares solution for the regression coefficients is
stored in array coefficients of size degree + 1 provided by the user.

Description
Function imsls_f_poly_regression computes estimates of the regression
coefficients in a polynomial (curvilinear) regression model. In addition to the
computation of the fit, imsls_f_poly_regression computes some summary
statistics. Sequential sums of squares attributable to each power of the
independent variable (stored in ssq_poly) are computed. These are useful in

136 •••• poly_regression IMSL C/Stat/Library

assessing the importance of the higher order powers in the fit. Draper and Smith
(1981, pp. 101−102) and Neter and Wasserman (1974, pp. 278−287) discuss the
interpretation of the sequential sums of squares. The statistic R2 is the percentage
of the sum of squares of y about its mean explained by the polynomial curve.
Specifically,

R
w y y

w y y

i i

i i

2
2

2 100=
−

−
�

�

�

%
b g
b g

where
�yi

is the fitted y value at xi and y is the mean of y. This statistic is useful in
assessing the overall fit of the curve to the data. R2 must be between 0 and 100
percent, inclusive. R2 = 100 percent indicates a perfect fit to the data.

Estimates of the regression coefficients in a polynomial model are computed
using orthogonal polynomials as the regressor variables. This reparameterization
of the polynomial model in terms of orthogonal polynomials has the advantage
that the loss of accuracy resulting from forming powers of the x-values is avoided.
All results are returned to the user for the original model (power form).

Function imsls_f_poly_regression is based on the algorithm of Forsythe
(1957). A modification to Forsythe�s algorithm suggested by Shampine (1975) is
used for computing the polynomial coefficients. A discussion of Forsythe�s
algorithm and Shampine�s modification appears in Kennedy and Gentle (1980,
pp. 342−347).

Examples

Example 1
A polynomial model is fitted to data discussed by Neter and Wasserman
(1974, pp. 279−285). The data set contains the response variable y measuring
coffee sales (in hundred gallons) and the number of self-service coffee dispensers.
Responses for 14 similar cafeterias are in the data set. A graph of the results is
also given.

#include <imsls.h>

#define DEGREE 2
#define NOBS 14

main()
{

float *coefficients;
float x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,

4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
float y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,

758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};

coefficients = imsls_f_poly_regression (NOBS, x, y, DEGREE, 0);

Chapter 2: Regression poly_regression •••• 137

imsls_f_write_matrix("Least-Squares Polynomial Coefficients",
DEGREE + 1, 1, coefficients,
IMSLS_ROW_NUMBER_ZERO,
0);

}

Output

Least-Squares Polynomial Coefficients
0 503.3
1 78.9
2 -4.0

Figure 2-1 A Polynomial Fit

Example 2
This example is a continuation of the initial example. Here, many optional
arguments are used.

#include <stdio.h>
#include <imsls.h>

#define DEGREE 2
#define NOBS 14

void main()
{

int iset = 1, dfpe;
float *coefficients, *anova_table, sspe, *ssqpoly, *ssqlof;
float x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,

4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
float y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,

758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};
char *coef_rlab[2];
char *coef_clab[] = {" ", "intercept", "linear",

"quadratic"};
char *stat_clab[] = {" ", "Degrees of\nFreedom",

"Sum of\nSquares",

138 •••• poly_regression IMSL C/Stat/Library

"\nF-Statistic", "\np-value"};
char *anova_rlab[] = {

"degrees of freedom for regression",
"degrees of freedom for error",
"total (corrected) degrees of freedom",
"sum of squares for regression",
"sum of squares for error",
"total (corrected) sum of squares",
"regression mean square",
"error mean square", "F-statistic",
"p-value", "R-squared (in percent)",
"adjusted R-squared (in percent)",
"est. standard deviation of model error",
"overall mean of y",
"coefficient of variation (in percent)"};

coefficients = imsls_f_poly_regression(NOBS, x, y, DEGREE,
IMSLS_SSQ_POLY, &ssqpoly,
IMSLS_SSQ_LOF, &ssqlof,
IMSLS_ANOVA_TABLE, &anova_table,
IMSLS_DF_PURE_ERROR, &dfpe,
IMSLS_SSQ_PURE_ERROR, &sspe,
0);

imsls_write_options(-1, &iset);
imsls_f_write_matrix("Least Squares Polynomial Coefficients",

1, DEGREE + 1,
coefficients,
IMSLS_COL_LABELS, coef_clab,
0);

coef_rlab[0] = coef_clab[2];
coef_rlab[1] = coef_clab[3];
imsls_f_write_matrix("Sequential Statistics", DEGREE, 4, ssqpoly,

IMSLS_COL_LABELS, stat_clab,
IMSLS_ROW_LABELS, coef_rlab,
IMSLS_WRITE_FORMAT, "%3.1f%8.1f%6.1f%6.4f",
0);

imsls_f_write_matrix("Lack-of-Fit Statistics", DEGREE, 4, ssqlof,
IMSLS_COL_LABELS, stat_clab,
IMSLS_ROW_LABELS, coef_rlab,
IMSLS_WRITE_FORMAT, "%3.1f%8.1f%6.1f%6.4f",
0);

imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
anova_table,

IMSLS_ROW_LABELS, anova_rlab,
IMSLS_WRITE_FORMAT, "%9.2f",
0);

}

Output

Least Squares Polynomial Coefficients
intercept linear quadratic

503.3 78.9 -4.0

Sequential Statistics
Degrees of Sum of

Freedom Squares F-Statistic p-value
linear 1.0 220644.2 3415.8 0.0000

Chapter 2: Regression poly_regression •••• 139

quadratic 1.0 4387.7 67.9 0.0000

Lack-of-Fit Statistics
Degrees of Sum of

Freedom Squares F-Statistic p-value
linear 5.0 4793.7 22.0 0.0004
quadratic 4.0 405.9 2.3 0.1548

* * * Analysis of Variance * * *

degrees of freedom for regression 2.00
degrees of freedom for error 11.00
total (corrected) degrees of freedom 13.00
sum of squares for regression 225031.94
sum of squares for error 710.55
total (corrected) sum of squares 225742.48
regression mean square 112515.97
error mean square 64.60
F-statistic 1741.86
p-value 0.00
R-squared (in percent) 99.69
adjusted R-squared (in percent) 99.63
est. standard deviation of model error 8.04
overall mean of y 710.99
coefficient of variation (in percent) 1.13

Warning Errors
IMSLS_CONSTANT_YVALUES The y values are constant. A zero-

order polynomial is fit. High order
coefficients are set to zero.

IMSLS_FEW_DISTINCT_XVALUES There are too few distinct x values
to fit the desired degree
polynomial. High order
coefficients are set to zero.

IMSLS_PERFECT_FIT A perfect fit was obtained with a
polynomial of degree less than
degree. High order coefficients
are set to zero.

Fatal Errors
IMSLS_NONNEG_WEIGHT_REQUEST_2 All weights must be nonnegative.

IMSLS_ALL_OBSERVATIONS_MISSING Each (x, y) point contains NaN.
There are no valid data.

IMSLS_CONSTANT_XVALUES The x values are constant.

140 •••• poly_prediction IMSL C/Stat/Library

poly_prediction
Computes predicted values, confidence intervals, and diagnostics after fitting a
polynomial regression model.

Synopsis
#include <imsls.h>

float *imsls_f_poly_prediction (Imsls_f_poly_regression *poly_info,
int n_predict, float x[], ..., 0)

The type double function is imsls_d_poly_prediction.

Required Arguments

Imsls_f_poly_regression *poly_info (Input)
Pointer to a structure of type Imsls_f_poly_regression. See function
imsls_f_poly_regression (page 132).

int n_predict (Input)
Length of array x.

float x[] (Input)
Array of length n_predict containing the values of the independent
variable for which calculations are to be performed.

Return Value
A pointer to an internally allocated array of length n_predict containing the
predicted values.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_poly_prediction (Imsls_f_poly_regression *poly_info,
int n_predict, float x[],
IMSLS_CONFIDENCE, float confidence,
IMSLS_WEIGHTS, float weights[],
IMSLS_SCHEFFE_CI, float **lower_limit,

float **upper_limit,
IMSLS_SCHEFFE_CI_USER, float lower_limit[],

float upper_limit[],
IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit,

float **upper_limit,
IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[],

float upper_limit[],
IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit,

float **upper_limit,
IMSLS_POINTWISE_CI_NEW_SAMPLE_USER,

float lower_limit[],

Chapter 2: Regression poly_prediction •••• 141

float upper_limit[],
IMSLS_LEVERAGE, float **leverage,
IMSLS_LEVERAGE_USER, float leverage[],
IMSLS_RETURN_USER, float y_hat[],
IMSLS_Y, float y[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_STANDARDIZED_RESIDUAL,

float **standardized_residual,
IMSLS_STANDARDIZED_RESIDUAL_USER,

float standardized_residual[],
IMSLS_DELETED_RESIDUAL, float **deleted_residual,
IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[],
IMSLS_COOKSD, float **cooksd,
IMSLS_COOKSD_USER, float cooksd[],
IMSLS_DFFITS, float **dffits,
IMSLS_DFFITS_USER, float dffits[],
0)

Optional Arguments
IMSLS_CONFIDENCE, float confidence (Input)

Confidence level for both two-sided interval estimates on the mean and
for two-sided prediction intervals in percent. Argument confidence
must be in the range [0.0, 100.0). For one-sided intervals with
confidence level onecl, where 50.0 ≤ onecl < 100.0, set
confidence = 100.0 � 2.0 * (100.0 − onecl).
Default: confidence = 95.0

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_predict containing the weight for each row of x.
The computed prediction interval uses SSE/(DFE*weights[i]) for the
estimated variance of a future response.
Default: weights[] = 1

IMSLS_SCHEFFE_CI, float **lower_limit, float **upper_limit

(Output)
Array lower_limit is the address of a pointer to an internally allocated
array of length n_predict containing the lower confidence limits of
Scheffé confidence intervals corresponding to the rows of x. Array
upper_limit is the address of a pointer to an internally allocated array
of length n_predict containing the upper confidence limits of Scheffé
confidence intervals corresponding to the rows of x.

IMSLS_SCHEFFE_CI_USER, float lower_limit[], float upper_limit[]

(Output)
Storage for arrays lower_limit and upper_limit is provided by the user.
See IMSLS_SCHEFFE_CI.

142 •••• poly_prediction IMSL C/Stat/Library

IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit,
float **upper_limit (Output)
Array lower_limit is the address of a pointer to an internally allocated
array of length n_predict containing the lower confidence limits of the
confidence intervals for two-sided interval estimates of the means,
corresponding to the rows of x. Array upper_limit is the address of
a pointer to an internally allocated array of length n_predict
containing the upper confidence limits of the confidence intervals for
two-sided interval estimates of the means, corresponding to the rows of
x.

IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[],
float upper_limit[] (Output)
Storage for arrays lower_limit and upper_limit is provided by the
user. See IMSLS_POINTWISE_CI_POP_MEAN.

IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit,
float **upper_limit (Output)
Array lower_limit is the address of a pointer to an internally allocated
array of length n_predict containing the lower confidence limits of the
confidence intervals for two-sided prediction intervals, corresponding to
the rows of x. Array upper_limit is the address of a pointer to an
internally allocated array of length n_predict containing the upper
confidence limits of the confidence intervals for two-sided prediction
intervals, corresponding to the rows of x.

IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, float lower_limit[],
float upper_limit[] (Output)
Storage for arrays lower_limit and upper_limit is provided by the
user. See IMSLS_POINTWISE_CI_NEW_SAMPLE.

IMSLS_LEVERAGE, float **leverage (Output)
Address of a pointer to an internally allocated array of length
n_predict containing the leverages.

IMSLS_LEVERAGE_USER, float leverage[] (Output)
Storage for array leverage is provided by the user. See
IMSLS_LEVERAGE.

IMSLS_RETURN_USER, float y_hat[] (Output)
Storage for array y_hat is provided by the user. The length n_predict
array contains the predicted values.

IMSLS_Y float y[] (Input)
Array of length n_predict containing the observed responses.

Note: IMSLS_Y must be specified if any of the following optional arguments are
specified.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to an internally allocated array of length
n_predict containing the residuals.

Chapter 2: Regression poly_prediction •••• 143

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See
IMSLS_RESIDUAL.

IMSLS_STANDARDIZED_RESIDUAL, float **standardized_residual

(Output)
Address of a pointer to an internally allocated array of length
n_predict containing the standardized residuals.

IMSLS_STANDARDIZED_RESIDUAL_USER, float standardized_residual[]
(Output)
Storage for array standardized_residual is provided by the user.
See IMSLS_STANDARDIZED_RESIDUAL.

IMSLS_DELETED_RESIDUAL, float **deleted_residual (Output)
Address of a pointer to an internally allocated array of length
n_predict containing the deleted residuals.

IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[] (Output)
Storage for array deleted_residual is provided by the user. See
IMSLS_DELETED_RESIDUAL.

IMSLS_COOKSD, float **cooksd (Output)
Address of a pointer to an internally allocated array of length
n_predict containing the Cook�s D statistics.

IMSLS_COOKSD_USER, float cooksd[] (Output)
Storage for array cooksd is provided by the user. See IMSLS_COOKSD.

IMSLS_DFFITS, float **dffits (Output)
Address of a pointer to an internally allocated array of length
n_predict containing the DFFITS statistics.

IMSLS_DFFITS_USER, float dffits[] (Output)
Storage for array dffits is provided by the user. See IMSLS_DFFITS.

Description
Function imsls_f_poly_prediction assumes a polynomial model

y x x i ni i k i
k

i� � � � �� � � �0 1 1 2..., , , ...,

where the observed values of the yi�s constitute the response, the xi�s are the
settings of the independent variable, the βj�s are the regression coefficients and
the εi�s are the errors that are independently distributed normal with mean 0 and
the following variance:

σ 2

wi

Given the results of a polynomial regression, fitted using orthogonal polynomials
and weights wi, function imsls_f_poly_prediction produces predicted

144 •••• poly_prediction IMSL C/Stat/Library

values, residuals, confidence intervals, prediction intervals, and diagnostics for
outliers and in influential cases.

Often, a predicted value and confidence interval are desired for a setting of the
independent variable not used in computing the regression fit. This is
accomplished by simply using a different x matrix when calling
imsls_f_poly_prediction than was used for the fit (function
imsls_f_poly_regression). See Example 1 on page 144.

Results from function imsls_f_poly_regression, which produces the fit
using orthogonal polynomials, are used for input by the structure poly_info.
The fitted model from imsls_f_poly_regression is

� � � �y p z p z p zi i i k k i= + + +α α α0 0 1 1b g b g b g�

where the zi�s are settings of the independent variable x scaled to the interval
[−2, 2] and the pj (z)�s are the orthogonal polynomials. The XTX matrix for this
model is a diagonal matrix with elements dj. The case statistics are easily
computed from this model and are equal to those from the original polynomial
model with βj�s as the regression coefficients.

The leverage is computed as follows:

h w d p zi i j
j

k

j i= −

=
�

1

0

2 b g

The estimated variance of
�yi

is given by the following:

h s
w
i

i

2

The computation of the remainder of the case statistics follows easily from the
definitions. See �Diagnostics for Individual Cases� (page 53) for the definition of
the case diagnostics.

Often, predicted values and confidence intervals are desired for combinations of
settings of the independent variables not used in computing the regression fit.
This can be accomplished by defining a new data matrix. Since the information
about the model fit is input in poly_info, it is not necessary to send in the data
set used for the original calculation of the fit, i.e., only variable combinations for
which predictions are desired need be entered in x.

Examples

Example 1
A polynomial model is fit to the data discussed by Neter and Wasserman
(1974, pp. 279�285). The data set contains the response variable y measuring

Chapter 2: Regression poly_prediction •••• 145

coffee sales (in hundred gallons) and the number of self-service dispensers.
Responses for 14 similar cafeterias are in the data set.

#include <imsls.h>

main()
{

Imsls_f_poly_regression *poly_info;
float *y_hat, *coefficients;
int n_observations = 14;
int degree = 2;
int n_predict = 8;
float x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,

4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
float y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,

758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};
float x2[] = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0};

/* Generate the polynomial regression fit*/
coefficients = imsls_f_poly_regression (n_observations, x, y,

degree, IMSLS_POLY_REGRESSION_INFO, &poly_info, 0);

/* Compute predicted values */
y_hat = imsls_f_poly_prediction(poly_info, n_predict, x2, 0);

/* Print predicted values */
imsls_f_write_matrix("Predicted Values", 1, n_predict, y_hat, 0);

free(coefficients);
free(y_hat);
return;

}

Output

Predicted Values
1 2 3 4 5 6

503.3 578.3 645.4 704.4 755.6 798.8

7 8
834.1 861.4

Example 2
Predicted values, confidence intervals, and diagnostics are computed for the data
set described in the first example.

#include <imsls.h>

main()
{
#define N_PREDICT 14

Imsls_f_poly_regression *poly_info;
float *coefficients, y_hat[N_PREDICT],

lower_ci[N_PREDICT], upper_ci[N_PREDICT],
lower_pi[N_PREDICT], upper_pi[N_PREDICT],
s_residual[N_PREDICT], d_residual[N_PREDICT],
leverage[N_PREDICT], cooksd[N_PREDICT],

146 •••• poly_prediction IMSL C/Stat/Library

dffits[N_PREDICT], lower_scheffe[N_PREDICT],
upper_scheffe[N_PREDICT];

int n_observations = N_PREDICT;
int degree = 2;
float x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,

4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
float y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,

758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};

/* Generate the polynomial regression fit*/
coefficients = imsls_f_poly_regression (n_observations, x, y,

degree, IMSLS_POLY_REGRESSION_INFO, &poly_info, 0);

/* Compute predicted values and case statistics */
imsls_f_poly_prediction(poly_info, N_PREDICT, x,

IMSLS_RETURN_USER, y_hat,
IMSLS_POINTWISE_CI_POP_MEAN_USER, lower_ci, upper_ci,
IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, lower_pi, upper_pi,
IMSLS_Y, y,
IMSLS_STANDARDIZED_RESIDUAL_USER, s_residual,
IMSLS_DELETED_RESIDUAL_USER, d_residual,
IMSLS_LEVERAGE_USER, leverage,
IMSLS_COOKSD_USER, cooksd,
IMSLS_DFFITS_USER, dffits,
IMSLS_SCHEFFE_CI_USER, lower_scheffe, upper_scheffe,
0);

/* Print results */
imsls_f_write_matrix("Predicted Values", 1, N_PREDICT, y_hat, 0);
imsls_f_write_matrix("Lower Scheffe CI", 1, N_PREDICT,

lower_scheffe, 0);
imsls_f_write_matrix("Upper Scheffe CI", 1, N_PREDICT,

upper_scheffe, 0);
imsls_f_write_matrix("Lower CI", 1, N_PREDICT, lower_ci, 0);
imsls_f_write_matrix("Upper CI", 1, N_PREDICT, upper_ci, 0);
imsls_f_write_matrix("Lower PI", 1, N_PREDICT, lower_pi, 0);
imsls_f_write_matrix("Upper PI", 1, N_PREDICT, upper_pi, 0);
imsls_f_write_matrix("Standardized Residual", 1, N_PREDICT,

s_residual, 0);
imsls_f_write_matrix("Deleted Residual", 1, N_PREDICT,

d_residual, 0);
imsls_f_write_matrix("Leverage", 1, N_PREDICT, leverage, 0);
imsls_f_write_matrix("Cooks Distance", 1, N_PREDICT, cooksd, 0);
imsls_f_write_matrix("DFFITS", 1, N_PREDICT, dffits, 0);

free(coefficients);
return;

}

Output

Predicted Values
1 2 3 4 5 6

503.3 503.3 578.3 578.3 645.4 645.4

7 8 9 10 11 12
755.6 755.6 798.8 798.8 834.1 834.1

Chapter 2: Regression poly_prediction •••• 147

13 14
861.4 861.4

Lower Scheffe CI
1 2 3 4 5 6

489.8 489.8 569.5 569.5 636.5 636.5

7 8 9 10 11 12
745.7 745.7 790.2 790.2 825.5 825.5

13 14
847.7 847.7

Upper Scheffe CI
1 2 3 4 5 6

516.9 516.9 587.1 587.1 654.2 654.2

7 8 9 10 11 12
765.5 765.5 807.4 807.4 842.7 842.7

13 14
875.1 875.1

Lower CI
1 2 3 4 5 6

492.8 492.8 571.5 571.5 638.4 638.4

7 8 9 10 11 12
747.9 747.9 792.1 792.1 827.4 827.4

13 14
850.7 850.7

Upper CI
1 2 3 4 5 6

513.9 513.9 585.2 585.2 652.3 652.3

7 8 9 10 11 12
763.3 763.3 805.5 805.5 840.8 840.8

13 14
872.1 872.1

Lower PI
1 2 3 4 5 6

482.8 482.8 559.3 559.3 626.4 626.4

7 8 9 10 11 12
736.3 736.3 779.9 779.9 815.2 815.2

13 14
840.8 840.8

Upper PI
1 2 3 4 5 6

523.9 523.9 597.3 597.3 664.3 664.3

7 8 9 10 11 12
774.9 774.9 817.7 817.7 853.0 853.0

148 •••• poly_prediction IMSL C/Stat/Library

13 14
882.1 882.1

Standardized Residual
1 2 3 4 5 6

0.737 -0.766 -1.366 -0.137 0.859 1.575

7 8 9 10 11 12
-0.041 0.456 -1.507 -0.902 0.982 -0.308

13 14
-1.051 1.557

Deleted Residual
1 2 3 4 5 6

0.720 -0.751 -1.429 -0.131 0.848 1.707

7 8 9 10 11 12
-0.039 0.439 -1.613 -0.894 0.980 -0.295

13 14
-1.056 1.681

Leverage
1 2 3 4 5 6

0.3554 0.3554 0.1507 0.1507 0.1535 0.1535

7 8 9 10 11 12
0.1897 0.1897 0.1429 0.1429 0.1429 0.1429

13 14
0.3650 0.3650

Cooks Distance
1 2 3 4 5 6

0.0997 0.1080 0.1104 0.0011 0.0446 0.1500

7 8 9 10 11 12
0.0001 0.0162 0.1262 0.0452 0.0536 0.0053

13 14
0.2116 0.4644

DFFITS
1 2 3 4 5 6

0.535 -0.558 -0.602 -0.055 0.361 0.727

7 8 9 10 11 12
-0.019 0.212 -0.659 -0.365 0.400 -0.120

13 14
-0.801 1.274

Warning Errors
IMSLS_LEVERAGE_GT_1 A leverage (= #) much greater than one is

computed. It is set to 1.0.

Chapter 2: Regression nonlinear_regression •••• 149

IMSLS_DEL_MSE_LT_0 A deleted residual mean square (= #) much
less than zero is computed. It is set to zero.

Fatal Errors
IMSLS_NEG_WEIGHT �weights[#]� = #. Weights must be

nonnegative.

nonlinear_regression
Fits a multivarite nonlinear regression model.

Synopsis
#include <imsls.h>

float *imsls_f_nonlinear_regression (float fcn(),
int n_parameters, int n_observations, int n_independent,
float x[], float y[], ..., 0)

The type double function is imsls_d_nonlinear_regression.

Required Arguments

float fcn (int n_independent, float xi[], int n_parameters,
float theta[])
User-supplied function to evaluate the function that defines the nonlinear
regression problem where xi is an array of length n_independent at
which point the function is evaluated and theta is an array of length
n_parameters containing the current values of the regression
coefficients. Function fcn returns a predicted value at the point xi. In
the following, f(xi;θ), or just fi, denotes the value of this function at the
point xi, for a given value of θ. (Both xi and θ are arrays.)

int n_parameters (Input)
Number of parameters to be estimated.

int n_observations (Input)
Number of observations.

int n_independent (Input)
Number of independent variables.

float x[] (Input)
Array of size n_observations by n_independent containing the
matrix of independent (explanatory) variables.

float y[] (Input)
Array of length n_observations containing the dependent (response)
variable.

150 •••• nonlinear_regression IMSL C/Stat/Library

Return Value
A pointer to an array of length n_parameters containing a solution, �θ for the
nonlinear regression coefficients. To release this space, use free. If no solution
can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_nonlinear_regression (float fcn(),
int n_parameters, int n_observations, int n_independent,
float x[], float y[],
IMSLS_THETA_GUESS, float theta_guess[],
IMSLS_JACOBIAN, void jacobian(),
IMSLS_THETA_SCALE, float theta_scale[],
IMSLS_GRADIENT_EPS, float gradient_eps,
IMSLS_STEP_EPS, float step_eps,
IMSLS_SSE_REL_EPS, float sse_rel_eps,
IMSLS_SSE_ABS_EPS, float sse_abs_eps,
IMSLS_MAX_STEP, float max_step,
IMSLS_INITIAL_TRUST_REGION, float trust_region,
IMSLS_GOOD_DIGIT, int ndigit,
IMSLS_MAX_ITERATIONS, int max_itn,
IMSLS_MAX_SSE_EVALUATIONS, int max_sse_eval,
IMSLS_MAX_JACOBIAN_EVALUATIONS, int max_jacobian,
IMSLS_TOLERANCE, float tolerance,
IMSLS_PREDICTED, float **predicted,
IMSLS_PREDICTED_USER, float predicted[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_R, float **r,
IMSLS_R_USER, float r[],
IMSLS_R_COL_DIM, int r_col_dim,
IMSLS_R_RANK, int *rank,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_DF, int *df,
IMSLS_SSE, float *sse,
IMSLS_RETURN_USER, float theta_hat[],
0)

Optional Arguments
IMSLS_THETA_GUESS, float theta_guess[] (Input)

Array with n_parameters components containing an initial guess.
Default: theta_guess[] = 0

IMSLS_JACOBIAN, void jacobian (int n_independent, float xi[],
int n_parameters, float theta[], float fjac[]) (Input/Output)
User-supplied function to compute the i-th row of the Jacobian, where

Chapter 2: Regression nonlinear_regression •••• 151

the n_independent data values corresponding to the i-th row are input
in xi. Argument theta is an array of length n_parameters containing
the regression coefficients for which the Jacobian is evaluated, fjac is
the computed n_parameters row of the Jacobian for observation i at
theta. Note that each derivative ∂f(xi)/∂θj should be returned in fjac
[j − 1] for j = 1, 2, ..., n_parameters.

IMSLS_THETA_SCALE, float theta_scale[] (Input)
Array with n_parameters components containing the scaling array for
θ. Array theta_scale is used mainly in scaling the gradient and the
distance between two points. See keywords IMSLS_GRADIENT_EPS and
IMSLS_STEP_EPS for more detail.
Default: theta_scale[] = 1

IMSLS_GRADIENT_EPS, float gradient_eps (Input)
Scaled gradient tolerance. The j-th component of the scaled gradient at θ
is calculated as

g t

F

j j j∗ max , /θ

θ

1

1
2 2

2

e j
b g

where g = ∇ F(θ), t = theta_scale, and

F y f xi ii

n
θ θb g b gc h2

2

1

2
= −

=� ;

The value F(θ) is the sum of the squared residuals, SSE, at the point θ.
Default:

grad_tol = ε

(ε3 in double, where ε is the machine precision)

IMSLS_STEP_EPS, float step_eps (Input)
Scaled step tolerance. The j-th component of the scaled step from points
θ and θ′ is computed as

θ θ

θ
j j

j jt

− ′

max , /1e j
where t = theta_scale
Default: step_eps = ε2/3,where ε is the machine precision

IMSLS_SSE_REL_EPS, float sse_rel_eps (Input)
Relative SSE function tolerance.
Default: sse_rel_eps = max(10-10, ε2/3), max(10-20, ε2/3) in double,
where ε is the machine precision

IMSLS_SSE_ABS_EPS, float sse_abs_eps (Input)
Absolute SSE function tolerance.

152 •••• nonlinear_regression IMSL C/Stat/Library

Default: sse_abs_eps = max(10-20,ε2), max(10-40, ε2) in double,
where ε is the machine precision

IMSLS_MAX_STEP, float max_step (Input)
Maximum allowable step size.
Default: max_step = 1000 max (ε1, ε2), where ε1 = (tTθ0)1/2, ε2 = ||t||2,
t = theta_scale, and θ0 = theta_guess

IMSLS_INITIAL_TRUST_REGION, float trust_region (Input)
Size of initial trust region radius. The default is based on the initial
scaled Cauchy step.

IMSLS_GOOD_DIGIT, int ndigit (Input)
Number of good digits in the function.
Default: machine dependent

IMSLS_MAX_ITERATIONS, int max_itn (Input)
Maximum number of iterations.
Default: max_itn = 100

IMSLS_MAX_SSE_EVALUATIONS, int max_sse_eval (Input)
Maximum number of SSE function evaluations.
Default: max_sse_eval = 400

IMSLS_MAX_JACOBIAN_EVALUATIONS, int max_jacobian (Input)
Maximum number of Jacobian evaluations.
Default: max_jacobian = 400

IMSLS_TOLERANCE, float tolerance (Input)
False convergence tolerance.
Default: tolerance = 100* eps, where eps = imsls_f_machine(4) if
single precision and eps = imsls_d_machine(4) if double precision

IMSLS_PREDICTED, float **predicted (Output)
Address of a pointer to a real internally allocated array of length
n_observations containing the predicted values at the approximate
solution.

IMSLS_PREDICTED_USER, float predicted[] (Output)
Storage for array predicted is provided by the user. See
IMSLS_PREDICTED.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to a real internally allocated array of length
n_observations containing the residuals at the approximate solution.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See
IMSLS_RESIDUAL.

IMSLS_R, float **r (Output)
Address of a pointer to an internally allocated array of size

Chapter 2: Regression nonlinear_regression •••• 153

n_parameters × n_parameters containing the R matrix from a QR
decomposition of the Jacobian.

IMSLS_R_USER, float r[] (Output)
Storage for array r is provided by the user. See IMSLS_R.

IMSLS_R_COL_DIM, int r_col_dim (Input)
Column dimension of array r.
Default: r_col_dim = n_parameters

IMSLS_R_RANK, int *rank (Output)
Rank of r. Argument rank less than n_parameters may indicate the
model is overparameterized.

IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of x.
Default: x_col_dim = n_independent

IMSLS_DF, int *df (Output)
Degrees of freedom.

IMSLS_SSE, float *sse (Output)
Residual sum of squares.

IMSLS_RETURN_USER, float theta_hat[] (Output)
User-allocated array of length n_parameters containing the estimated
regression coefficients.

Description
Function imsls_f_nonlinear_regression fits a nonlinear regression model
using least squares. The nonlinear regression model is

yi = f(xi; θ) + εi i = 1, 2, ..., n

where the observed values of the yi�s constitute the responses or values of the
dependent variable, the known xi�s are the vectors of the values of the
independent (explanatory) variables, θ is the vector of p regression parameters,
and the εi�s are independently distributed normal errors with mean 0 and variance
σ2. For this model, a least-squares estimate of θ is also a maximum likelihood
estimate of θ.

The residuals for the model are as follows:

ei(θ) = yi � f(xi; θ) i = 1, 2, ..., n

A value of θ that minimizes

eii

n
θb g

=� 1

2

is a least-squares estimate of θ. Function imsls_f_nonlinear_regression is
designed so that the values of the function f(xi; θ) are computed one at a time by a
user-supplied function.

154 •••• nonlinear_regression IMSL C/Stat/Library

Function imsls_f_nonlinear_regression is based on MINPACK routines
LMDIF and LMDER by Moré et al. (1980) that use a modified Levenberg-
Marquardt method to generate a sequence of approximations to a minimum point.
Let

�
cθ

be the current estimate of θ. A new estimate is given by

�θ +sc c

where sc is a solution to the following:

� � � �(() ()) () ()T T
c c c c c cJ J I s J eθ θ + µ = θ θ

Here
�()cJ θ

is the Jacobian evaluated at
�
cθ

The algorithm uses a �trust region� approach with a step bound of δc. A solution
of the equations is first obtained for

µc = 0. If ||sc||2 < δc

this update is accepted; otherwise, µc is set to a positive value and another
solution is obtained. The method is discussed by Levenberg (1944), Marquardt
(1963), and Dennis and Schnabel (1983, pp. 129−147, 218−338).

If a user-supplied function is specified in IMSLS_JACOBIAN, the Jacobian is
computed analytically; otherwise, forward finite differences are used to estimate
the Jacobian numerically. In the latter case, especially if type float is used, the
estimate of the Jacobian may be so poor that the algorithm terminates at a
noncritical point. In such instances, the user should either supply a Jacobian
function, use type double, or do both.

Programming Notes
Nonlinear regression allows substantial flexibility over linear regression because
the user can specify the functional form of the model. This added flexibility can
cause unexpected convergence problems for users that are unaware of the
limitations of the software. Also, in many cases, there are possible remedies that
may not be immediately obvious. The following is a list of possible convergence
problems and some remedies. There is not a one-to-one correspondence between
the problems and the remedies. Remedies for some problems also may be relevant
for the other problems.

1. A local minimum is found. Try a different starting value. Good starting
values often can be obtained by fitting simpler models. For example, for
a nonlinear function

Chapter 2: Regression nonlinear_regression •••• 155

f x e x;θ θ θb g = 1
2

good starting values can be obtained from the estimated linear regression
coefficients

�β 0

and
�β1

from a simple linear regression of ln y on ln x. The starting values for the
nonlinear regression in this case would be

θ θ ββ
1 2 1

0= =e
� � and

If an approximate linear model is not clear, then simplify the model by
reducing the number of nonlinear regression parameters. For example,
some nonlinear parameters for which good starting values are known
could be set to these values in order to simplify the model for computing
starting values for the remaining parameters.

2. The estimate of θ is incorrectly returned as the same or very close to the
initial estimate. This occurs often because of poor scaling of the
problem, which might result in the residual sum of squares being either
very large or very small relative to the precision of the computer. The
optional arguments allow control of the scaling.

3. The model is discontinuous as a function of θ. (The function f(x;θ) can
be a discontinuous function of x.)

4. Overflow occurs during the computations. Make sure the user-supplied
functions do not overflow at some value of θ.

5. The estimate of θ is going to infinity. A parameterization of the problem
in terms of reciprocals may help.

6. Some components of θ are outside known bounds. This can sometimes
be handled by making a function that produces artificially large residuals
outside of the bounds (even though this introduces a discontinuity in the
model function).

Examples

Example 1
In this example (Draper and Smith 1981, p. 518), the following nonlinear model
is fit:

Y e X= + − +− −α α εβ0 49 8.b g b g

#include <math.h>
#include <imsls.h>

156 •••• nonlinear_regression IMSL C/Stat/Library

float fcn(int, float[], int, float[]);

void main ()
{
#define N_OBSERVATIONS 4

int n_independent = 1;
int n_parameters = 2;
float *theta_hat;
float x[N_OBSERVATIONS][1] = {10.0, 20.0, 30.0, 40.0};
float y[N_OBSERVATIONS] = {0.48, 0.42, 0.40, 0.39};

/* Nonlinear regression */
theta_hat = imsls_f_nonlinear_regression(fcn, n_parameters,

N_OBSERVATIONS, n_independent, (float *)x, y, 0);

/* Print estimates */
imsls_f_write_matrix("estimated coefficients", 1, n_parameters,

theta_hat, 0);

} /* End of main */

float fcn(int n_independent, float x[], int n_parameters, float theta[])
{

return (theta[0] + (0.49 - theta[0])*exp(theta[1]*(x[0] - 8)));
} /* End of fcn */

Output

estimated coefficients
1 2

0.3807 -0.0794

Example 2
Consider the nonlinear regression model and data set discussed by Neter et al.
(1983, pp. 475−478):

y ei
x

i
i= +θ εθ

1
2

There are two parameters and one independent variable. The data set considered
consists of 15 observations.

#include <math.h>
#include <imsls.h>

float fcn(int, float[], int, float[]);
void jacobian(int, float[], int, float[], float[]);

void main()
{
#define N_OBSERVATIONS 15

int n_independent=1;
int n_parameters= 2;
float *theta_hat, *r, *y_hat;
float grad_eps = 1.0e-3;
float theta_guess[2] = {60.0, -0.03};
float y[N_OBSERVATIONS] = {

Chapter 2: Regression nonlinear_regression •••• 157

54.0, 50.0, 45.0, 37.0, 35.0,
25.0, 20.0, 16.0, 18.0, 13.0,
8.0, 11.0, 8.0, 4.0, 6.0 };

float x[N_OBSERVATIONS] = {
2.0, 5.0, 7.0, 10.0, 14.0,
19.0, 26.0, 31.0, 34.0, 38.0,
45.0, 52.0, 53.0, 60.0, 65.0 };

char *fmt="%12.5e";

/* Nonlinear regression */
theta_hat = imsls_f_nonlinear_regression(fcn, n_parameters,

N_OBSERVATIONS, n_independent, x, y,
IMSLS_THETA_GUESS, theta_guess,
IMSLS_GRADIENT_EPS, grad_eps,
IMSLS_R, &r,
IMSLS_PREDICTED, &y_hat,
IMSLS_JACOBIAN, jacobian,
0);

/* Print results */
imsls_f_write_matrix("Estimated coefficients", 1, n_parameters,

theta_hat, 0);

imsls_f_write_matrix("Predicted values", 1, N_OBSERVATIONS,
y_hat, 0);

imsls_f_write_matrix("R matrix", n_parameters, n_parameters,
r, IMSLS_WRITE_FORMAT, "%10.2f", 0);

} /* End of main */

float fcn(int n_independent, float x[], int n_parameters, float theta[])
{

return (theta[0]*exp(x[0]*theta[1]));
} /* End of fcn */

void jacobian(int n_independent, float x[], int n_parameters,
float theta[], float fjac[])

{
fjac[0] = exp(theta[1]*x[0]);
fjac[1] = theta[0]*x[0]*exp(theta[1]*x[0]);

}
 /* End of jacobian */

Output

Estimated coefficients
1 2

58.61 -0.04

Predicted values
1 2 3 4 5 6

54.15 48.08 44.42 39.45 33.67 27.62

7 8 9 10 11 12
20.94 17.18 15.26 13.02 9.87 7.48

158 •••• nonlinear_optimization IMSL C/Stat/Library

13 14 15
7.19 5.45 4.47

R matrix
1 2

1 1.87 1139.93
2 0.00 1139.80

Informational Errors
IMSLS_STEP_TOLERANCE Scaled step tolerance satisfied.

The current point may be an
approximate local solution, but it
is also possible that the algorithm
is making very slow progress and
is not near a solution or that
�step_eps� is too big.

Warning Errors
IMSLS_LITTLE_FCN_CHANGE Both the actual and predicted

relative reductions in the function
are less than or equal to the
relative function tolerance.

IMSLS_TOO_MANY_ITN Maximum number of iterations
exceeded.

IMSLS_TOO_MANY_FCN_EVAL Maximum number of function
evaluations exceeded.

IMSLS_TOO_MANY_JACOBIAN_EVAL Maximum number of Jacobian
evaluations exceeded.

IMSLS_UNBOUNDED Five consecutive steps have been
taken with the maximum step
length.

IMSLS_FALSE_CONVERGENCE The iterates appear to be
converging to a noncritical point.

nonlinear_optimization
Fits data to a nonlinear model (possibly with linear constraints) using the
successive quadratic programming algorithm (applied to the sum of squared
errors, sse = Σ(yi − f(xi; θ))2) and either a finite difference gradient or a user-
supplied gradient.

Synopsis

#include <imsls.h>

Chapter 2: Regression nonlinear_optimization •••• 159

float *imsls_f_nonlinear_optimization (float fcn(),
int n_parameters, int n_observations, int n_independent,
float x[], float y[], ..., 0)

The type double function is imsls_d_nonlinear_optimization.

Required Arguments

float fcn (int n_independent, float xi[], int n_parameters,
float theta[])
User-supplied function to evaluate the function that defines the nonlinear
regression problem where xi is an array of length n_independent at
which point the function is evaluated and theta is an array of length
n_parameters containing the current values of the regression
coefficients. Function fcn returns a predicted value at the point xi. In
the following, f(xi; θ), or just fi, denotes the value of this function at the
point xi, for a given value of θ. (Both xi and θ are arrays.)

int n_parameters (Input)
Number of parameters to be estimated.

int n_observations (Input)
Number of observations.

int n_independent (Input)
Number of independent variables.

float *x (Input)
Array of size n_observations by n_independent containing the
matrix of independent (explanatory) variables.

float y[] (Input)
Array of length n_observations containing the dependent (response)
variable.

Return Value
A pointer to an array of length n_parameters containing a solution, �θ for the
nonlinear regression coefficients. To release this space, use free. If no solution
can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_nonlinear_optimization (float fcn(),
int n_parameters, int n_observations, int
n_independent, float x[], float y[],
IMSLS_THETA_GUESS, float theta_guess[],
IMSLS_JACOBIAN, void jacobian(),
IMSLS_SIMPLE_LOWER_BOUNDS, float theta_lb[],
IMSLS_SIMPLE_UPPER_BOUNDS, float theta_ub[],
IMSLS_LINEAR_CONSTRAINTS, int n_constraints,

int n_equality, float a[], float b[],
IMSLS_FREQUENCIES, float frequencies,

160 •••• nonlinear_optimization IMSL C/Stat/Library

IMSLS_WEIGHTS, float weights,
IMSLS_ACC, float acc,
IMSLS_MAX_SSE_EVALUATIONS, int *max_sse_eval,
IMSLS_PRINT_LEVEL, int print_level,
IMSLS_STOP_INFO, int *stop_info,
IMSLS_ACTIVE_CONSTRAINTS_INFO, int *n_active,

int **indices_active, float **multiplier,
IMSLS_ACTIVE_CONSTRAINTS_INFO_USER, int *n_active,

int indices_active[], float multiplier[],
IMSLS_PREDICTED, float **predicted,
IMSLS_PREDICTED_USER, float predicted[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_SSE, float *sse,
IMSLS_RETURN_USER, float theta_hat[],
0)

Optional Arguments
IMSLS_THETA_GUESS, float theta_guess[] (Input)

Array with n_parameters components containing an initial guess.
Default: theta_guess[] = 0

IMSLS_JACOBIAN, void jacobian (int n_independent, float xi[],
int n_parameters, float theta[], float fjac[]) (Input/Output)
User-supplied function to compute the i-th row of the Jacobian, where
the n_independent data values corresponding to the i-th row are input
in xi. Argument theta is an array of length n_parameters containing
the regression coefficients for which the Jacobian is evaluated, fjac is
the computed n_parameters row of the Jacobian for observation i at
theta. Note that each derivative f(xi)/θ should be returned in
fjac[j-1] for i = 1, 2, ..., n_parameters. Further note that in order to
maintain consistency with the other nonlinear solver,
nonlinear_regression, the Jacobian values must be specified
as the negative of the calculated derivatives.

IMSLS_SIMPLE_LOWER_BOUNDS, float theta_lb[] (Input)
Vector of length n_parameters containing the lower bounds on the
parameters; choose a very large negative value if a component should be
unbounded below or set theta_lb[i] = theta_ub[i] to freeze the
i-th variable.
Default: All parameters are bounded below by -106.

IMSLS_SIMPLE_UPPER_BOUNDS, float theta_ub[] (Input)
Vector of length n_parameters containing the upper bounds on the
parameters; choose a very large value if a component should be
unbounded above or set theta_lb[i] = theta_ub[i] to freeze the
i-th variable.
Default: All parameters are bounded above by 106.

IMSLS_LINEAR_CONSTRAINTS, int n_constraints, int n_equality,
float a[], float b[] (Input)

Chapter 2: Regression nonlinear_optimization •••• 161

Argument n_constraints is the total number of linear constraints
(excluding simple bounds). Argument n_equality is the number of
these constraints which are equality constraints; the remaining
n_constraints − n_equality constraints are inequality constraints.
Argument a is a n_constraints by n_parameters array containing
the equality constraint gradients in the first n_equality rows, followed
by the inequality constraint gradients. Argument b is a vector of length
n_constraints containing the right-hand sides of the linear
constraints.
Specifically, the constraints on θ are:
ai1 θ1 + ... + aij θj = bi for i = 1, n_equality and j = 1,
n_parameter, and
ak1 θ1 + ... + akj θj ≤ bk for k = n_equality + 1, n_constraints and
j = 1, n_parameter.
Default: There are no default linear constraints.

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_observations containing the frequency for each
observation.
Default: frequencies[] = 1

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_observations containing the weight for each
observation.
Default: weights[] = 1

IMSLS_ACC, float acc (Input)
The nonnegative tolerance on the first order conditions at the calculated
solution.

IMSLS_MAX_SSE_EVALUATIONS, int *max_sse_eval (Input/Output)
On input max_sse_eval is the maximum number of sse evaluations
allowed. On output, max_sse_eval contains the actual number of sse
evaluations needed.
Default: max_sse_eval = 400

IMSLS_PRINT_LEVEL, int print_level (Input)
Argument print_level specifies the frequency of printing during
execution. If print_level = 0, there is no printing. Otherwise, after
ensuring feasibility, information is printed every print_level
iterations and whenever an internal tolerance (called tol) is reduced. The
printing provides the values of theta and the sse and gradient at the
value of theta. If print_level is negative, this information is
augmented by the current values of indices_active, multiplier,
and reskt, where reskt is the Kuhn-Tucker residual vector at theta.

IMSLS_STOP_INFO, int *stop_info (Output)
Argument stop_info will have one of the following integer values to
indicate the reason for leaving the routine:

162 •••• nonlinear_optimization IMSL C/Stat/Library

stop_info Reason for leaving routine

1 θ is feasible, and the condition that depends on acc is
satisfied.

2 θ is feasible, and rounding errors are preventing further
progress.

3 θ is feasible, but sse fails to decrease although a decrease
is predicted by the current gradient vector.

4 The calculation cannot begin because a contains fewer
than n_constraints constraints or because the lower
bound on a variable is greater than the upper bound.

5 The equality constraints are inconsistent. These
constraints include any components of �θ that are frozen
by setting theta_lb[i] equal to theta_ub[i].

6 The equality constraints and the bound on the variables
are found to be inconsistent.

7 There is no possible θ that satisfies all of the constraints.

8 Maximum number of sse evaluations (max_sse_eval)
is exceeded.

9 θ is determined by the equality constraints.

IMSLS_ACTIVE_CONSTRAINTS_INFO, int *n_active,
int **indices_active, float **multiplier (Output)
Argument n_active returns the final number of active constraints.
Argument indices_active is the address of a pointer to an internally
allocated integer array of length n_active containing the indices of the
final active constraints. Argument multiplier is the address of a
pointer to an internally allocated real array of length n_active
containing the Lagrange multiplier estimates of the final active
constraints.

IMSLS_ACTIVE_CONSTRAINTS_INFO_USER, int *n_active,
int indices_active[], float multiplier[] (Output)
Storage for arrays indices_active and multiplier are provided by
the user. The maximum length needed for these arrays is
n_constraints. See IMSLS_ACTIVE_CONSTRAINTS_INFO.

IMSLS_PREDICTED, float **predicted (Output)
Address of a pointer to a real internally allocated array of length

Chapter 2: Regression nonlinear_optimization •••• 163

n_observations containing the predicted values at the approximate
solution.

IMSLS_PREDICTED_USER, float predicted[] (Output)
Storage for array predicted is provided by the user. See
IMSLS_PREDICTED.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to a real internally allocated array of length
n_observations containing the residuals at the approximate solution.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See
IMSLS_RESIDUAL.

IMSLS_SSE, float *sse (Output)
Residual sum of squares.

IMSLS_RETURN_USER, float theta_hat[] (Output)
User-allocated array of length n_parameters containing the estimated
regression coefficients.

Description
Function imsls_f_nonlinear_optimization is based on M.J.D. Powell�s
TOLMIN, which solves linearly constrained optimization problems, i.e.,
problems of the form min f(θ), θ ∈ ℜ , subject to

A1θ = b1

A2θ ≤ b2

θI ≤ θ ≤ θu

given the vectors b1, b2, θI, and θu and the matrices A1 and A2.

The algorithm starts by checking the equality constaints for inconsistency and
redundancy. If the equality constraints are consistent, the method will revise θ0,
the initial guess provided by the user, to satisfy

A1θ = b1

Next, θ0 is adjusted to satisfy the simple bounds and inequality constraints. This
is done by solving a sequence of quadratic programming subproblems to
minimize the sum of the constraint or bound violations.

Now, for each iteration with a feasible θk, let Jk be the set of indices of inequality
constraints that have small residuals. Here, the simple bounds are treated as
inequality constraints. Let Ik be the set of indices of active constraints. The
following quadratic programming problem

min f d f d B dk T k T kθ θe j e j+ ∇ + 1
2

subject to

164 •••• nonlinear_optimization IMSL C/Stat/Library

ajd = 0 j ∈ Ik

ajd ≤ 0 j ∈ Jk

is solved to get (dk, λk) where aj is a row vector representing either a constraint in
A1 or A2 or a bound constraint on θ. In the latter case, the aj = ei for the bound
constraint θi ≤ (θu)i and aj = −ei for the constraint θi ≤ (θl)i. Here, ei is a vector
with a 1 as the i-th component, and zeroes elsewhere. λk are the Lagrange
multipliers, and Bk is a positive definite approximation to the second derivative
∇ 2 f(θk).

After the search direction dk is obtained, a line search is performed to locate a
better point. The new point θk+1 = θk + αkdk has to satisfy the conditions

f (θk + αkdk) ≤ f (θk) + 0.1αk (dk)T∇ f (θk)

and

(dk)T∇ f (θk + αkdk) ≥ 0.7 (dk)T∇ f (θk)

The main idea in forming the set Jk is that, if any of the inequality constraints
restricts the step-length αk, then its index is not in Jk. Therefore, small steps are
likely to be avoided.

Finally, the second derivative approximation, Bk, is updated by the BFGS
formula, if the condition

(dk)T∇ f (θk + αkdk) − ∇ f (θk) > 0

holds. Let θk ← θk+1, and start another iteration.

The iteration repeats until the stopping criterion

||∇ f (θk) − Akλk||2 ≤ τ

is satisfied; here, τ is a user-supplied tolerance. For more details, see Powell
(1988, 1989).

Since a finite-difference method is used to estimate the gradient for some single
precision calculations, an inaccurate estimate of the gradient may cause the
algorithm to terminate at a noncritical point. In such cases, high precision
arithmetic is recommended. Also, whenever the exact gradient can be
easily provided, the gradient should be passed to
imsls_f_nonlinear_optimization using the optional argument
IMSLS_JACOBIAN.

Examples

Example 1
In this example, a data set is fitted to the nonlinear model function

Chapter 2: Regression nonlinear_optimization •••• 165

y xi i i= +sin θ ε0b g
#include <imsls.h>
#include <math.h>

float fcn(int n_independent, float x[], int n_parameters, float theta[]);

main()
{

int n_parameters = 1;
int n_observations = 11;
int n_independent = 1;
float *theta_hat;
float x[11] = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, 1.0};
float y[15] = {0.05, 0.21, 0.67, 0.72, 0.98, 0.94,

1.00, 0.73, 0.44, 0.36, 0.02};

theta_hat =
imsls_f_nonlinear_optimization(fcn, n_parameters,

n_observations, n_independent, x, y,
0);

imsls_f_write_matrix("Theta Hat", 1, n_parameters, theta_hat, 0);

free(theta_hat);
}

float fcn(int n_independent, float x[], int n_parameters, float theta[])
{

return sin(theta[0]*x[0]);
}

Output

Theta Hat

3.161

Example 2

Draper and Smith (1981, p. 475) state a problem due to Smith and Dubey. [H.
Smith and S. D. Dubey (1964), "Some reliability problems in the chemical
industry", Industrial Quality Control, 21 (2), 1964, pp. 64−70] A certain product
must have 50% available chlorine at the time of manufacture. When it reaches the
customer 8 weeks later, the level of available chlorine has dropped to 49%. It was
known that the level should stabilize at about 30%. To predict how long the
chemical would last at the customer site, samples were analyzed at different
times. It was postulated that the following nonlinear model should fit the data.

166 •••• nonlinear_optimization IMSL C/Stat/Library

y ei
x

i
i= + − +− −θ θ εθ

0
80 49.b g b g

Since the chlorine level will stabilize at about 30%, the initial guess for theta1 is
0.30. Using the last data point (x = 42, y = 0.39) and θ0 = 0.30 and the above
nonlinear equation, an estimate for θ1of 0.02 is obtained.

The constraints that θ0 ≥ = 0 and θ1 ≥ = 0 are also imposed. These are equivalent
to requiring that the level of available chlorine always be positive and never
increase with time.

The Jacobian of the nonlinear model equation is also used.

#include <imsls.h>
#include <math.h>

float fcn(int n_independent, float x[], int n_parameters, float theta[]);
void jacobian(int n_independent, float x[], int n_parameters,

float theta[],
float fjac[]);
main()
{

int n_parameters = 2;
int n_observations = 44;
int n_independent = 1;
float *theta_hat;
float x[44] = {

8.0, 8.0, 10.0, 10.0, 10.0, 10.0, 12.0, 12.0, 12.0,
12.0, 14.0, 14.0, 14.0, 16.0, 16.0, 16.0, 18.0, 18.0, 20.0,
20.0, 20.0, 22.0, 22.0, 22.0, 24.0, 24.0, 24.0, 26.0, 26.0,
26.0, 28.0, 28.0, 30.0, 30.0, 30.0, 32.0, 32.0, 34.0, 36.0,
36.0, 38.0, 38.0, 40.0, 42.0};

float y[44] = {
.49, .49, .48, .47, .48, .47, .46, .46, .45, .43, .45,
.43, .43, .44, .43, .43, .46, .45, .42, .42, .43, .41, .41,
.4, .42, .4, .4, .41, .4, .41, .41, .4, .4, .4, .38, .41,
.4, .4, .41, .38, .4, .4, .39, .39};

float guess[2] = {0.30, 0.02};
float xlb[2] = {0.0, 0.0};
float sse;

theta_hat =
imsls_f_nonlinear_optimization(fcn, n_parameters, n_observations,

n_independent, x, y,
IMSLS_THETA_GUESS, guess,
IMSLS_SIMPLE_LOWER_BOUNDS, xlb,
IMSLS_JACOBIAN, jacobian,
IMSLS_SSE, &sse,
0);

imsls_f_write_matrix("Theta Hat", 1, 2, theta_hat, 0);
free(theta_hat);

}

float fcn(int n_independent, float x[], int n_parameters, float theta[])

Chapter 2: Regression nonlinear_optimization •••• 167

{
return theta[0] + (0.49-theta[0])*exp(-theta[1]*(x[0]-8.0));

}

void jacobian(int n_independent, float x[], int n_parameters,
float theta[],

float fjac[])
{

fjac[0] = -1.0 + exp(-theta[1]*(x[0]-8.0));
fjac[1] = (0.49-theta[0])*(x[0]-8.0) * exp(-theta[1]*(x[0]-8.0));

}

Output

Theta Hat

1 2

0.3901 0.1016

Fatal Errors
IMSLS_BAD_CONSTRAINTS_1 The equality constraints are

inconsistent.

IMSLS_BAD_CONSTRAINTS_2 The equality constraints and the
bounds on the variables are found
to be inconsistent.

IMSLS_BAD_CONSTRAINTS_3 No vector �theta� satisfies all of
the constraints. Specifically, the
current active constraints prevent
any change in �theta� that reduces
the sum of constraint violations.

IMSLS_BAD_CONSTRAINTS_4 The variables are determined by
the equality constraints.

IMSLS_TOO_MANY_ITERATIONS_1 Number of function evaluations
exceeded �maxfcn� = #.

168 •••• Lnorm_regression IMSL C/Stat/Library

Lnorm_regression
Fits a multiple linear regression model using criteria other than least squares.
Namely, imsls_f_Lnorm_regression allows the user to choose Least
Absolute Value (L1), Least Lp norm (Lp), or Least Maximum Value (Minimax
or L�) method of multiple linear regression.

Synopsis
#include <imsls.h>

float *imsls_f_Lnorm_regression (int n_rows, int n_independent,
float x[], float y[], ..., 0)

The type double function is imsls_d_Lnorm_regression.

Required Arguments

int n_rows (Input)
Number of rows in x.

int n_independent (Input)
Number of independent (explanatory) variables.

float x[] (Input)
Array of size n_rows × n_independent containing the independent
(explanatory) variables(s). The i-th column of x contains the i-th
independent variable.

float y[] (Input)
Array of size n_rows containing the dependent (response) variable.

Return Value
imsls_f_Lnorm_regression returns a pointer to an array of length
n_independent + 1 containing a least absolute value solution for the regression
coefficients. The estimated intercept is the initial component of the array, where
the i-th component contains the regression coefficients for the i-th dependent
variable. If the optional argument IMSLS_NO_INTERCEPT is used then the
(i-1)-st component contains the regression coefficients for the i-th dependent
variable. imsls_f_Lnorm_regression returns the Lp norm or least maximum
value solution for the regression coefficients when appropriately specified in the
optional argument list.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_Lnorm__regression(int n_rows, int n_independent,
float x[], float y[],

IMSLS_METHOD_LAV,

Chapter 2: Regression Lnorm_regression •••• 169

IMSLS_METHOD_LLP, float p,

IMSLS_METHOD_LMV,

IMSLS_X_COL_DIM, int x_col_dim,

IMSLS_INTERCEPT,

IMSLS_NO_INTERCEPT,

IMSLS_RANK, int *rank,

IMSLS_ITERATIONS, int *iterations,

IMSLS_N_ROWS_MISSING, int *n_rows_missing,

IMSLS_TOLERANCE, float tolerence,

IMSLS_SEA, float *sum_lav_error,

IMSLS_MAX_RESIDUAL, float *max_residual,

IMSLS_R, float **R_matrix,

IMSLS_R_USER, float R_matrix[],

IMSLS_DEGREES_OF_FREEDOM, float df_error,

IMSLS_RESIDUALS, float **residual,

IMSLS_RESIDUALS_USER, float residual[],

IMSLS_SCALE, float *square_of_scale,

IMSLS_RESIDUALS_LP_NORM, float *Lp_norm_residual,

IMSLS_EPS, float epsilon,

IMSLS_WEIGHTS, float weights[],

IMSLS_FREQUENCIES, float frequencies[],

IMSLS_RETURN_USER, float coefficients[],

0)

Optional Arguments
IMSLS_METHOD_LAV, or

IMSLS_METHOD_LLP, float p, (Input) or

IMSLS_METHOD_LMV,
By default (or if IMSLS_METHOD_LAV is specified) the function fits a
multiple linear regression model using the least absolute values criterion.

IMSLS_METHOD_LLP requires the argument p, for p � 1, and fits a multiple linear
regression model using the Lp norm criterion.

IMSLS_METHOD_LMV fits a multiple linear regression model using the minimax
criterion.

IMSLS_WEIGHTS, float weights[], (Input)
Array of size n_rows containing the weights for the independent
(explanatory) variable.

170 •••• Lnorm_regression IMSL C/Stat/Library

IMSLS_FREQUENCIES, float frequencies[], (Input)
Array of size n_rows containing the frequencies for the independent
(explanatory) variable.

IMSLS_X_COL_DIM, int x_col_dim, (Input)
Leading dimension of x exactly as specified in the dimension statement
in the calling program.

IMSLS_INTERCEPT, or
IMSLS_NO_INTERCEPT,

IMSLS_INTERCEPT is the default where the fitted value for
observation i is

� � �β β β0 1 1+ + +x xk k�

where k = n_independent. If IMSLS_NO_INTERCEPT is specified, the
intercept term

�β0e j
 is omitted from the model and the return value from regression is a

pointer to an array of length n_independent.

IMSLS_RANK, int *rank, (Output)
Rank of the fitted model is returned in *rank.

IMSLS_ITERATIONS, int *iterations, (Output)
Number of iterations performed.

IMSLS_N_ROWS_MISSING, int *n_rows_missing, (Output)
Number of rows of data containing NaN (not a number) for the
dependent or independent variables. If a row of data contains NaN for
any of these variables, that row is excluded from the computations.

IMSLS_RETURN_USER, float coefficients[] (Output)
Storage for array coefficients is provided by the user.
See Return Value.

If IMSLS_METHOD_LAV is specified:
IMSLS_SEA, float sum_lav_error, (Output)

Sum of the absolute value of the errors.

If IMSLS_METHOD_LMV is specified:
IMSLS_MAX_RESIDUAL, float max_residual, (Output)

Magnitude of the largest residual.

If IMSLS_METHOD_LLP is specified:
IMSLS_TOLERANCE, float tolerence, (Input)

Tolerance used in determining linear dependence.
tolerence = 100 * imsls_f_machine(4) is the default.
See documentation for IMSL function imsls_f_machine.

Chapter 2: Regression Lnorm_regression •••• 171

IMSLS_R, float **R_matrix, (Output)
Upper triangular matrix of dimension (number of coeffieciencts
by number of coeffecients) containing the R matrix from a QR
decomposition of the matrix of regressors.

IMSLS_R_USER, float R_matrix[], (Output)
Storage for array R_matrix is provided by the user. See IMSLS_R.

IMSLS_DEGREES_OF_FREEDOM, float df_error, (Output)
Sum of the frequencies minus *rank. In least squares fit (p =2)
df_error is called the degrees of freedom of error.

IMSLS_RESIDUALS, float **residual, (Output)
Address of a pointer to an array (of length equal to the number of
observations) containing the residuals.

IMSLS_RESIDUALS_USER, float residual[], (Output)
Storage for array residual is provided by the user.
See IMSLS_RESIDUALS.

IMSLS_SCALE, float *square_of_scale, (Output)
Square of the scale constant used in an Lp analysis. An estimated
asymptotic variance-covariance matrix of the regression coefficients is
square_of_scale * (RTR)-1.

 IMSLS_RESIDUALS_LP_NORM, float *Lp_norm_residual, (Output)
Lp norm of the residuals.

 IMSLS_EPS, float epsilon, (Input)
Convergence criterion. If the maximum relative difference in residuals
from the k-th to (k+1)-st iterations is less than epsilon, convergence
is declared. epsilon = 100 * machine(4) is the default.

Description

Least Absolute Value Criterion
Function imsls_f_Lnorm_regression computes estimates of the regression
coefficients in a multiple linear regression model. For optional argument
IMSLS_LAV (default), the criterion satisfied is the minimization of the sum of the
absolute values of the deviations of the observed response yi from the fitted
response

�yi

for a set on n observations. Under this criterion, known as the L� or LAV (least
absolute value) criterion, the regression coefficient estimates minimize

y yi i
i

n

�

�

�

� �

0

1

172 •••• Lnorm_regression IMSL C/Stat/Library

The estimation problem can be posed as a linear programming problem. The
special nature of the problem, however, allows for considerable gains in
efficiency by the modification of the usual simplex algorithm for linear
programming. These modifications are described in detail by Barrodale and
Roberts (1973, 1974).

In many cases, the algorithm can be made faster by computing a least-squares
solution prior to the invocation of IMSLS_LAV. This is particularly useful when a
least-squares solution has already been computed. The procedure is as follows:

1. Fit the model using least squares and compute the residuals from
this fit.

2. Fit the residuals from Step 1 on the regressor variables in the model
using IMSLS_LAV.

3 Add the two estimated regression coefficient vectors from Steps 1
and 2. The result is an L� solution.

When multiple solutions exist for a given problem, option IMSLS_LAV may yield
different estimates of the regression coefficients on different computers, however,
the sum of the absolute values of the residuals should be the same (within
rounding differences). The informational error indicating nonunique solutions
may result from rounding accumulation. Conversely, because of rounding the
error may fail to result even when the problem does have multiple solutions.

Lp Norm Criterion
Optional argument IMSLS_LLP computes estimates of the regression coefficients
in a multiple linear regression model y = Xβ + ε under the criterion of minimizing
the Lp norm of the deviations for i = 0, …, n-1 of the observed response yi from
the fitted response

�yi

for a set on n observations and for p ≥ 1. For the case when IMSLS_WEIGHTS
AND IMSLS_FREQUENCIES are not supplied, the estimated regression
coefficient vector,

�β

(output in coefficients []) minimizes the Lp norm

y yi i
P

i

n p

�

F
HG

I
KJ

�

�

� �

/

0

1 1

The choice p = 1 yields the maximum likelihood estimate for β when the errors
have a Laplace distribution. The choice p = 2 is best for errors that are normally
distributed. Sposito (1989, pages 36−40) discusses other reasonable alternatives
for p based on the sample kurtosis of the errors.

Chapter 2: Regression Lnorm_regression •••• 173

Weights are useful if the errors in the model have known unequal variances

σ i
2

In this case, the weights should be taken as

wi i= 1 2/ σ

Frequencies are useful if there are repetitions of some observations in the data set.
If a single row of data corresponds to ni observations, set the frequency fi = ni.
In general, IMSLS_LLP minimizes the Lp norm

f w y yi
i

n

i i i

p
p

�

�

� �

F
HG

I
KJ0

1 1

�

/

b g
The asymptotic variance-covariance matrix of the estimated regression
coefficients is given by

asy.var(�) ()β λ= −2 1R RT

where R is from the QR decomposition of the matrix of regressors (output in
R-Matrix)ere an estimate of λ� is output in square_of_scale.

In the discussion that follows, we will first present the algorithm with frequencies
and weights all taken to be one. Later, we will present the modifications to handle
frequencies and weights different from one.

Option call IMSLS_LLP uses Newton�s method with a line search for p > 1.25
and, for p ≤ 1.25, uses a modification due to Ekblom (1973, 1987) in which a
series of perturbed problems are solved in order to guarantee convergence and
increase the convergence rate. The cutoff value of 1.25 as well as some of the
other implementation details given in the remaining discussion were investigated
by Sallas (1990) for their effect on CPU times.

In each case, for the first iteration a least-squares solution for the regression
coefficients is computed using routine imsls_f_regression (page 64). If
p = 2, the computations are finished. Otherwise, the residuals from the k-th
iteration,

e y yi
k

i i
k() ()

�= −

are used to compute the gradient and Hessian for the Newton step for the
(k + 1)-st iteration for minimizing the p-th power of the Lp norm. (The exponent
1/p in the Lp norm can be omitted during the iterations.)

For subsequent iterations, we first discuss the p > 1.25 case. For p > 1.25, the
gradient and Hessian at the (k + 1)-st iteration depend upon

z e ei
k

i
k p

i
k() () ()+ −

=1 1
signe j

and

174 •••• Lnorm_regression IMSL C/Stat/Library

v ei
k

i
k p() ()+ −

=1 2

In the case 1.25 < p < 2 and

e vi
k

i
kb g b g= +0 1,

and the Hessian are undefined; and we follow the recommendation of Merle and
Spath (1974). Specifically, we modify the definition of

vi
k()+1

to the following:

v
e

e
i

k

p
i

k

i
k p

()+

−

−=
< <R

S|
T|

1

2

2

2τ τif p and

otherwise

b g

b g

where τ equals 100 * imsls_f_machine(4) (or 100.0 * imsls_d_machine(4)
for the double precision version) times the square root of the residual mean
square from the least-squares fit. (See routines imsls_f_machine and
imsls_d_machine which are documented in the section �Machine-Dependent
Constants� in Reference Material.)

Let V�k��� be a diagonal matrix with diagonal entries

vi
k()+1

and let z�k��� be a vector with elements

zi
k()+1

In order to compute the step on the (k + 1)-st iteration, the R from the QR
decomposition of

[V�k���]���X

 is computed using fast Givens transformations. Let

R�k���

 denote the upper triangular matrix from the QR decomposition. The linear
system

 [R(k+1)]TR(k+1)d(k+1)= XT z(k+1)

is solved for

d�k���

where R�k��� is from the QR decomposition of V�k���]1/2X . The step taken on the
(k + 1)-st iteration is

� �() () () ()β β αk k k k
p d+ + += + −

1 1 11
1

Chapter 2: Regression Lnorm_regression •••• 175

The first attempted step on the (k + 1)-st iteration is with α�k��� = 1. If all of the

ei
kb g

are nonzero, this is exactly the Newton step. See Kennedy and Gentle (1980,
pages 528−529) for further discussion.

If the first attempted step does not lead to a decrease of at least one-tenth of the
predicted decrease in the p-th power of the Lp norm of the residuals, a
backtracking linesearch procedure is used. The backtracking procedure uses a
one-dimensional quadratic model to estimate the backtrack constant p. The value
of p is constrained to be no less that 0.1. An approximate upper bound for p is
0.5. If after 10 successive backtrack attempts, α�k� = p1p2… p10 does not produce
a step with a sufficient decrease, then imsls_f_Lnorm_regression issues a
message with error code 5. For further details on the backtrack line-search
procedure, see Dennis and Schnabel (1983, pages 126−127).

Convergence is declared when the maximum relative change in the residuals from
one iteration to the next is less than or equal to epsilon. The relative change

δ i
k()+1

in the i-th residual from iteration k to iteration k + 1 is computed as follows:

δ i
k i

k
i

k

i
k

i
k

i
k

i
k

e e
e e e s

()
() ()

() () ()/ , ,)
+

+

+ +=
= =

−

R
S|
T|

1
1

1 1
0 0if

max(e otherwise()

where s is the square root of the residual mean square from the least-squares fit on
the first iteration.

For the case 1 ≤ p ≤ 1.25, we describe the modifications to the previous
procedure that incorporate Ekblom�s (1973) results. A sequence of perturbed
problems are solved with a successively smaller perturbation constant c. On the
first iteration, the least-squares problem is solved. This corresponds to an infinite
c. For the second problem, c is taken equal to s, the square root of the residual
mean square from the least-squares fit. Then, for the (j + 1)-st problem, the value
of c is computed from the previous value of c according to

c cj j
p

+
−=1

5 410/

Each problem is stated as

Minimize e ci
p

i

n

() /2 2 2

0

1

�

�

�

�

For each problem, the gradient and Hessian on the (k + 1)-st iteration depend
upon

z e ri
k

i
k

i
k() () ()+ =1

and

176 •••• Lnorm_regression IMSL C/Stat/Library

v p e
e c

ri
k i

k

i
k i

k()
()

()
()()()

()
+ = +

−
+

L
NMM

O
QPP

1
2

2 21
2

where

r e ci
k

i
k p() () ()/

()= +
−2 2 2 2

The linear system [R�k���]TR�k���d�k���= XTz�k��� is solved for d�k��� where R�k���
is from the QR decomposition of [V �k���]���X. The step taken on the (k + 1)-st
iteration is

� �() () () ()β β αk k k kd+ + += +1 1 1

where the first attempted step is with α�k��� = 1. If necessary, the backtracking
line-search procedure discussed earlier is used.

Convergence for each problem is relaxed somewhat by using a convergence
epsilon equal to max(epsilon, 10�j) where j = 1, 2, 3, … indexes the problems
(j = 0 corresponds to the least-squares problem).

After the convergence of a problem for a particular c, Ekblom�s (1987)
extrapolation technique is used to compute the initial estimate of β for the new
problem. Let R�k�,

v ei
k

i
k() , b g

and c be from the last iteration of the last problem. Let

t p v
e ci

i
k

i
k=
−

+
()
()

()

()
2

2 2

and let t be the vector with elements ti. The initial estimate of β for the new
problem with perturbation constant 0.01c is

� �() ()β β0 = +k cd∆

where ∆c = (0.01c − c) = −0.99c, and where d is the solution of the linear system
[R�k�]�R�k�d = XTt.

Convergence of the sequence of problems is declared when the maximum relative
difference in residuals from the solution of successive problems is less than
epsilon.

The preceding discussion was limited to the case for which weights[i] = 1 and
frequencies[i] = 1, i.e., the weights and frequencies are all taken equal to
one. The necessary modifications to the preceding algorithm to handle weights
and frequencies not all equal to one are as follows:

1. Replace

e w ei
k

i i
kb g b g by

in the definitions of

Chapter 2: Regression Lnorm_regression •••• 177

z vi
k

i
k

i
k() () (), ,+ + +1 1 1δ

and ti.

2. Replace

z f w z v f w v w ti
k

i i i
k

i
k

i i i
k

i
k

i i i
k+ + + + + +1 1 1 1 1 1b g b g b g b g by by and t by f, ,() ()

These replacements have the same effect as multiplying the i-th row of X and y by

wi

and repeating the row fi times except for the fact that the residuals returned by
imsls_f_Lnorm_regression are in terms of the original y and X.

Finally, R and an estimate of λ2 are computed. Actually, R is recomputed because
on output it corresponds to the R from the initial QR decomposition for least
squares. The formula for the estimate of λ2 depends on p.

For p = 1, the estimator for λ2 is given by (McKean and Schrader 1987)

�
(~ ~)() ()

.
λ2 1

0 975

2

2
=

−L
N
MM

O
Q
PP

− +DFE e e
z

k kDFE

with

k k z= + −DFE DFE
2 40 975.

where z0.975�is the 97.5 percentile of the standard normal distribution, and where

() (1, 2,...,)m DFEmε =�

are the ordered residuals where rank zero residuals are excluded. Note that
1

=0 ranki
n
iDFE f−= −�

For p = 2, the estimator of λ2 is the customary least-squares estimator given by

s
f w y y

f
SSE

DFE
i
n

i i i i

i
n

i

2 0
1 2

0
1� �

�

�

�

�

�

�

�
�

(�)
rank

For 1 < p < 2 and for p > 2, the estimator for λ2 is given by (Gonin and Money
1989)

�

()
ω p

p

p

m

p m
2 2 2

2
2

1
=

−

−

−

with

178 •••• Lnorm_regression IMSL C/Stat/Library

m
f w y y

fr
i
n

i i i i

i
n

i

r

�

�
�

�

�

�
�

1

0
1

(�)

Least Minimum Value Criterion (minimax)
Optional call IMSLS_LMV computes estimates of the regression coefficients in a
multiple linear regression model. The criterion satisfied is the minimization of the
maximum deviation of the observed response yi from the fitted response �yi for a
set on n observations. Under this criterion, known as the minimax or LMV (least
maximum value) criterion, the regression coefficient estimates minimize

0 1
�i ii n

max y y
≤ ≤ −

−

The estimation problem can be posed as a linear programming problem. A dual
simplex algorithm is appropriate, however, the special nature of the problem
allows for considerable gains in efficiency by modification of the dual simplex
iterations so as to move more rapidly toward the optimal solution. The
modifications are described in detail by Barrodale and Phillips (1975).

When multiple solutions exist for a given problem, IMSLS_LMV may yield
different estimates of the regression coefficients on different computers, however,
the largest residual in absolute value should have the same absolute value (within
rounding differences). The informational error indicating nonunique solutions
may result from rounding accumulation. Conversely, because of rounding, the
error may fail to result even when the problem does have multiple solutions.

Example 1
A straight line fit to a data set is computed under the LAV criterion.

#include <imsls.h>
#include <stdio.h>
void main()
{

float xx[] = {1.0, 4.0, 2.0, 2.0, 3.0, 3.0, 4.0, 5.0};
float yy[] = {1.0, 5.0, 0.0, 2.0, 1.5, 2.5, 2.0, 3.0};
float sea;
int irank, iter, nrmiss;

float *coefficients = NULL;

coefficients = imsls_f_Lnorm_regression(8, 1, xx, yy,
IMSLS_SEA, &sea,
IMSLS_RANK, &irank,
IMSLS_ITERATIONS, &iter,
IMSLS_N_ROWS_MISSING, &nrmiss,0);

printf("B = %6.2f\t%6.2f\n\n", coefficients[0], coefficients[1]);
printf("Rank of Regressors Matrix = %3d\n", irank);
printf("Sum Absolute Value of Error = %8.4f\n", sea);
printf("Number of Iterations = %3d\n", iter);
printf("Number of Rows Missing = %3d\n", nrmiss);

Chapter 2: Regression Lnorm_regression •••• 179

}

Output
B = 0.50 0.50
Rank of Regressors Matrix = 2
Sum Absolute Value of Error = 6.00000
Number of Iterations = 2
Number of Rows Missing = 0

Figure 2-2 Least Squares and Least Absolute Value Fitted Lines

Example 2
Different straight line fits to a data set are computed under the criterion of
minimizing the Lp norm by using p equal to 1, 1.5, 2.0 and 2.5.

#include <imsls.h>
#include <stdio.h>
void main()
{

float xx[] = {1.0, 4.0, 2.0, 2.0, 3.0, 3.0, 4.0, 5.0};
float yy[] = {1.0, 5.0, 0.0, 2.0, 1.5, 2.5, 2.0, 3.0};
float p, tolerance, convergence_eps, square_of_scale, df_error,&

 Lp_norm_residual;
float R_matrix[4], residuals[8];
int i, irank, iter, nrmiss;

int n_row=2;

180 •••• Lnorm_regression IMSL C/Stat/Library

int n_col=2;

float *coefficients = NULL;

tolerance = 100*imsls_f_machine(4);
convergence_eps = 0.001;
p = 1.0;
for(i=0; i<4; i++)
{
coefficients = imsls_f_Lnorm_regression(8, 1, xx, yy,

IMSLS_METHOD_LLP, p,
IMSLS_EPS, convergence_eps,
IMSLS_RANK, &irank,
IMSLS_ITERATIONS, &iter,
IMSLS_N_ROWS_MISSING, &nrmiss,
IMSLS_R_USER, R_matrix,
IMSLS_DEGREES_OF_FREEDOM, &df_error,
IMSLS_RESIDUALS_USER, residuals,
IMSLS_SCALE, &square_of_scale,
IMSLS_RESIDUALS_LP_NORM, &Lp_norm_residual,

0);
printf("Coefficients = %6.2f\t%6.2f\n\n", coefficients[0], coefficients[1]);
printf("Residuals = %6.2f\t%6.2f\t%6.2f\t%6.2f\t%6.2f\t%6.2f\t%6.2f\t%6.2f\n\n",

residuals[0], residuals[1], residuals[2], residuals[3],
residuals[4], residuals[5], residuals[6], residuals[7]);

printf("P = %5.3f\n", p);
printf("Lp norm of the residuals = %5.3f\n", Lp_norm_residual);
printf("Rank of Regressors Matrix = %3d\n", irank);
printf("Degrees of Freedom Error = %5.3f\n", df_error);
printf("Number of Iterations = %3d\n", iter);
printf("Number of Missing Values = %3d\n", nrmiss);
printf("Square of Scale Constant = %5.3f\n", square_of_scale);

imsls_f_write_matrix("R Matrix\n", n_row, n_col, R_matrix, 0);
printf("---\n\n");
p += 0.5;
}

}

Output

Coefficients 0.50 0.50
Residuals 0.00 2.50 -1.50 0.50 -0.50 0.50 -0.50 0.00

p 1.00
Lp norm of the residuals 6.00
Rank of the matrix of regressors 2
Degrees of freedom error 6.00
Number of iterations 8
Number of missing values 0
Square of the scale constant 6.25

R matrix
1 2

1 2.828 8.485

Chapter 2: Regression Lnorm_regression •••• 181

2 0.000 3.464

--

Coefficients 0.39 0.55

Residuals 0.06 2.39 -1.50 0.50 -0.55 0.45 -0.61 -0.16
p 1.50
Lp norm of the residuals 3.71
Rank of the matrix of regressors 2
Degrees of freedom error 6.00
Number of iterations 6
Number of missing values 0
Square of the scale constant 1.06

R matrix
1 2

1 2.828 8.485
2 0.000 3.464

--

Coefficients -0.12 0.75
Residuals 0.38 2.12 -1.38 0.62 -0.62 0.38 -0.88 -0.62

p 2.00
Lp norm of the residuals 2.94
Rank of the matrix of regressors 2
Degrees of freedom error 6.00
Number of iterations 1
Number of missing values 0
Square of the scale constant 1.44

R matrix
1 2

1 2.828 8.485
2 0.000 3.464

--

Coefficients -0.44 0.87
Residuals 0.57 1.96 -1.30 0.70 -0.67 0.33 -1.04 -0.91
p 2.50
Lp norm of the residuals 2.54
Rank of the matrix of regressors 2
Degrees of freedom error 6.00
Number of iterations 4
Number of missing values 0
Square of the scale constant 0.79

R matrix
1 2

1 2.828 8.485
2 0.000 3.464

182 •••• Lnorm_regression IMSL C/Stat/Library

Figure 2-3 Various Lp Fitted Lines

Example 3
A straight line fit to a data set is computed under the LMV criterion.

#include <imsls.h>
#include <stdio.h>
void main()
{

float xx[] = {0.0, 1.0, 2.0, 3.0, 4.0, 4.0, 5.0};
float yy[] = {0.0, 2.5, 2.5, 4.5, 4.5, 6.0, 5.0};
float max_residual;
int irank, iter, nrmiss;

float *coefficients = NULL;

coefficients = imsls_f_Lnorm_regression(7, 1, xx, yy,
IMSLS_METHOD_LMV,
IMSLS_MAX_RESIDUAL, &max_residual,
IMSLS_RANK, &irank,
IMSLS_ITERATIONS, &iter,
IMSLS_N_ROWS_MISSING, &nrmiss,
0);

printf("B = %6.2f\t%6.2f\n\n", coefficients[0], coefficients[1]);
printf("Rank of Regressors Matrix = %3d\n", irank);
printf("Magnitude of Largest Residual = %8.4f\n", max_residual);
printf("Number of Iterations = %3d\n", iter);
printf("Number of Rows Missing = %3d\n", nrmiss);

Chapter 2: Regression Lnorm_regression •••• 183

}

Output
B = 1.00 1.00
Rank of Regressors Matrix = 2
Magnitude of Largest Residual = 1.00000
Number of Iterations = 3
Number of Rows Missing = 0

Figure 2-4 Least Squares and Least Maximum Value Fitted Lines

Chapter 3: Correlation and Covariance Routines •••• 185

Chapter 3: Correlation and
Covariance

Routines
Variances, Covariances, and Correlations
Variance-covariance or correlation matrix.................... covariances 185
Partial correlations and covariancespartial_covariances 193
Pooled covariance matrixpooled_covariances 198
Robust estimate of covariance matrix robust_covariances 204

Usage Notes
This chapter is concerned with measures of correlation for bivariate data as
follows:
• The usual multivariate measures of correlation and covariance for continuous

random variables are produced by routine imsls_f_covariances.

• For data grouped by some auxiliary variable, routine
imsls_f_pooled_covariances can be used to compute the pooled
covariance matrix along with the means for each group.

• Partial correlations or covariances are computed by
imsls_f_partial_correlations.

• Function imsls_f_robust_covariances computes robust M-estimates
of the mean and covarianve matrix from a matrix of observations.

covariances
Computes the sample variance-covariance or correlation matrix.

Synopsis

#include <imsls.h>

186 •••• covariances IMSL C/Stat/Library

float *imsls_f_covariances (int n_rows, int n_variables, float x[],
..., 0)

The type double function is imsls_d_covariances.

Required Arguments

int n_rows (Input)
Number of rows in x.

int n_variables (Input)
Number of variables.

float x[] (Input)
Array of size n_rows × n_variables containing the data.

Return Value
If no optional arguments are used, imsls_f_covariances returns a pointer to
an n_variables × n_variables array containing the sample variance-
covariance matrix of the observations. The rows and columns of this array
correspond to the columns of x.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_covariances (int n_rows, int n_variables, float x[],
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_MISSING_VALUE_METHOD, int missing_value_method,
IMSLS_INCIDENCE_MATRIX, int **incidence_matrix,
IMSLS_INCIDENCE_MATRIX_USER, int incidence_matrix[],
IMSLS_N_OBSERVATIONS, int *n_observations,
IMSLS_VARIANCE_COVARIANCE_MATRIX, or
IMSLS_CORRECTED_SSCP_MATRIX, or
IMSLS_CORRELATION_MATRIX, or
IMSLS_STDEV_CORRELATION_MATRIX,
IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
IMSLS_COVARIANCE_COL_DIM, int covariance_col_dim,
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_WEIGHTS, float weights[],
IMSLS_SUM_WEIGHTS, float *sumwt,
IMSLS_N_ROWS_MISSING, int *nrmiss,
IMSLS_RETURN_USER, float covariance[],
0)

Chapter 3: Correlation and Covariance covariances •••• 187

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of array x.
Default: x_col_dim = n_variables

IMSLS_MISSING_VALUE_METHOD, int missing_value_method (Input)
Method used to exclude missing values in x from the computations,
where NaN is interpreted as the missing value code. See function
imsls_f_machine/imsls_d_machine (Chapter 14). The methods are
as follows:

missing_value_method Action
0 The exclusion is listwise. (The entire row of x is

excluded if any of the values of the row is equal
to the missing value code.)

1 Raw crossproducts are computed from all valid
pairs and means, and variances are computed
from all valid data on the individual variables.
Corrected crossproducts, covariances, and
correlations are computed using these quantities.

2 Raw crossproducts, means, and variances are
computed as in the case of
missing_value_method = 1. However, cor-
rected crossproducts and covariances are
computed only from the valid pairs of data.
Correlations are computed using these
covariances and the variances from all valid
data.

3 Raw crossproducts, means, variances, and
covariances are computed as in the case of
missing_value_method = 2. Correlations are
computed using these covariances, but the vari-
ances used are computed from the valid pairs of
data.

IMSLS_INCIDENCE_MATRIX, int **incidence_matrix (Output)
Address of a pointer to an internally allocated array containing the
incidence matrix. If missing_value_method is 0,
incidence_matrix is 1 × 1 and contains the number of valid
observations; otherwise, incidence_matrix is
n_variables × n_variables and contains the number of pairs of
valid observations used in calculating the crossproducts for covariance.

IMSLS_INCIDENCE_MATRIX_USER, int incidence_matrix[] (Output)
Storage for array incidence_matrix is provided by the user. See
IMSLS_INCIDENCE_MATRIX.

188 •••• covariances IMSL C/Stat/Library

IMSLS_N_OBSERVATIONS, int *n_observations (Output)
Sum of the frequencies. If missing_value_method is 0, observations
with missing values are not included in n_observations; otherwise,
all observations are included except for observations with missing values
for the weight or the frequency.

IMSLS_VARIANCE_COVARIANCE_MATRIX, or
IMSLS_CORRECTED_SSCP_MATRIX, or
IMSLS_CORRELATION_MATRIX, or
IMSLS_STDEV_CORRELATION_MATRIX

Exactly one of these options can be used to specify the type of matrix to
be computed.

Keyword Type of Matrix
IMSLS_VARIANCE_COVARIANCE_MATRIX variance-covariance matrix (default)
IMSLS_CORRECTED_SSCP_MATRIX corrected sums of squares and crossproducts matrix
IMSLS_CORRELATION_MATRIX correlation matrix
IMSLS_STDEV_CORRELATION_MATRIX correlation matrix except for the diagonal elements

which are the standard deviations

IMSLS_MEANS, float **means (Output)
Address of a pointer to the internally allocated array containing the
means of the variables in x. The components of the array correspond to
the columns of x.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

IMSLS_COVARIANCE_COL_DIM, int covariance_col_dim (Input)
Column dimension of array covariance if IMSLS_RETURN_USER is
specified; otherwise, the column dimension of the return value.
Default: covariance_col_dim = n_variables

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_observations containing the frequency for each
observation.
Default: frequencies [] = 1

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_observations containing the weight for each
observation.
Default: weights [] = 1

IMSLS_SUM_WEIGHTS, float *sum_wt (Output)
Sum of the weights of all observations. If missing_value_method is
equal to 0, observations with missing values are not included in sum_wt.
Otherwise, all observations are included except for observations with
mssing values for the weight or the frequency.

Chapter 3: Correlation and Covariance covariances •••• 189

IMSLS_N_ROWS_MISSING, int *nrmiss (Output)
Total number of observations that contain any missing values (NaN).

IMSLS_RETURN_USER, float covariance[] (Output)
If specified, the output is stored in the array covariance of size
n_variables × n_variables provided by the user.

Description
Function imsls_f_covariances computes estimates of correlations,
covariances, or sums of squares and crossproducts for a data matrix x. Weights
and frequencies are allowed but not required.

The means, (corrected) sums of squares, and (corrected) sums of crossproducts
are computed using the method of provisional means. Let xki denote the mean
based on i observations for the k-th variable, fi denote the frequency of the i-th
observation, wi denote the weight of the i-th observations, and cjki denote the sum
of crossproducts (or sum of squares if j = k) based on i observations. Then the
method of provisional means finds new means and sums of crossproducts as
shown in the example below.

The means and crossproducts are initialized as follows:

xk0 = 0.0 for k = 1, …, p

cjk0 = 0.0 for j, k = 1, …, p

where p denotes the number of variables. Letting xk,i+1 denote the k-th variable of
observation i + 1, each new observation leads to the following updates for xki and
cjki using the update constant ri+1:

r
f w

f w

x x x x r

c c f w x x x x r

i
i i

l l
l

i

k i ki k i ki i

jk i jki i i j i ji k i ki i

+
+ +

=

+

+ + +

+ + + + + +

=

= + −

= + − − −

�
1

1 1

1

1

1 1 1

1 1 1 1 1 11

, ,

, , ,

d i
d id ib g

The default value for weights and frequencies is 1. Means and variances are
computed based on the valid data for each variable or, if required, based on all
the valid data for each pair of variables.

Usage Notes
Function imsls_f_covariances defines a sample mean by

190 •••• covariances IMSL C/Stat/Library

x
f w x

f w
k

i i ki
i

n

i i
i

nr
= =

=

�

�

1

1

where n is the number of observations.

The following formula defines the sample covariance, sjk, between variables j and
k:

s
f w x x x x

f
jk

i i ji j ki k
i

n

i
i

n=

− −

−

=

=

�

�

d ib g
1

1

1

The sample correlation between variables j and k, rjk, is defined as follows:

r
s

s sjk
jk

jj kk
=

Examples

Example 1
This example illustrates the use of imsls_f_covariances for the first 50
observations in the Fisher iris data (Fisher 1936). Note that the first variable is
constant over the first 50 observations.

#include <imsls.h>

#define N_VARIABLES 5
#define N_OBSERVATIONS 50

main()
{

float *covariances, *means;
float x[] = {

1.0, 5.1, 3.5, 1.4, .2, 1.0, 4.9, 3.0, 1.4, .2,
1.0, 4.7, 3.2, 1.3, .2, 1.0, 4.6, 3.1, 1.5, .2,
1.0, 5.0, 3.6, 1.4, .2, 1.0, 5.4, 3.9, 1.7, .4,
1.0, 4.6, 3.4, 1.4, .3, 1.0, 5.0, 3.4, 1.5, .2,
1.0, 4.4, 2.9, 1.4, .2, 1.0, 4.9, 3.1, 1.5, .1,
1.0, 5.4, 3.7, 1.5, .2, 1.0, 4.8, 3.4, 1.6, .2,
1.0, 4.8, 3.0, 1.4, .1, 1.0, 4.3, 3.0, 1.1, .1,
1.0, 5.8, 4.0, 1.2, .2, 1.0, 5.7, 4.4, 1.5, .4,
1.0, 5.4, 3.9, 1.3, .4, 1.0, 5.1, 3.5, 1.4, .3,
1.0, 5.7, 3.8, 1.7, .3, 1.0, 5.1, 3.8, 1.5, .3,
1.0, 5.4, 3.4, 1.7, .2, 1.0, 5.1, 3.7, 1.5, .4,
1.0, 4.6, 3.6, 1.0, .2, 1.0, 5.1, 3.3, 1.7, .5,
1.0, 4.8, 3.4, 1.9, .2, 1.0, 5.0, 3.0, 1.6, .2,
1.0, 5.0, 3.4, 1.6, .4, 1.0, 5.2, 3.5, 1.5, .2,
1.0, 5.2, 3.4, 1.4, .2, 1.0, 4.7, 3.2, 1.6, .2,

Chapter 3: Correlation and Covariance covariances •••• 191

1.0, 4.8, 3.1, 1.6, .2, 1.0, 5.4, 3.4, 1.5, .4,
1.0, 5.2, 4.1, 1.5, .1, 1.0, 5.5, 4.2, 1.4, .2,
1.0, 4.9, 3.1, 1.5, .2, 1.0, 5.0, 3.2, 1.2, .2,
1.0, 5.5, 3.5, 1.3, .2, 1.0, 4.9, 3.6, 1.4, .1,
1.0, 4.4, 3.0, 1.3, .2, 1.0, 5.1, 3.4, 1.5, .2,
1.0, 5.0, 3.5, 1.3, .3, 1.0, 4.5, 2.3, 1.3, .3,
1.0, 4.4, 3.2, 1.3, .2, 1.0, 5.0, 3.5, 1.6, .6,
1.0, 5.1, 3.8, 1.9, .4, 1.0, 4.8, 3.0, 1.4, .3,
1.0, 5.1, 3.8, 1.6, .2, 1.0, 4.6, 3.2, 1.4, .2,
1.0, 5.3, 3.7, 1.5, .2, 1.0, 5.0, 3.3, 1.4, .2};

/* Perform analysis */
covariances = imsls_f_covariances (N_OBSERVATIONS,

N_VARIABLES, x, 0);

/* Print results */
imsls_f_write_matrix ("The default case: variances/covariances",

N_VARIABLES, N_VARIABLES, covariances,
IMSLS_PRINT_UPPER, 0);

}

Output

The default case: variances/covariances
1 2 3 4 5

1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.1242 0.0992 0.0164 0.0103
3 0.1437 0.0117 0.0093
4 0.0302 0.0061
5 0.0111

Example 2
This example, which uses the first 50 observations in the Fisher iris data,
illustrates the use of optional arguments.

#include <imsls.h>

#define N_VARIABLES 5
#define N_OBSERVATIONS 50

main()
{

char *title;
float *means, *correlations;
float x[] = {

1.0, 5.1, 3.5, 1.4, .2, 1.0, 4.9, 3.0, 1.4, .2,
1.0, 4.7, 3.2, 1.3, .2, 1.0, 4.6, 3.1, 1.5, .2,
1.0, 5.0, 3.6, 1.4, .2, 1.0, 5.4, 3.9, 1.7, .4,
1.0, 4.6, 3.4, 1.4, .3, 1.0, 5.0, 3.4, 1.5, .2,
1.0, 4.4, 2.9, 1.4, .2, 1.0, 4.9, 3.1, 1.5, .1,
1.0, 5.4, 3.7, 1.5, .2, 1.0, 4.8, 3.4, 1.6, .2,
1.0, 4.8, 3.0, 1.4, .1, 1.0, 4.3, 3.0, 1.1, .1,
1.0, 5.8, 4.0, 1.2, .2, 1.0, 5.7, 4.4, 1.5, .4,
1.0, 5.4, 3.9, 1.3, .4, 1.0, 5.1, 3.5, 1.4, .3,
1.0, 5.7, 3.8, 1.7, .3, 1.0, 5.1, 3.8, 1.5, .3,
1.0, 5.4, 3.4, 1.7, .2, 1.0, 5.1, 3.7, 1.5, .4,
1.0, 4.6, 3.6, 1.0, .2, 1.0, 5.1, 3.3, 1.7, .5,

192 •••• covariances IMSL C/Stat/Library

1.0, 4.8, 3.4, 1.9, .2, 1.0, 5.0, 3.0, 1.6, .2,
1.0, 5.0, 3.4, 1.6, .4, 1.0, 5.2, 3.5, 1.5, .2,
1.0, 5.2, 3.4, 1.4, .2, 1.0, 4.7, 3.2, 1.6, .2,
1.0, 4.8, 3.1, 1.6, .2, 1.0, 5.4, 3.4, 1.5, .4,
1.0, 5.2, 4.1, 1.5, .1, 1.0, 5.5, 4.2, 1.4, .2,
1.0, 4.9, 3.1, 1.5, .2, 1.0, 5.0, 3.2, 1.2, .2,
1.0, 5.5, 3.5, 1.3, .2, 1.0, 4.9, 3.6, 1.4, .1,
1.0, 4.4, 3.0, 1.3, .2, 1.0, 5.1, 3.4, 1.5, .2,
1.0, 5.0, 3.5, 1.3, .3, 1.0, 4.5, 2.3, 1.3, .3,
1.0, 4.4, 3.2, 1.3, .2, 1.0, 5.0, 3.5, 1.6, .6,
1.0, 5.1, 3.8, 1.9, .4, 1.0, 4.8, 3.0, 1.4, .3,
1.0, 5.1, 3.8, 1.6, .2, 1.0, 4.6, 3.2, 1.4, .2,
1.0, 5.3, 3.7, 1.5, .2, 1.0, 5.0, 3.3, 1.4, .2};

/* Perform analysis */
correlations = imsls_f_covariances (N_OBSERVATIONS,

N_VARIABLES-1, x+1,
IMSLS_STDEV_CORRELATION_MATRIX,
IMSLS_X_COL_DIM, N_VARIABLES,
IMSLS_MEANS, &means,
0);

/* Print results */
imsls_f_write_matrix ("Means\n", 1, N_VARIABLES-1, means, 0);
title = "Correlations with Standard Deviations on the Diagonal\n";
imsls_f_write_matrix (title, N_VARIABLES-1, N_VARIABLES-1,

correlations, IMSLS_PRINT_UPPER, 0);
}

Output

Means

1 2 3 4
5.006 3.428 1.462 0.246

Correlations with Standard Deviations on the Diagonal

1 2 3 4
1 0.3525 0.7425 0.2672 0.2781
2 0.3791 0.1777 0.2328
3 0.1737 0.3316
4 0.1054

Warning Errors
IMSLS_CONSTANT_VARIABLE Correlations are requested, but the

observations on one or more
variables are constant. The
corresponding correlations are set
to NaN.

IMSLS_INSUFFICIENT_DATA Variances and covariances are
requested, but fewer than two valid
observations are present for a

Chapter 3: Correlation and Covariance partial_covariances •••• 193

variable. The pertinent statistics
are set to NaN.

IMSLS_ZERO_SUM_OF_WEIGHTS_2 The sum of the weights is zero.
The means, variances, and
covariances are set to NaN.

IMSLS_ZERO_SUM_OF_WEIGHTS_3 The sum of the weights is zero.
The means and correlations are set
to NaN.

IMSLS_TOO_FEW_VALID_OBS_CORREL Correlations are requested, but
fewer than two valid observations
are present for a variable. The
pertinent correlation coefficients
are set to NaN.

partial_covariances
Computes partial covariances or partial correlations from the covariance or
correlation matrix.

Synopsis

#include <imsls.h>

float *imsls_f_partial_covariances (int n_independent,
int n_dependent, float x, ..., 0)

The type double function is imsls_d_partial_covariances.

Required Argument

int n_independent (Input)
Number of �independent� variables to be used in the partial
covariances/correlations. The partial covariances/correlations are the
covariances/correlations between the dependent variables after removing
the linear effect of the independent variables.

int n_dependent (Input)
Number of variables for which partial covariances/correlations are
desired (the number of �dependent� variables).

float x (Input)
The n × n covariance or correlation matrix, where
n = n_independent + n_dependent. The rows/columns must be
ordered such that the first n_independent rows/columns contain the
independent variables, and the last n_dependent row/columns contain
the dependent variables. Matrix x must always be square symmetric.

194 •••• partial_covariances IMSL C/Stat/Library

Return Value
Matrix of size n_dependent by n_dependent containing the partial
covariances (the default) or partial correlations (use keyword
IMSLS_PARTIAL_CORR).

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_partial_covariances (int n_independent,
int n_dependent, float x[],
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_INDICES, int indices[],
IMSLS_PARTIAL_COV, or
IMSLS_PARTIAL_CORR,
IMSLS_TEST, int df, int *df_out, float **p_values,
IMSLS_TEST_USER, int df, int *df_out, float p_values[],
IMSLS_RETURN_USER, float c[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Row/Column dimension of x.
Default: x_col_dim = n_independent + n_dependent.

IMSLS_X_INDICES, int indices[] (Input)
An array of length x_col_dim containing values indicating the status of
the variable as in the following table:

indices[i] Variable is...
−1 not used in analysis
0 dependent variable
1 independent variable

By default, the first n_independent elements of indices are equal to
1, and the last n_dependent elements are equal to 0.

IMSLS_PARTIAL_COV, or
IMSLS_PARTIAL_CORR,

By default, and if IMSLS_PARTIAL_COV is specified, partial
covariances are calculated. Partial correlations are calculated if
IMSLS_PARTIAL_CORR is specified.

IMSLS_TEST, int df, int *df_out, float **p_values

(Input, Output, Output)
Argument df is an input integer indicating the number of degrees of
freedom associated with input matrix x. If the number of degrees of

Chapter 3: Correlation and Covariance partial_covariances •••• 195

freedom in x varies from element to element, then a conservative choice
for df is the minimum degrees of freedom for all elements in x.

Argument df_out contains the number of degrees of freedom in the test
that the partial covariances/correlations are zero. This value will usually
be df − n_independent, but will be greater than this value if the
independent variables are computationally linearly related.

Argument p_values is the address of a pointer to an internally
allocated array of size n_dependent by n_dependent containing the
p-values for testing the null hypothesis that the associated partial
covariance/correlation is zero. It is assumed that the observations from
which x was computed flows a multivariate normal distribution and that
each element in x has df degrees of freedom.

IMSLS_TEST_USER, int df, int *df_out, float p_values[]

(Input, Output, Output)
Storage for array p_values is provided by the user. See IMSLS_TEST
above.

IMSLS_RETURN_USER, float c[] (Output)
If specified, c returns the partial covariances/correlations. Storage for
array c is provided by the user.

Description
Function imsls_f_partial_covariances computed partial covariances or
partial correlations from an input covariance or correlation matrix. If the
�independent� variables (the linear �effect� of the independent variables is
removed in computing the partial covariances/correlations) are linearly related to
one another, imsls_f_partial_covariances detects the linearity and
eliminates one or more of the independent variables from the list of independent
variables. The number of variables eliminated, if any, can be determined from
argument df_out.

Given a covariance or correlation matrix Σ partitioned as

Σ Σ
Σ Σ

11 12

21 22

F
HG

I
KJ

function imsls_f_partial_covariances computed the partial covariances
(of the standardized variables if Σ is a correlation matrix) as

Σ Σ Σ Σ Σ22 1 22 21 11
1

12/ = − −

If partial correlations are desired, these are computed as

P diag diag22 1 22 1
1 2

22 1 22 1
1 2

/ /
/

/ /
/

=
− −

Σ Σ Σb g b g
where diag denotes the matrix containing the diagonal of its argument along its
diagonal with zeros off the diagonal. If Σ11 is singular, then as many variables as

196 •••• partial_covariances IMSL C/Stat/Library

required are deleted from Σ11 (and Σ12) in order to eliminate the linear
dependencies. The computations then proceed as above.

The p-value for a partial covariance tests the null hypothesis H0: σij|1 = 0, where
σij|1 is the (i, j) element in matrix Σ22|1. The p-value for a partial correlation tests
the null hypothesis H0: ρij|1 = 0, where ρij|1 is the (i, j) element in matrix P22|1. The
p-values are returned in p_values. If the degrees of freedom for x, df, is not
known, the resulting p-values may be useful for comparison, but they should not
by used as an approximation to the actual probabilities.

Examples

Example 1
The following example computes partial covariances, scaled from a nine-variable
correlation matrix originally given by Emmett (1949). The first three rows and
columns contain the independent variables and the final six rows and columns
contain the dependent variables.

#include <imsls.h>
#include <math.h>

main()
{

float *pcov;
float x[9][9] = {

6.300, 3.050, 1.933, 3.365, 1.317, 2.293, 2.586, 1.242, 4.363,
3.050, 5.400, 2.170, 3.346, 1.473, 2.303, 2.274, 0.750, 4.077,
1.933, 2.170, 3.800, 1.970, 0.798, 1.062, 1.576, 0.487, 2.673,
3.365, 3.346, 1.970, 8.100, 2.983, 4.828, 2.255, 0.925, 3.910,
1.317, 1.473, 0.798, 2.983, 2.300, 2.209, 1.039, 0.258, 1.687,
2.293, 2.303, 1.062, 4.828, 2.209, 4.600, 1.427, 0.768, 2.754,
2.586, 2.274, 1.576, 2.255, 1.039, 1.427, 3.200, 0.785, 3.309,
1.242, 0.750, 0.487, 0.925, 0.258, 0.768, 0.785, 1.300, 1.458,
4.363, 4.077, 2.673, 3.910, 1.687, 2.754, 3.309, 1.458, 7.400};

pcov = imsls_f_partial_covariances(3, 6, x, 0);

imsls_f_write_matrix("Partial Covariances", 6, 6, pcov, 0);

free(pcov);
return;

}

Output

Partial Covariances
1 2 3 4 5 6

1 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 5.495 1.895 3.084
5 0.000 0.000 0.000 1.895 1.841 1.476
6 0.000 0.000 0.000 3.084 1.476 3.403

Chapter 3: Correlation and Covariance partial_covariances •••• 197

Example 2

The following example computes partial correlations from a 9 variable
correlation matrix originally given by Emmett (1949). The partial correlations
between the remaining variables, after adjusting for variables 1, 3 and 9, are
computed. Note in the output that the row and column labels are numbers, not
variable numbers. The corresponding variable numbers would be 2, 4, 5, 6, 7
and 8, respectively.

#include <imsls.h>

main()
{

float *pcorr, *pval;
int df;
float x[9][9] = {

1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
0.395, 0.479, 1.0, .355, 0.27, 0.254, 0.452, 0.219, 0.504,
0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505,
0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409,
0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,
0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,
0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,
0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0};

int indices[9] = {1, 0, 1, 0, 0, 0, 0, 0, 1};

pcorr = imsls_f_partial_covariances(3, 6, &x[0][0],
IMSLS_PARTIAL_CORR,
IMSLS_X_INDICES, indices,
IMSLS_TEST, 30, &df, &pval,
0);

printf ("The degrees of freedom are %d\n\n", df);
imsls_f_write_matrix("Partial Correlations", 6, 6, pcorr, 0);
imsls_f_write_matrix("P-Values", 6, 6, pval, 0);

free(pcorr);
free(pval);
return;

}

Output

The degrees of freedom are 27

Partial Correlations
1 2 3 4 5 6

1 1.000 0.224 0.194 0.211 0.125 -0.061
2 0.224 1.000 0.605 0.720 0.092 0.025
3 0.194 0.605 1.000 0.598 0.123 -0.077
4 0.211 0.720 0.598 1.000 0.035 0.086
5 0.125 0.092 0.123 0.035 1.000 0.062
6 -0.061 0.025 -0.077 0.086 0.062 1.000

P-Values
1 2 3 4 5 6

198 •••• pooled_covariances IMSL C/Stat/Library

1 0.0000 0.2525 0.3232 0.2801 0.5249 0.7576
2 0.2525 0.0000 0.0006 0.0000 0.6417 0.9000
3 0.3232 0.0006 0.0000 0.0007 0.5328 0.6982
4 0.2801 0.0000 0.0007 0.0000 0.8602 0.6650
5 0.5249 0.6417 0.5328 0.8602 0.0000 0.7532
6 0.7576 0.9000 0.6982 0.6650 0.7532 0.0000

Warning Errors
IMSLS_NO_HYP_TESTS The input matrix �x� has # degrees of freedom,

and the rank of the dependent variables is #.
There are not enough degrees of freedom for
hypothesis testing. The elements of �p_values�
are set to NaN (not a number).

Fatal Errors
IMSLS_INVALID_MATRIX_1 The input matrix �x� is incorrectly specified. A

computed correlation is greater than 1 for
variables # and #.

IMSLS_INVALID_PARTIAL A computed partial correlation for variables #
and # is greater than 1. The input matrix �x� is
not positive semi-definite.

pooled_covariances
Compute a pooled variance-covariance from the observations.

Synopsis

#include <imsls.h>

float *imsls_f_pooled_covariances (int n_rows, int n_variables,
float *x, int n_groups, ..., 0)

The type double function is imsls_d_pooled_covariances.

Required Argument

int n_rows (Input)
Number of rows observations) in the input matrix x.

int n_variables (Input)
Number of variables to be used in computing the covariance matrix.

float *x (Input)
A n_rows × n_variables + 1 matrix containing the data. The first
n_variables columns correspond to the variables, and the last column
(column n_variables must contain the group numbers).

Chapter 3: Correlation and Covariance pooled_covariances •••• 199

int n_groups (Input)
Number of groups in the data.

Return Value
Matrix of size n_variables by n_variables containing the matrix of
covariances.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_pooled_covariances (int n_rows, int n_variables,
float x[], int n_groups,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt,
IMSLS_IDO, int ido,
IMSLS_ROWS_ADD,
IMSLS_ROWS_DELETE,
IMSLS_GROUP_COUNTS, int **gcounts,
IMSLS_GROUP_COUNTS_USER, int gcounts[],
IMSLS_SUM_WEIGHTS, float **sum_weights,
IMSLS_SUM_WEIGHTS_USER, float sum_weights[],
IMSLS_MEANS_USER, float means[],
IMSLS_U, float **u,
IMSLS_U_USER, float u[],
IMSLS_N_ROWS_MISSING, int *nrmiss,
IMSLS_RETURN_USER, float c[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Default: x_col_dim = n_variables + 1

IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt (Input)
Each of the four arguments contains indices indicating column numbers
of x in which particular types of data are stored. Columns are numbered
0 ... x_col_dim − 1.

Parameter igrp contains the index for the column of x in which the
group numbers are stored.

Parameter ind contains the indices of the variables to be used in the
analysis.

Parameters ifrq and iwt contain the column numbers of x in which the
frequencies and weights, respectively, are stored. Set ifrq = −1 if there
will be no column for frequencies. Set iwt = −1 if there will be no
column for weights. Weights are rounded to the nearest integer.
Negative weights are not allowed.

200 •••• pooled_covariances IMSL C/Stat/Library

Defaults: igrp = n_variables,
ind[] = 0, 1, …, n_variables − 1, ifrq = −1, and iwt = −1

IMSLS_IDO, int ido (Input)
Processing option.

ido Action
0 This is the only invocation; all the data are input at once.

(Default)
1 This is the first invocation with this data; additional calls

will be made. Initialization and updating for the n_rows
observations of x will be performed.

2 This is an intermediate invocation; updating for the n_rows
observations of x will be performed.

3 All statistics are updated for the n_rows observations. The
covariance matrix computed.

Default: ido = 0

IMSLS_ROWS_ADD, or
IMSLS_ROWS_DELETE

By default (or if IMSLS_ROWS_ADD is specified), the observations in x
are added into the analysis. If IMSLS_ROWS_DELETE is specified, the
observations are deleted from the analysis. If ido = 0, these optional
arguments are ignored (data is always added if there is only one
invocation).

IMSLS_GROUP_COUNTS, int **gcounts (Output)
Address of a pointer to an integer array of length n_groups containing
the number of observations in each group. Array gcounts is updated
when ido is equal to 0, 1, or 2.

IMSLS_GROUP_COUNTS_USER, int gcounts[] (Output)
Storage for integer array gcounts is provided by the user. See
IMSLS_GROUP_COUNTS.

IMSLS_SUM_WEIGHTS, float **sum_weights (Output)
Address of a pointer to an array of length n_groups containing the sum
of the weights times the frequencies in the groups.

IMSLS_SUM_WEIGHTS_USER, float sum_weights[] (Output)
Storage for array sum_weights is provided by the user. See
IMSLS_SUM_WEIGHTS.

IMSLS_MEANS, float **means (Output)
Address of a pointer to an array of size n_groups × n_variables. The
i-th row of means contains the group i variable means.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

Chapter 3: Correlation and Covariance pooled_covariances •••• 201

IMSLS_U, float **u (Output)
Address of a pointer to an array of size n_variables ×
n_variables containing the lower matrix U, the lower triangular for
the pooled sample cross-products matrix. U is computed from the
pooled sample covariance matrix, S (See the description section), as
S = UTU.

IMSLS_U_USER, float u[] (Output)
Storage for array u is provided by the user. See IMSLS_U.

IMSLS_N_ROWS_MISSING, int *nrmiss (Output)
Number of rows of data encountered in calls to
imsls_f_pooled_covariances containing missing values (NaN) for
any of the variables used.

IMSLS_RETURN_USER, float c[] (Output)
If specified, c returns the covariance matrix. Storage for array c is
provided by the user.

Description
Function imsls_f_pooled_covariances computes the pooled variance-
covariance matrix from a matrix of observations. The within-groups means are
also computed. Listwise deletion of missing values is assumed so that all
observations used are complete; in any row of x, if any element of the observation
is missing, the row is not used. Function imsls_f_pooled_covariances
should be used whenever the user suspects that the data has been sampled from
populations with different means but identical variance-covariance matrices. If
these assumptions cannot be made, a different variance-covariance matrix should
be estimated within each group.

By default, all observations are processed in one call to
imsls_f_pooled_covariances. The computations are the same as if
imsls_f_pooled_covariances were consecutively called with ido equal to
1, 2, and 3. For brevity, the following discusses the computations with ido > 0.

When ido = 1 variables are initialized, workspace is allocated and input variables
are checked for errrors.

If n_rows ≠ 0 (for any value of ido), the group observation totals, Ti, for i = 1,
…, g, where g is the number of groups, are updated for the n_rows observations
in x. The group totals are computed as:

T w f xi ij
j

ij ij=�

where wij is the observation weight, xij is the j-th observation in the i-th group,
and fij is the observation frequency.

Modified Givens rotations are used in computed the Cholesky decomposition of
the pooled sums of squares and crossproducts matrix. (Golub and Van Loan
1983).

202 •••• pooled_covariances IMSL C/Stat/Library

The group means and the pooled sample covariance matrix S are computed from
the intermediate results when ido = 3. These quantities are defined by

x
T
w f

i
i

i i
j

• =
�

S
f g

w f x x x x
ij

ij

ij ij ij i
i j

ij ii
T

=
−

− −
�

� • •
1 d id i

,

Examples

Example 1
The following example computes a pooled variance-covariance matrix. The last
column of the data set is the group indicator.

#include <stdio.h>
#include <stdlib.h>
#include <imsls.h>

main() {
int nobs = 6;
int nvar = 2;
int n_groups = 2;
float *cov;
static float x[6][3] = {

2.2, 5.6, 1,
3.4, 2.3, 1,
1.2, 7.8, 1,
3.2, 2.1, 2,
4.1, 1.6, 2,
3.7, 2.2, 2};

cov = imsls_f_pooled_covariances(nobs, nvar, &x[0][0], n_groups, 0);

imsls_f_write_matrix("Pooled Covariance Matrix", nvar, nvar, cov, 0);
free(cov);

}

Output

Pooled Covariance Matrix
1 2

1 0.708 -1.575
2 -1.575 3.883

Example 2
The following example computes a pooled variance-covariance matrix for the
Fisher iris data. To illustrate the use of the ido argument, multiple calls to
imsls_f_pooled_covariances are made.

Chapter 3: Correlation and Covariance pooled_covariances •••• 203

The first column of data is the group indicator, requiring either a permuation of
the matrix or the use of the IMSLS_X_INDICES optional keyword. This exampe
chooses the keyword method.

#include <stdio.h>
#include <stdlib.h>
#include <imsls.h>

main() {
int nobs = 150;
int nvar = 4;
int n_groups = 3;
int igrp = 0;
static int ind[4] = {1, 2, 3, 4};
int ifrq = -1;
int iwt = -1;
float *x, cov[16];
float *means;
int i;

/* Retrieve the Fisher iris data set */
x = imsls_f_data_sets(3, 0);

/* Initialize */
imsls_f_pooled_covariances(0, nvar, x, n_groups,

IMSLS_IDO, 1,
IMSLS_RETURN_USER, cov,
IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);

/* Add 10 rows at a time */
for (i=0;i<15;i++) {
imsls_f_pooled_covariances(10, nvar, (x+i*50), n_groups,

IMSLS_IDO, 2,
IMSLS_RETURN_USER, cov,
IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);

}

/* Calculate cov and free internal workspace */
imsls_f_pooled_covariances(0, nvar, x, n_groups,

IMSLS_IDO, 3,
IMSLS_RETURN_USER, cov,
IMSLS_X_INDICES, igrp, ind, ifrq, iwt,
IMSLS_MEANS, &means, 0);

imsls_f_write_matrix("Pooled Covariance Matrix", nvar, nvar, cov, 0);
imsls_f_write_matrix("Means", n_groups, nvar, means, 0);

free(means);
free(x);

}

Output

Pooled Covariance Matrix
1 2 3 4

1 0.2650 0.0927 0.1675 0.0384
2 0.0927 0.1154 0.0552 0.0327
3 0.1675 0.0552 0.1852 0.0427

204 •••• robust_covariances IMSL C/Stat/Library

4 0.0384 0.0327 0.0427 0.0419

Means
1 2 3 4

1 5.006 3.428 1.462 0.246
2 5.936 2.770 4.260 1.326
3 6.588 2.974 5.552 2.026

Warning Errors
IMSLS_OBSERVATION_IGNORED In call #, row # of the matrix �x� has group

number = #. The group number must be
between 1 and #, the number of groups.
This observation will be ignored.

Fatal Errors
IMSLS_BAD_IDO_4 �ido� = #. Initial allocations must be

performed by making a call to
pooled_covariances with �ido� = 1.

IMSLS_BAD_IDO_5 �ido� = #. A new analysis may not begin
until the previous analysis is terminated by
a call to imsls_f_pooled_covariances
with �ido� equal to 3.

robust_covariances
Computes a robust estimate of a covariance matrix and mean vector.

Synopsis

#include <imsls.h>

float *imsls_f_robust_covariances (int n_rows, int n_variables,
float *x, int n_groups, ..., 0)

The type double function is imsls_d_robust_covariances.

Required Argument

int n_rows (Input)
Number of rows observations) in the input matrix x.

int n_variables (Input)
Number of variables to be used in computing the covariance matrix.

float *x (Input)
A n_rows by n_variables + 1 matrix containing the data. The first
n_variables columns correspond to the variables, and the last column
(column n_variables) must contain the group numbers.

Chapter 3: Correlation and Covariance robust_covariances •••• 205

int n_groups (Input)
Number of groups in the data.

Return Value
Matrix of size n_variables by n_variables containing the matrix of
covariances.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_robust_covariances (int n_rows, int n_variables,
float x[], int n_groups,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt,
IMSLS_INITIAL_EST_MEAN,
IMSLS_INITIAL_EST_MEDIAN

IMSLS_INITIAL_EST_INPUT, float input_means[],
float input_cov[],

IMSLS_ESTIMATION_METHOD, int method,
IMSLS_PERCENTAGE, float percentage,
IMSLS_MAX_ITERATIONS, int maxit,
IMSLS_TOLERANCE, float tolerance,
IMSLS_MINIMAX_WEIGHTS, float *a, float *b, float *c,
IMSLS_GROUP_COUNTS, int **gcounts,
IMSLS_GROUP_COUNTS_USER, int gcounts[],
IMSLS_SUM_WEIGHTS, float **sum_weights,
IMSLS_SUM_WEIGHTS_USER, float sum_weights[],
IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
IMSLS_U, float **u,
IMSLS_U_USER, float u[],
IMSLS_BETA, float *beta,
IMSLS_N_ROWS_MISSING, int *nrmiss,
IMSLS_RETURN_USER, float c[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Row/Column dimension of x.
Default: x_col_dim = n_variables + 1

IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt (Input)
Each of the four arguments contains indices indicating column numbers
of x in which particular types of data are stored. Columns are numbered
0 … x_col_dim − 1.

206 •••• robust_covariances IMSL C/Stat/Library

Parameter igrp contains the index for the column of x in which the
group numbers are stored.

Parameter ind contains the indices of the variables to be used in the
analysis.

Parameters ifrq and iwt contain the column numbers of x in which the
frequencies and weights, respectively, are stored. Set ifrq = −1 if there
will be no column for frequencies. Set iwt = −1 if there will be no
column for weights. Weights are rounded to the nearest integer.
Negative weights are not allowed.

Defaults: igrp = n_variables,
ind [] = 0, 1, …, n_variables − 1, ifrq = −1, and iwt = −1

IMSLS_INITIAL_EST_MEAN, or
IMSLS_INITIAL_EST_MEDIAN, or
IMSLS_INITIAL_EST_INPUT, float *input_mean, float *input_cov

(Input)
If IMSLS_INITIAL_EST_MEAN is specified, initial estimates are
obtained as the usual estimate of a mean vector and of a covariance
matrix.

If IMSLS_INITIAL_EST_MEDIAN is specified, initial estimates are
based upon the median and interquartile range are used.

If IMSLS_INITIAL_EST_INPUT is specified, the initial estimates are
specified in arrays input_mean and input_cov. Argument
input_mean is an array of size n_groups by n_variables, and
input_cov is an array of size n_variables by n_variables.

Default: IMSLS_INITIAL_EST_MEAN

IMSLS_ESTIMATION_METHOD, int method (Input)
Option parameter giving the algorithm to be used in computing the
estimates.

method Method Used
0 Huber�s conjugate-gradient algorithm is used.
1 Stahel�s algorithm is used.

IMSLS_PERCENTAGE, float percentage (Input)
Percentage of gross errors expected in the data. Argument percentage
must be in the range 0.0 to 100.0 and contains the percentage of outliers
expected in the data. If the percentage of gross errors expected in the
data is not known, a reasonable strategy is to choose a value of
percentage that is such that larger values do not result in significant
changes in the estimates.
Default: percentage = 5.0

Chapter 3: Correlation and Covariance robust_covariances •••• 207

IMSLS_MAX_ITERATIONS, int maxit (Input)
Maximum number of iterations.
Default: maxit = 30

IMSLS_TOLERANCE, float tolerance (Input)
Convergence criterion. When the maximum absolute change in a
location or covariance estimate is less than tolerance, convergence is
assumed.
Default: tolerance = 10-4

IMSLS_MINIMAX_WEIGHTS, float *a, float *b, float *c (Output)
Arguments a, b, and c contain the values for the parameters of the
weighting function. See the �Description� section.

IMSLS_GROUP_COUNTS, int **gcounts (Output)
Address of a pointer to an integer array of length n_groups containing
the number of observations in each group.

IMSLS_GROUP_COUNTS_USER, int gcounts[] (Output)
Storage for integer array gcounts is provided by the user. See
IMSLS_GROUP_COUNTS.

IMSLS_SUM_WEIGHTS, float **sum_weights (Output)
Address of a pointer to an array of length n_groups containing the sum
of the weights times the frequencies in the groups.

IMSLS_SUM_WEIGHTS_USER, float sum_weights[](Output)
Storage for array sum_weights is provided by the user. See
IMSLS_SUM_WEIGHTS.

IMSLS_MEANS, float **means (Output)
Address of a pointer to an array of size n_groups by n_variables.
The i-th row of means contains the group i variable means.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

IMSLS_U, float **u (Output)
Address of a pointer to an array of size n_variables by n_variables
containing the lower matrix U, the lower triangular for the robust sample
cross-products matrix. U is computed from the robust sample covariance
matrix, S (See the �Description� section), as S = UTU.

IMSLS_U_USER, float u[] (Output)
Storage for array u is provided by the user. See IMSLS_U.

IMSLS_BETA, float *beta (Output)
Argument beta contains the constant used to ensure that the estimated
covariance matrix has unbiased expectation (for a given mean vector) for
a multivariate normal density.

208 •••• robust_covariances IMSL C/Stat/Library

IMSLS_N_ROWS_MISSING, int *nrmiss (Output)
Number of rows of data encountered in calls to robust_covariances
containing missing values (NaN) for any of the variables used.

IMSLS_RETURN_USER, float c[] (Output)
If specified, c returns the covariance matrix. Storage for array c is
provided by the user.

Description
Function imsls_f_robust_covariances computes robust M-estimates of the
mean and covariance matrix from a matrix of observations. A pooled estimate of
the covariance matrix is computed when multiple groups are present in the input
data. M-estimate weights are obtained using the �minimax� weights of Huber
(1981, pp. 231-235), with percentage expected gross errors. Huber�s (1981)
weighting equations are given by:

u r

a
r

r a

a r b

b
r

r b

w r c
r

b g

b g

=

<

≤ ≤

>

R

S
|||

T
|||

= F
HG
I
KJ

2

2

2

2

1

1min ,

User specified observation weights and frequencies may be given for each row in
x. Listwise deletion of missing values is assumed so that all observations used are
�complete�.

Let f (x;µi, Σ) denote the density of an observation p-vector x in population
(group) i with mean vector µi, for i = 1, …, τ. Let the covariance matrix Σ be such
that Σ = RTR. If

y = R-T (x − µi)

then

g y f R yT
i ib g e j= +Σ Σ1 2/ ; ,µ µ

It is assumed that g(y) is a spherically symmetric density in p-dimensions.

In imsls_f_robust_covariances, Σ and µi are estimated as the solutions

� , �Σ µie j
of the estimation equations

1 0
1n

f w w r yig ij ij
j

n

ij

i

d i
=
� =

Chapter 3: Correlation and Covariance robust_covariances •••• 209

and

1 0
11n

f w u r y y Iij
j

n

i
ij ij ij ij

T
p

i

==
�� − =

τ

βd i

where i indexes the τ groups, ni, is the number of observations in group i, fij is the
frequency for the j-th observation in group i, wij is the observation weight
specified in column iwt of x, Ip is a p × p identity matrix,

r y yij ij
T

ij=

w(r) and u(r) are the weighting functions, and where β is a constant computed by
the program to make the expected weighted Mahalanobis distance (yTy) equal the
expected Mahalanobis distance from a multivariate normal distribution (see
Marazzi 1985). The constant β is described more fully below.

Function imsls_f_robust_covariances uses one of two algorithms for
solving the estimation equations. The first algorithm is discussed in detail in
Huber (1981) and is a variant of the conjugate gradient method. The second
algorithm is due to Stahel (1981) and is discussed in detail by Marazzi (1985). In
both algorithms, correction vectors Tki for the group i means and correction
matrix Wk = Ip + Uk for the Cholesky factorization of Σ are found such that the
updated mean vectors are given by

� �, ,µ µi k i k kiT+ = +1

and the updated matrix R is given as

� �R W Rk k k+ =1

where k is the iteration number and

�Σk k
T

kR R=

When all elements of Uk and Tki are less than ε = tolerance, convergence is
assumed.

Three methods for obtaining estimates are allowed. In the first method, the
sample weighted estimate of Σ is computed. In the second method, estimates
based upon the median and the interquartile range are used. Finally, in the last
method, the user inputs initial estimates.

Function imsls_f_robust_covariances computes estimates based on the
�minimax� weights discussed above. The constant β is chosen such that E
(u(r)r2) = ρβ where the expectation is with respect to a standard p-variate
multivariate normal distribution. This yields estimates with the correct
expectation for the multivariate normal distribution (for given mean vector). The
expectation is computed via integration of estimated spline function. 200 knots
are used on an equally apaced grid from 0.0 to the 99.999 percentile of

210 •••• robust_covariances IMSL C/Stat/Library

χ p
2

distribution. An error estimate is computed based upon 100 of these knots. If the
estimated relative error is greater than 0.0001, a warning message is issued. If β is
not computed accurately (i.e., if the warning message is issued), the computed
esimates are still optimal, but the scale of the estimated covariance matrix may
need to be multiplied by a constant in order for

�Σ

to have the correct multivariate normal covariance expectation.

Examples

Example 1
The following example computes a robust variance-covariance matrix. The last
column of the data set is the group indicator.

#include <imsls.h>
#include <stdlib.h>
main()
{

int nobs = 6;
int nvar = 2;
int n_groups = 2;
float *cov;
float x[18] = {

2.2, 5.6, 1,
3.4, 2.3, 1,
1.2, 7.8, 1,
3.2, 2.1, 2,
4.1, 1.6, 2,
3.7, 2.2, 2};

cov = imsls_f_robust_covariances(nobs, nvar, x, n_groups, 0);

imsls_f_write_matrix("Robust Covariance Matrix", nvar, nvar, cov,
IMSLS_COL_NUMBER_ZERO,
IMSLS_ROW_NUMBER_ZERO, 0);

free(cov);
}

Output

Robust Covariance Matrix
0 1

0 0.522 -1.160
1 -1.160 2.862

Example 2
The following example computes estimates of the pooled covariance matrix for
the Fisher�s iris data. For comparison, the estimates are first computed via

Chapter 3: Correlation and Covariance robust_covariances •••• 211

function imsls_f_pooled_covariances. Function
imsls_f_robust_covariances with percentage = 2.0 is then used to
compute the robust estimates. As can be seen from the output, the resulting
estimates are quite similar.

Next, three observations are made into outliers, and again, estimates are
computed using functions imsls_f_pooled_covariances and
imsls_f_robust_covariances. When outliers are present, the estimates of
imsls_f_pooled_covariances are adversely affected, while the estimates
produced by imsls_f_robust_covariances are close the estimates produced
when no outliers are present.

include <imsls.h>
#include <stdlib.h>
main()
{

int nobs = 150;
int nvar = 4;
int n_groups = 3;
float percentage = 2.0;
int igrp = 0;
int ifrq = -1;
int iwt = -1;
int ind[4] = {1, 2, 3, 4};
float *x, cov[16], rbcov[16];

x = imsls_f_data_sets(3, 0);

imsls_f_pooled_covariances(nobs, nvar, x, n_groups,
IMSLS_RETURN_USER, cov,
IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);

imsls_f_write_matrix("Pooled Covariance with No Outliers", nvar, nvar,
cov,

IMSLS_COL_NUMBER_ZERO,
IMSLS_ROW_NUMBER_ZERO,
IMSLS_PRINT_UPPER, 0);

imsls_f_robust_covariances(nobs, nvar, x, n_groups,
IMSLS_RETURN_USER, rbcov,
IMSLS_PERCENTAGE, percentage,
IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);

imsls_f_write_matrix("Robust Covariance with No Outliers", nvar, nvar,
rbcov,

IMSLS_COL_NUMBER_ZERO,
IMSLS_ROW_NUMBER_ZERO,
IMSLS_PRINT_UPPER, 0);

/* Add Outliers */
x[1] = 100.0;
x[19] = 100.0;
x[497] = -100.0;

imsls_f_pooled_covariances(nobs, nvar, x, n_groups,
IMSLS_RETURN_USER, cov,
IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);

212 •••• robust_covariances IMSL C/Stat/Library

imsls_f_write_matrix("Pooled Covariance with Outliers", nvar, nvar,
cov,

IMSLS_COL_NUMBER_ZERO,
IMSLS_ROW_NUMBER_ZERO,
IMSLS_PRINT_UPPER, 0);

imsls_f_robust_covariances(nobs, nvar, x, n_groups,
IMSLS_RETURN_USER, rbcov,
IMSLS_PERCENTAGE, percentage,
IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);

imsls_f_write_matrix("Robust Covariance with Outliers", nvar, nvar,
rbcov,

IMSLS_COL_NUMBER_ZERO,
IMSLS_ROW_NUMBER_ZERO,
IMSLS_PRINT_UPPER, 0);

free(x);
}

Output

Pooled Covariance with No Outliers
0 1 2 3

0 0.2650 0.0927 0.1675 0.0384
1 0.1154 0.0552 0.0327
2 0.1852 0.0427
3 0.0419

Robust Covariance with No Outliers
0 1 2 3

0 0.2474 0.0872 0.1535 0.0360
1 0.1073 0.0538 0.0322
2 0.1705 0.0412
3 0.0401

Pooled Covariance with Outliers
0 1 2 3

0 60.43 0.30 0.13 -1.56
1 70.53 0.17 -0.17
2 0.19 0.07
3 66.38

Robust Covariance with Outliers
0 1 2 3

0 0.2555 0.0876 0.1553 0.0359
1 0.1127 0.0545 0.0322
2 0.1723 0.0412
3 0.0424

Warning Errors
IMSLS_NO_CONVERGE_MAX_ITER Failure to converge within �maxit�

= # iterations for at least one of the
�nroot� = # roots.

Chapter 3: Correlation and Covariance robust_covariances •••• 213

Fatal Errors
IMSLS_BAD_GROUP_2 The group number for observation

is equal to #. It must be greater
than or equal to one and less than
or equal to #, the number of
groups.

Chapter 4: Analysis of Variance Routines •••• 215

Chapter 4: Analysis of Variance

Routines
Analyze a one-way classification model...................anova_oneway 216
Analyze a balanced factorial design
with fixed effects.. anova_factorial 225
Perform Student-Newman-Keuls
multiple comparisons test..............................multiple_comparisons 234
nested random model ... anova_nested 237
balanced fixed, random, or mixed model anova_balanced 245

Usage Notes
The functions described in this chapter are for commonly-used experimental
designs. Typically, responses are stored in the input vector y in a pattern that
takes advantage of the balanced design structure. Consequently, the full set of
model subscripts is not needed to identify each response. The functions assume
the usual pattern, which requires that the last model subscript change most
rapidly, followed by the model subscript next in line, and so forth, with the first
subscript changing at the slowest rate. This pattern is referred to as
lexicographical ordering.

Function imsls_f_anova_oneway allows missing responses if confidence
interval information is not requested. NaN (Not a Number) is the missing value
code used by these functions. Use function imsls_f_machine (or function
imsls_d_machine with the double-precision function
imsls_d_anova_oneway) to retrieve NaN. Any element of y that is missing
must be set to imsls_f_machine(6) or imsls_d_machine(6) (for double
precision). See imsls_f_machine in Chapter 14 for a description. Other
functions described in this chapter do not allow missing responses because the
functions generally deal with balanced designs.

As a diagnostic tool for determination of the validity of a model, functions in this
chapter typically perform a test for lack of fit when n (n > 1) responses are
available in each cell of the experimental design. Functions in Chapter 2,
Regression,� are used for analysis of generalizations of the

216 •••• anova_oneway IMSL C/Stat/Library

models treated in this chapter. In particular, Chapter 2 also provides functions for
the general linear model.

anova_oneway
Analyzes a one-way classification model.

Synopsis
#include <imsls.h>

float imsls_f_anova_oneway (int n_groups, int n[], float y[], ..., 0)

The type double function is imsls_d_anova_oneway

Required Arguments

int n_groups (Input)
Number of groups.

int n[] (Input)
Array of length n_groups containing the number of responses for each
group.

float y[] (Input)
Array of length n [0] + n [1] + … + n [n_group − 1] containing the
responses for each group.

Return Value
The p-value for the F-statistic.

Synopsis with Optional Arguments
#include <imsls.h>

float imsls_f_anova_oneway (int n_groups, int n[], float y[],
IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
IMSLS_GROUP_MEANS, float **means,
IMSLS_GROUP_MEANS_USER, float means[],
IMSLS_GROUP_STD_DEVS, float **std_devs,
IMSLS_GROUP_STD_DEVS_USER, float std_devs[],
IMSLS_GROUP_COUNTS, int **counts,
IMSLS_GROUP_COUNTS_USER, int counts[],
IMSLS_CONFIDENCE, float confidence,
IMSLS_TUKEY, float **ci_diff_means, or
IMSLS_DUNN_SIDAK, float **ci_diff_means, or
IMSLS_BONFERRONI, float **ci_diff_means, or
IMSLS_SCHEFFE, float **ci_diff_means, or

Chapter 4: Analysis of Variance anova_oneway •••• 217

IMSLS_ONE_AT_A_TIME, float **ci_diff_means,
IMSLS_TUKEY_USER, float ci_diff_means[], or
IMSLS_DUNN_SIDAK_USER, float ci_diff_means[], or
IMSLS_BONFERRONI_USER, float ci_diff_means[], or
IMSLS_SCHEFFE_USER, float ci_diff_means[], or
IMSLS_ONE_AT_A_TIME_USER, float ci_diff_means[],
0)

Optional Arguments
IMSLS_ANOVA_TABLE, float **anova_table (Output)

Address of a pointer to an internally allocated array of size 15 containing
the analysis of variance table. The analysis of variance statistics are as
follows:

Element Analysis of Variance Statistics
0 degrees of freedom for the model
1 degrees of freedom for error
2 total (corrected) degrees of freedom
3 sum of squares for the model
4 sum of squares for error
5 total (corrected) sum of squares
6 model mean square
7 error mean square
8 overall F-statistic
9 p-value

10 R2 (in percent)
11 adjusted R2 (in percent)
12 estimate of the standard deviation
13 overall mean of y
14 coefficient of variation (in percent)

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for array anova_table is provided by the user. See
IMSLS_ANOVA_TABLE.

IMSLS_GROUP_MEANS, float **means (Output)
Address of a pointer to an internally allocated array of length n_groups
containing the group means.

218 •••• anova_oneway IMSL C/Stat/Library

IMSLS_GROUP_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See
IMSLS_GROUP_MEANS.

IMSLS_GROUP_STD_DEVS, float **std_devs (Output)
Address of a pointer to an internally allocated array of length n_groups
containing the group standard deviations.

IMSLS_GROUP_STD_DEVS_USER, float std_devs[] (Output)
Storage for array std_devs is provided by the user. See
IMSLS_STD_DEVS.

IMSLS_GROUP_COUNTS, int **counts (Output)
Address of a pointer to an internally allocated array of length n_groups
containing the number of nonmissing observations for the groups.

IMSLS_GROUP_COUNTS_USER, int counts[] (Output)
Storage for array counts is provided by the user. See IMSLS_COUNTS.

IMSLS_CONFIDENCE, float confidence (Input)
Confidence level for the simultaneous interval estimation.
If IMSLS_TUKEY is specified, confidence must be in the range
[90.0, 99.0). Otherwise, confidence is in the range [0.0, 100.0).
Default: confidence = 95.0

IMSLS_TUKEY, float **ci_diff_means (Output), or
IMSLS_DUNN_SIDAK, float **ci_diff_means (Output), or
IMSLS_BONFERRONI, float **ci_diff_means (Output), or
IMSLS_SCHEFFE, float **ci_diff_means (Output), or
IMSLS_ONE_AT_A_TIME, float **ci_diff_means (Output)

Function imsls_f_anova_oneway computes the confidence intervals
on all pairwise differences of means using any one of six methods:
Tukey, Tukey-Kramer, Dunn-�idák, Bonferroni, Scheffé, or Fisher�s
LSD (One-at-a-Time). If IMSLS_TUKEY is specified, the Tukey
confidence intervals are calculated if the group sizes are equal;
otherwise, the Tukey-Kramer confidence intervals are calculated.

On return, ci_diff_means contains the address of a pointer to a

2 5ngroupse j×
internally allocated array containing the statistics relating to the
difference of means.

Column Description
0 group number for the i-th mean
1 group number for the j-th mean
2 difference of means (i-th mean) − (j-th mean)

Chapter 4: Analysis of Variance anova_oneway •••• 219

Column Description
3 lower confidence limit for the difference
4 upper confidence limit for the difference

IMSLS_TUKEY_USER, float ci_diff_means[] (Output), or
IMSLS_DUNN_SIDAK_USER, float ci_diff_means[] (Output), or
IMSLS_BONFERRONI_USER, float ci_diff_means[] (Output), or
IMSLS_SCHEFFE_USER, float ci_diff_means[] (Output), or
IMSLS_ONE_AT_A_TIME_USER, float ci_diff_means[] (Output)

Storage for array ci_diff_means is provided by the user.

Description
Function imsls_f_anova_oneway performs an analysis of variance of
responses from a oneway classification design. The model is

yij = µi + εij i = 1, 2, …, k; j = 1, 2, …, ni

where the observed value yij constitutes the j-th response in the i-th group,
µi denotes the population mean for the i-th group, and the εij arguments are errors
that are identically and independently distributed normal with mean 0 and
variance σ2. Function imsls_f_anova_oneway requires the yij observed
responses as input into a single vector y with responses in each group occupying
contiguous locations. The analysis of variance table is computed along with the
group sample means and standard deviations. A discussion of formulas and
interpretations for the one-way analysis of variance problem appears in most
elementary statistics texts, e.g., Snedecor and Cochran (1967, Chapter 10).

Function imsls_f_anova_oneway computes simultaneous confidence intervals
on all

k
k k∗ =

−1
2
b g

pairwise comparisons of k means µ1 µ2, …, µk in the one-way analysis of variance
model. Any of several methods can be chosen. A good review of these methods is
given by Stoline (1981). The methods are also discussed in many elementary
statistics texts, e.g., Kirk (1982, pp. 114−127).

Let s2 be the estimated variance of a single observation. Let v be the degrees of
freedom associated with s2. Let

α = −1
100 0

confidence

.

The methods are summarized as follows:

Tukey method: The Tukey method gives the narrowest simultaneous confidence
intervals for all pairwise differences of means µi − µj in balanced

220 •••• anova_oneway IMSL C/Stat/Library

(n1 = n2 = … = nk = n) one-way designs. The method is exact and uses the
Studentized range distribution. The formula for the difference µi − µj is given by

y y qi j k v s
n

− ± −1
2

α ; ,

where q1-a;k,v is the (1 − α) 100 percentage point of the Studentized range
distribution with parameters k and v.

Tukey-Kramer method: The Tukey-Kramer method is an approximate
extension of the Tukey method for the unbalanced case. (The method simplifies
to the Tukey method for the balanced case.) The method always produces
confidence intervals narrower than the Dunn-�idák and Bonferroni methods.
Hayter (1984) proved that the method is conservative, i.e., the method guarantees
a confidence coverage of at least (1 − α) 100. Hayter�s proof gave further support
to earlier recommendations for its use (Stoline 1981). (Methods that are currently
better are restricted to special cases and only offer improvement in severely
unbalanced cases; see, for example, Spurrier and Isham 1985.) The formula for
the difference µi − µj is given by the following:

y y qi j v k s
n

s
ni j

− ±
− +1

2 2

2 2
α ; ,

Dunn-�idák method: The Dunn-�idák method is a conservative method. The
method gives wider intervals than the Tukey-Kramer method. (For large v and
small α and k, the difference is only slight.) The method is slightly better than the
Bonferroni method and is based on an improved Bonferroni (multiplicative)
inequality (Miller 1980, pp. 101, 254−255). The method uses the t distribution
(see function imsls_f_t_inverse_cdf, Chapter 11). The formula for the
difference µi − µj is given by

y y ti j
v s

n
s
n

k

i j

− ±
+ − +

∗1
2

1
2

1 1
2 2

αb g / ;

where tf ;v is the 100f percentage point of the t distribution with ν degrees of
freedom.

Bonferroni method: The Bonferroni method is a conservative method based on
the Bonferroni (additive) inequality (Miller, p. 8). The method uses the t
distribution. The formula for the difference µi − µj is given by the following:

y y ti j

k
v s

n
s
ni j

− ±
− +∗1

2

2 2α ;

Scheffé method: The Scheffé method is an overly conservative method for
simultaneous confidence intervals on pairwise difference of means. The method is
applicable for simultaneous confidence intervals on all contrasts, i.e., all linear
combinations

Chapter 4: Analysis of Variance anova_oneway •••• 221

ci i
i

k

µ
=
�

1

where the following is true:

ci
i

k

=
=
� 0

1

This method can be recommended here only if a large number of confidence
intervals on contrasts in addition to the pairwise differences of means are to be
constructed. The method uses the F distribution (see function
imsls_f_F_inverse_cdf, Chapter 11). The formula for the difference µi − µj
is given by

y y k F s
n

s
ni j k v

i j
− ± − +− −1 1 1

2 2

b g α ; , ()

where F1-a;(k-1),v is the (1 − α) 100 percentage point of the F distribution with
k − 1 and ν degrees of freedom.

One-at-a-Time t method (Fisher�s LSD): The One-at-a-Time t method is
appropriate for constructing a single confidence interval. The confidence
percentage input is appropriate for one interval at a time. The method has been
used widely in conjunction with the overall test of the null hypothesis
µ1 = µ2 = … = µk by the use of the F statistic. Fisher�s LSD (least significant
difference) test is a two-stage test that proceeds to make pairwise comparisons of
means only if the overall F test is significant. Milliken and Johnson (1984, p. 31)
recommend LSD comparisons after a significant F only if the number of
comparisons is small and the comparisons were planned prior to the analysis. If
many unplanned comparisons are made, they recommend Scheffé�s method. If the
F test is insignificant, a few planned comparisons for differences in means can
still be performed by using either Tukey, Tukey-Kramer, Dunn-�idák,or
Bonferroni methods. Because the F test is insignificant, Scheffé�s method does
not yield any significant differences. The formula for the difference µi − µj is
given by the following:

y y ti j
v s

n
s
ni j

− ±
− +1

2

2 2α ;

Examples

Example 1
This example computes a one-way analysis of variance for data discussed by
Searle (1971, Table 5.1, pp. 165−179). The responses are plant weights for six

222 •••• anova_oneway IMSL C/Stat/Library

plants of three different types�three normal, two off-types, and one aberrant.
The responses are given by type of plant in the following table:

Normal Off-Type Aberrant
101 84 32

105 88
94

#include <imsls.h>
main()
{

int n_groups=3;
int n[] = {3, 2, 1};
float y[] = {101.0, 105.0, 94.0, 84.0, 88.0, 32.0};
float p_value;
p_value = imsls_f_anova_oneway (n_groups, n, y, 0);
printf ("p-value = %6.4f", p_value);

}

Output
p-value = 0.002

Example 2
The data used in this example is the same as that used in the initial example.
Here, the anova_table is printed.

#include <imsls.h>
main()
{

int n_groups=3;
int n[] = {3, 2, 1};
float y[] = {101.0, 105.0, 94.0, 84.0, 88.0, 32.0};
float p_value;
float *anova_table;
char *labels[] = {

"degrees of freedom for among groups",
"degrees of freedom for within groups",
"total (corrected) degrees of freedom",
"sum of squares for among groups",
"sum of squares for within groups",
"total (corrected) sum of squares",
"among mean square",
"within mean square", "F-statistic",
"p-value", "R-squared (in percent)",
"adjusted R-squared (in percent)",
"est. standard deviation of within error",
"overall mean of y",
"coefficient of variation (in percent)"};

/* Perform analysis */
p_value = imsls_f_anova_oneway (n_groups, n, y,

Chapter 4: Analysis of Variance anova_oneway •••• 223

IMSLS_ANOVA_TABLE, &anova_table,
0);

/* Print results */
imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,

anova_table,
IMSLS_ROW_LABELS, labels,
IMSLS_WRITE_FORMAT, "%9.2f",
0);

}

Output
* * * Analysis of Variance * * *

degrees of freedom for among groups 2.00
degrees of freedom for within groups 3.00
total (corrected) degrees of freedom 5.00
sum of squares for among groups 3480.00
sum of squares for within groups 70.00
total (corrected) sum of squares 3550.00
among mean square 1740.00
within mean square 23.33
F-statistic 74.57
p-value 0.00
R-squared (in percent) 98.03
adjusted R-squared (in percent) 96.71
est. standard deviation of within error 4.83
overall mean of y 84.00
coefficient of variation (in percent) 5.75

Example 3
Simultaneous confidence intervals are generated for the following measurements
of cold-cranking power for five models of automobile batteries. Nelson (1989,
pp. 232−241) provided the data and approach.

Model 1 Model 2 Model 3 Model 4 Model 5
41 42 27 48 28
43 43 26 45 32
42 46 28 51 37
46 38 27 46 25

The Tukey method is chosen for the analysis of pairwise comparisons, with a
confidence level of 99 percent. The means and their confidence limits are output.

#include <imsls.h>

void main()
{

int n_groups = 5;
int n[] = {4, 4, 4, 4, 4};
int permute[] = {2, 3, 4, 0, 1};
float y[] = {41.0, 43.0, 42.0, 46.0, 42.0,

224 •••• anova_oneway IMSL C/Stat/Library

43.0, 46.0, 38.0, 27.0, 26.0,
28.0, 27.0, 48.0, 45.0, 51.0,
46.0, 28.0, 32.0, 37.0, 25.0};

float *anova_table, *ci_diff_means, tmp_diff_means[50];
float confidence = 99.0;
char *labels[] = {

"degrees of freedom for among groups",
"degrees of freedom for within groups",
"total (corrected) degrees of freedom",
"sum of squares for among groups",
"sum of squares for within groups",
"total (corrected) sum of squares",
"among mean square",
"within mean square", "F-statistic",
"p-value", "R-squared (in percent)",
"adjusted R-squared (in percent)",
"est. standard deviation of within error",
"overall mean of y",
"coefficient of variation (in percent)"};

char *mean_row_labels[] = {
"first and second",
"first and third",
"first and fourth",
"first and fifth",
"second and third",
"second and fourth",
"second and fifth",
"third and fourth",
"third and fifth",
"fourth and fifth"};

char *mean_col_labels[] = {
"Means",
"Difference of means",
"Lower limit",
"Upper limit"};

/* Perform analysis */

imsls_f_anova_oneway(n_groups, n, y,
IMSLS_ANOVA_TABLE, &anova_table,
IMSLS_CONFIDENCE, confidence,
IMSLS_TUKEY, &ci_diff_means,
0);

/* Print anova_table */
imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15,

1, anova_table,
IMSLS_ROW_LABELS, labels,
IMSLS_WRITE_FORMAT, "%9.2f",
0);

/* Permute ci_diff_means for printing */
imsls_f_permute_matrix(10, 5, ci_diff_means, permute,

IMSLS_PERMUTE_COLUMNS,
IMSLS_RETURN_USER, tmp_diff_means,
0);

/* Print ci_diff_means */
imsls_f_write_matrix("* * * Differences in Means * * *\n", 10,

3, tmp_diff_means,
IMSLS_A_COL_DIM, 5,

Chapter 4: Analysis of Variance anova_factorial •••• 225

IMSLS_ROW_LABELS, mean_row_labels,
IMSLS_COL_LABELS, mean_col_labels,
IMSLS_WRITE_FORMAT, "%9.2f",
0);

}

Output
* * * Analysis of Variance * * *

degrees of freedom for among groups 4.00
degrees of freedom for within groups 15.00
total (corrected) degrees of freedom 19.00
sum of squares for among groups 1242.20
sum of squares for within groups 150.75
total (corrected) sum of squares 1392.95
among mean square 310.55
within mean square 10.05
F-statistic 30.90
p-value 0.00
R-squared (in percent) 89.18
adjusted R-squared (in percent) 86.29
est. standard deviation of within error 3.17
overall mean of y 38.05
coefficient of variation (in percent) 8.33

* * * Differences in Means * * *

Means Difference Lower limit Upper limit
of means

first and second 0.75 -8.05 9.55
first and third 16.00 7.20 24.80
first and fourth -4.50 -13.30 4.30
first and fifth 12.50 3.70 21.30
second and third 15.25 6.45 24.05
second and fourth -5.25 -14.05 3.55
second and fifth 11.75 2.95 20.55
third and fourth -20.50 -29.30 -11.70
third and fifth -3.50 -12.30 5.30
fourth and fifth 17.00 8.20 25.80

anova_factorial
Analyzes a balanced factorial design with fixed effects.

Synopsis
#include <imsls.h>

float imsls_f_anova_factorial (int n_subscripts, int n_levels,
float y[], ..., 0)

The type double function is imsls_d_anova_factorial

226 •••• anova_factorial IMSL C/Stat/Library

Required Arguments

int n_subscripts (Input)
Number of subscripts. Number of factors in the model + 1 (for the error
term).

int n_levels (Input)
Array of length n_subscripts containing the number of levels for each
of the factors for the first n_subscripts − 1 elements. n_levels
[n_subscripts − 1] is the number of observations per cell.

float y[] (Input)
Array of length n_levels [0]*n_levels [1]* … *n_levels
[n_subscripts − 1] containing the responses. Argument y must not
contain NaN for any of its elements, i.e., missing values are not allowed.

Return Value
The p-value for the overall F test.

Synopsis with Optional Arguments
#include <imsls.h>

float imsls_f_anova_factorial (int n_subscripts, int n_levels,
float y[],
IMSLS_MODEL_ORDER, int model_order,
IMSLS_PURE_ERROR, or
IMSLS_POOL_INTERACTIONS,
IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
IMSLS_TEST_EFFECTS, float **test_effects,
IMSLS_TEST_EFFECTS_USER, float test_effects[],
IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
0)

Optional Arguments
IMSLS_MODEL_ORDER, int model_order (Input)

Number of factors to be included in the highest-way interaction in the
model. Argument model_order must be in the interval
[1, n_subscripts − 1]. For example, a model_order of 1 indicates
that a main effect model will be analyzed, and a model_order of 2
indicates that two-way interactions will be included in the model.
Default: model_order = n_subscripts − 1

IMSLS_PURE_ERROR, or
IMSLS_POOL_INTERACTIONS

IMSLS_PURE_ERROR, the default option, indicates factor

Chapter 4: Analysis of Variance anova_factorial •••• 227

n_subscripts is error. Its main effect and all its interaction effects are
pooled into the error with the other (model_order + 1)-way and higher-
way interactions. IMSLS_POOL_INTERACTIONS indicates factor
n_subscripts is not error. Only (model_order + 1)-way and higher-
way interactions are included in the error.

IMSLS_ANOVA_TABLE, float **anova_table (Output)
Address of a pointer to an internally allocated array of size 15 containing
the analysis of variance table. The analysis of variance statistics are
given as follows:

Element Analysis of Variance Statistics
0 degrees of freedom for the model
1 degrees of freedom for error
2 total (corrected) degrees of freedom
3 sum of squares for the model
4 sum of squares for error
5 total (corrected) sum of squares
6 model mean square
7 error mean square
8 overall F-statistic
9 p-value

10 R2 (in percent)
11 adjusted R2 (in percent)
12 estimate of the standard deviation
13 overall mean of y
14 coefficient of variation (in percent)

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for array anova_table is provided by the user. See
IMSLS_ANOVA_TABLE.

IMSLS_TEST_EFFECTS, float **test_effects (Output)
Address of a pointer to an NEF × 4 internally allocated array containing a
matrix containing statistics relating to the sums of squares for the effects
in the model. Here,

NEF = + + +1 2
n n

n
ne j e j e j� min (,| |)model_order

where n is given by n_subscripts if IMSLS_POOL_INTERACTIONS is
specified; otherwise, n_subscripts − 1.

228 •••• anova_factorial IMSL C/Stat/Library

Suppose the factors are A, B, C, and error. With model_order = 3,
rows 0 through NEF − 1 would correspond to A, B, C, AB, AC, BC, and
ABC, respectively. The columns of test_effects are as follows:

Column Description
0 degrees of freedom
1 sum of squares
2 F-statistic
3 p-value

IMSLS_TEST_EFFECTS_USER, float test_effects[] (Output)
Storage for array test_effects is provided by the user. See
IMSLS_TEST_EFFECTS.

IMSLS_MEANS, float **means (Output)
Address of a pointer to an internally allocated array of length
(n_levels [0] + 1) × (n_levels [1] + 1) × … ×
(n_levels[n − 1] + 1) containing the subgroup means.

See argument IMSLS_TEST_EFFECTS for a definition of n. If the factors
are A, B, C, and error, the ordering of the means is grand mean, A
means, B means, C means, AB means, AC means, BC means, and ABC
means.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

Description
Function imsls_f_anova_factorial performs an analysis for an n-way
classification design with balanced data. For balanced data, there must be an
equal number of responses in each cell of the n-way layout. The effects are
assumed to be fixed effects. The model is an extension of the two-way model to
include n factors. The interactions (two-way, three-way, up to n-way) can be
included in the model, or some of the higher-way interactions can be pooled into
error. The argument model_order specifies the number of factors to be included
in the highest-way interaction. For example, if three-way and higher-way
interactions are to be pooled into error, set model_order = 2. (By default,
model_order = n_subscripts − 1 with the last subscript being the error
subscript.) Argument IMSLS_PURE_ERROR indicates there are repeated responses
within the n-way cell; IMSLS_POOL_INTERACTIONS_INTO_ERROR indicates
otherwise.

Function imsls_f_anova_factorial requires the responses as input into a
single vector y in lexicographical order, so that the response subscript associated
with the first factor varies least rapidly, followed by the subscript associated with

Chapter 4: Analysis of Variance anova_factorial •••• 229

the second factor, and so forth. Hemmerle (1967, Chapter 5) discusses the
computational method.

Examples

Example 1
A two-way analysis of variance is performed with balanced data discussed by
Snedecor and Cochran (1967, Table 12.5.1, p. 347). The responses are the weight
gains (in grams) of rats that were fed diets varying in the source (A) and level (B)
of protein. The model is

1, 2; 1, 2, 3; 1, 2, ...,10ijk i j ij ijky i j k= µ + α + β + γ + ε = = =

where

α β γ γi
i

j
j

ij
i

ij
j

j
= = = =
� � � �= = = = =

1

2

1

3

1

2

1

3

0 0 0 1 2 3 0; ; , , ;for and

for i = 1, 2. The first responses in each cell in the two-way layout are given in the
following table:

Protein Source (A)
Protein Level (B) Beef Cereal Pork
High 73, 102, 118, 104,

81, 107, 100, 87,
117, 111

98, 74, 56, 111,
95, 88, 82, 77, 86,
92

94, 79, 96, 98,
102, 102, 108, 91,
120, 105

Low 90, 76, 90, 64, 86,
51, 72, 90, 95, 78

107, 95, 97, 80,
98, 74, 74, 67, 89,
58

49, 82, 73, 86, 81,
97, 106, 70, 61,
82

#include <imsls.h>

void main ()
{

int n_subscripts= 3;
int n_levels[3] = {3,2,10};
float p_value;
float y[60] = {

73.0, 102.0, 118.0, 104.0, 81.0,
107.0, 100.0, 87.0, 117.0, 111.0,
90.0, 76.0, 90.0, 64.0, 86.0,
51.0, 72.0, 90.0, 95.0, 78.0,
98.0, 74.0, 56.0, 111.0, 95.0,
88.0, 82.0, 77.0, 86.0, 92.0,
107.0, 95.0, 97.0, 80.0, 98.0,
74.0, 74.0, 67.0, 89.0, 58.0,
94.0, 79.0, 96.0, 98.0, 102.0,
102.0, 108.0, 91.0, 120.0, 105.0,
49.0, 82.0, 73.0, 86.0, 81.0,

230 •••• anova_factorial IMSL C/Stat/Library

97.0, 106.0, 70.0, 61.0, 82.0};

p_value = imsls_f_anova_factorial(n_subscripts, n_levels, y, 0);

printf("P-value = %10.6f",p_value);
}

Output
P-value = 0.00229

Example 2
In this example, the same model and data is fit as in the initial example, but
optional arguments are used for a more complete analysis.

#include <imsls.h>

void main ()
{

int n_subscripts= 3;
int n_levels[3] = {3,2,10};
float p_value;
float *test_effects, *means, *anova_table;
float y[60] = {

73.0, 102.0, 118.0, 104.0, 81.0,
107.0, 100.0, 87.0, 117.0, 111.0,
90.0, 76.0, 90.0, 64.0, 86.0,
51.0, 72.0, 90.0, 95.0, 78.0,
98.0, 74.0, 56.0, 111.0, 95.0,
88.0, 82.0, 77.0, 86.0, 92.0,
107.0, 95.0, 97.0, 80.0, 98.0,
74.0, 74.0, 67.0, 89.0, 58.0,
94.0, 79.0, 96.0, 98.0, 102.0,
102.0, 108.0, 91.0, 120.0, 105.0,
49.0, 82.0, 73.0, 86.0, 81.0,
97.0, 106.0, 70.0, 61.0, 82.0};

char *labels[] = {
"degrees of freedom for the model",
"degrees of freedom for error",
"total (corrected) degrees of freedom",
"sum of squares for the model",
"sum of squares for error",
"total (corrected) sum of squares",
"model mean square", "error mean square",
"F-statistic", "p-value",
"R-squared (in percent)","Adjusted R-squared (in percent)",
"est. standard deviation of the model error",
"overall mean of y",
"coefficient of variation (in percent)"};

char *test_row_labels[] = {"A", "B", "A*B"};
char *test_col_labels[] = {

"Source", "DF", "Sum of\nSquares",
"Mean\nSquare", "Prob. of\nLarger F"};

char *mean_row_labels[] = {

Chapter 4: Analysis of Variance anova_factorial •••• 231

"grand mean",
"A1", "A2", "A3",
"B1", "B2",
"A1*B1", "A1*B2", "A2*B1", "A2*B2", "A3*B1", "A3*B2"};

/* Perform analysis */
p_value = imsls_f_anova_factorial(n_subscripts, n_levels, y,

IMSLS_ANOVA_TABLE, &anova_table,
IMSLS_TEST_EFFECTS, &test_effects,
IMSLS_MEANS, &means,
0);

printf("P-value = %10.6f",p_value);
/* Print results */

imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
anova_table,
IMSLS_ROW_LABELS, labels,
IMSLS_WRITE_FORMAT, "%11.4f",
0);

imsls_f_write_matrix("* * * Variation Due to the Model * * *", 3, 4,
test_effects,
IMSLS_ROW_LABELS, test_row_labels,
IMSLS_COL_LABELS, test_col_labels,
IMSLS_WRITE_FORMAT, "%11.4f",
0);

imsls_f_write_matrix("* * * Subgroup Means * * *", 12, 1,
means,
IMSLS_ROW_LABELS, mean_row_labels,
IMSLS_WRITE_FORMAT, "%11.4f",
0);

}

Output
P-value = 0.002299

* * * Analysis of Variance * * *

degrees of freedom for the model 5.0000
degrees of freedom for error 54.0000
total (corrected) degrees of freedom 59.0000
sum of squares for the model 4612.9346
sum of squares for error 11585.9990
total (corrected) sum of squares 16198.9336
model mean square 922.5869
error mean square 214.5555
F-statistic 4.3000
p-value 0.0023
R-squared (in percent) 28.4768
Adjusted R-squared (in percent) 21.8543
est. standard deviation of the model error 14.6477
overall mean of y 87.8667
coefficient of variation (in percent) 16.6704

232 •••• anova_factorial IMSL C/Stat/Library

* * * Variation Due to the Model * * *
Source DF Sum of Mean Prob. of

Squares Square Larger F
A 2.0000 266.5330 0.6211 0.5411
B 1.0000 3168.2678 14.7667 0.0003
A*B 2.0000 1178.1337 2.7455 0.0732

* * * Subgroup Means * * *
grand mean 87.8667
A1 89.6000
A2 84.9000
A3 89.1000
B1 95.1333
B2 80.6000
A1*B1 100.0000
A1*B2 79.2000
A2*B1 85.9000
A2*B2 83.9000
A3*B1 99.5000
A3*B2 78.7000

Example 3
This example performs a three-way analysis of variance using data discussed by
John (1971, pp. 91−92). The responses are weights (in grams) of roots of carrots
grown with varying amounts of applied nitrogen (A), potassium (B), and
phosphorus (C). Each cell of the three-way layout has one response. Note that the
ABC interactions sum of squares, which is 186, is given incorrectly by John
(1971, Table 5.2.) The three-way layout is given in the following table:

A0 A1 A2

B0 B1 B2 B0 B1 B2 B0 B1 B2

C0 88.76 91.41 97.85 94.83 100.49 99.75 99.90 100.23 104.51

C1 87.45 98.27 95.85 84.57 97.20 112.30 92.98 107.77 110.94

C2 86.01 104.20 90.09 81.06 120.80 108.77 94.72 118.39 102.87

#include <imsls.h>

void main ()
{

int n_subscripts= 3;
int n_levels[3] = {3,3,3};
float p_value;
float *test_effects, *anova_table;
float y[27] = {

88.76, 87.45, 86.01, 91.41, 98.27, 104.2, 97.85, 95.85,
90.09, 94.83, 84.57, 81.06, 100.49, 97.2, 120.8, 99.75,
112.3, 108.77, 99.9, 92.98, 94.72, 100.23, 107.77, 118.39,
104.51, 110.94, 102.87};

char *labels[] = {

Chapter 4: Analysis of Variance anova_factorial •••• 233

"degrees of freedom for the model",
"degrees of freedom for error",
"total (corrected) degrees of freedom",
"sum of squares for the model",
"sum of squares for error",
"total (corrected) sum of squares",
"model mean square", "error mean square",
"F-statistic", "p-value",
"R-squared (in percent)","Adjusted R-squared (in percent)",
"est. standard deviation of the model error",
"overall mean of y",
"coefficient of variation (in percent)"};

char *test_row_labels[] = {"A", "B", "C", "A*B", "A*C", "B*C"};
char *test_col_labels[] = {

"Source", "DF", "Sum of\nSquares",
"Mean\nSquare", "Prob. of\nLarger F"};

/* Perform analysis */
p_value = imsls_f_anova_factorial(n_subscripts, n_levels, y,

IMSLS_ANOVA_TABLE, &anova_table,
IMSLS_TEST_EFFECTS, &test_effects,
IMSLS_POOL_INTERACTIONS,
0);

/* Print results */
printf("P-value = %10.6f",p_value);

imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
anova_table,
IMSLS_ROW_LABELS, labels,
IMSLS_WRITE_FORMAT, "%11.4f",
0);

imsls_f_write_matrix("* * * Variation Due to the Model * * *", 6, 4,
test_effects,
IMSLS_ROW_LABELS, test_row_labels,
IMSLS_COL_LABELS, test_col_labels,
IMSLS_WRITE_FORMAT, "%11.4f",
0);

}

Output
P-value = 0.008299

* * * Analysis of Variance * * *

degrees of freedom for the model 18.0000
degrees of freedom for error 8.0000
total (corrected) degrees of freedom 26.0000
sum of squares for the model 2395.7290
sum of squares for error 185.7763
total (corrected) sum of squares 2581.5054
model mean square 133.0961
error mean square 23.2220
F-statistic 5.7315
p-value 0.0083

234 •••• multiple_comparisons IMSL C/Stat/Library

R-squared (in percent) 92.8036
Adjusted R-squared (in percent) 76.6116
est. standard deviation of the model error 4.8189
overall mean of y 98.9619
coefficient of variation (in percent) 4.8695

* * * Variation Due to the Model * * *
Source DF Sum of Mean Prob. of

Squares Square Larger F
A 2.0000 488.3678 10.5152 0.0058
B 2.0000 1090.6559 23.4832 0.0004
C 2.0000 49.1484 1.0582 0.3911
A*B 4.0000 142.5856 1.5350 0.2804
A*C 4.0000 32.3474 0.3482 0.8383
B*C 4.0000 592.6240 6.3800 0.0131

multiple_comparisons
Performs Student-Newman-Keuls multiple comparisons test.

Synopsis
#include <imsls.h>

int *imsls_f_multiple_comparisons (int n_groups, float means[],
int df, float std_error, ..., 0)

The type double function is imsls_d_multiple_comparisons.

Required Arguments

int n_groups (Input)
Number of groups under consideration.

float means[] (Input)
Array of length n_groups containing the means.

int df (Input)
Degrees of freedom associated with std_error.

float std_error (Input)
Effective estimated standard error of a mean. In fixed effects models,
std_error equals the estimated standard error of a mean. For example,
in a one-way model

std_error = s
n

2

where s2 is the estimate of σ2 and n is the number of responses in a
sample mean. In models with random components, use

Chapter 4: Analysis of Variance multiple_comparisons •••• 235

std_error = sedif
2

where sedif is the estimated standard error of the difference of two
means.

Return Value
Pointer to the array of length n_groups − 1 indicating the size of the groups of
means declared to be equal. Value equal_means [I] = J indicates the I-th
smallest mean and the next J − 1 larger means are declared equal. Value
equal_means [I] = 0 indicates no group of means starts with the I-th smallest
mean.

Synopsis with Optional Arguments
#include <imsls.h>

int *imsls_f_multiple_comparisons (int n_groups, float means [],
int df, float std_error,
IMSLS_ALPHA, float alpha,
IMSLS_RETURN_USER, int *equal_means,
0)

Optional Arguments
IMSLS_ALPHA, float alpha (Input)

Significance level of test. Argument alpha must be in the interval
[0.01, 0.10].
Default: alpha = 0.01

IMSLS_RETURN_USER, int *equal_means (Output)
If specified, equal_means is an array of length n_groups − 1 specified
by the user. On return, equal_means contains the size of the groups of
means declared to be equal. Value equal_means [I] = J indicates the
I-th smallest mean and the next J − 1 larger means are declared equal.
Value equal_means [I] = 0 indicates no group of means starts with the
I-th smallest mean.

Description
Function imsls_f_multiple_comparisons performs a multiple comparison
analysis of means using the Student-Newman-Keuls method. The null hypothesis
is equality of all possible ordered subsets of a set of means. This null hypothesis
is tested using the Studentized range of each of the corresponding subsets of
sample means. The method is discussed in many elementary statistics texts, e.g.,
Kirk (1982, pp. 123�125).

236 •••• multiple_comparisons IMSL C/Stat/Library

Examples

Example 1
A multiple-comparisons analysis is performed using data discussed by Kirk
(1982, pp. 123−125). The results show that there are three groups of means with
three separate sets of values: (36.7, 40.3, 43.4), (40.3, 43.4, 47.2), and (43.4,
47.2, 48.7).

#include <imsls.h>

void main ()
{

int n_groups = 5;
int df = 45;
float std_error = 1.6970563;
float means[5] = {36.7, 48.7, 43.4, 47.2, 40.3};
int *equal_means;

/* Perform multiple comparisons tests */
equal_means = imsls_f_multiple_comparisons(n_groups, means, df,

std_error, 0);
/* Print results */

imsls_i_write_matrix("Size of Groups of Means", 1, n_groups-1,
equal_means, 0);

}

Output
Size of Groups of Means

1 2 3 4
3 3 3 0

Example 2
This example uses the same data as the previous example but also uses the
optional arguments.

#include <imsls.h>

void main ()
{

int n_groups = 5;
int df = 45;
float std_error = 1.6970563;
float means[5] = {36.7, 48.7, 43.4, 47.2, 40.3};
int equal_means[4];

/* Perform multiple comparison tests */
imsls_f_multiple_comparisons(n_groups, means, df, std_error,

IMSLS_ALPHA, 0.01,
IMSLS_RETURN_USER, equal_means,
0);

/* Print results */
imsls_i_write_matrix("Size of Groups of Means", 1, n_groups-1,

equal_means, 0);
}

Chapter 4: Analysis of Variance anova_nested •••• 237

Output
Size of Groups of Means

1 2 3 4
3 3 3 0

anova_nested
Analyzes a completely nested random model with possibly unequal numbers in
the subgroups.

Synopsis
#include <imsls.h>

float *imsls_f_anova_nested (int n_factors, int equal_option, int
n_levels[], float y[], ..., 0)

The type double function is imsls_d_anova_nested.

Required Arguments

int n_factors (Input)
Number of factors (number of subscripts) in the model, including error.

int equal_option (Input)
Equal numbers option.

equal_option Description

0 Unequal numbers in the subgroups

1 Equal numbers in the subgroups

int n_levels[] (Input)
Array with the number of levels.

If equal_option = 1, n_levels is of length n_factors and contains
the number of levels for each of the factors. In this case, the following
additional variables are referred to in the description of anova_nested:

Variable Description

LNL n_levels[0] + n_levels[0] * n_levels[1] +

... + n_levels[0] * n_levels[1] * ... *

n_levels[n_factors – 2]

LNLNF n_levels[0] * n_levels[1] * ...*

n_levels[n_factors – 2]

NOBS The number of observations. NOBS equals n_levels[0] *

n_levels[1] * ... * n_levels[n_factors-1].

238 •••• anova_nested IMSL C/Stat/Library

If equal_option = 0, n_levels contains the number of levels of each factor at
each level of the factor in which it is nested. In this case, the following additional
variables are referred to in the description of anova_nested:

Variable Description

LNL Length of n_levels.

LNLNF Length of the subvector of n_levels for the last factor.

NOBS Number of observations. NOBS equals the sum of the last
LNLNF elements of n_levels.

For example, a random one-way model with two groups, five responses in the
first group and ten in the second group, would have LNL= 3, LNLNF= 2,
NOBS = 15, n_levels[0] = 2, n_levels[1] = 5, and

n_levels[2] = 10.

float y[] (Input)
Array of length NOBS containing the responses. The elements of Y are
ordered lexicographically, i.e., the last model subscript changes most
rapidly, the next to last model subscript changes the next most rapidly,
and so forth, with the first subscript changing the slowest.

Return Value
The p-value for the F-statistic, anova_table[9].

Synopsis with Optional Arguments
#include <imsls.h>

float * imsls_f_anova_nested (int n_factors, int equal_option, int
n_levels[], float y[],
IMSLS_ANOVA_TABLE, float **anova_table,

IMSLS_ANOVA_TABLE_USER, float anova_table[]
IMSLS_CONFIDENCE, float confidence,
IMSLS_VARIANCE_COMPONENTS, float **variance_components,
IMSLS_VARIANCE_COMPONENTS_USER, float
variance_components[],
IMSLS_EMS, float **expect_mean_sq,
IMSLS_EMS_USER, float expect_mean_sq[],
IMSLS_Y_MEANS, float **y_means,
IMSLS_Y_MEANS_USER, float y_means[],
 0)

Optional Arguments
IMSLS_ANOVA_TABLE, float **anova_table, (Output)

Address of a pointer to an internally allocated array of size 15

Chapter 4: Analysis of Variance anova_nested •••• 239

containing the analysis of variance table. The analysis of variance
statistics are as follows:

Element Analysis of Variance Statistics

0 Degrees of freedom for the model

1 Degrees of freedom for error

2 Total (corrected) degrees of freedom

3 Sum of squares for the model

4 Sum of squares for error

5 Total (corrected) sum of squares

6 Model mean square

7 Error mean square

8 Overall F-statistic

9 p-value

10 R2 (in percent)

11 Adjusted R2 (in percent)

12 Estimate of the standard deviation

13 Overall mean of y

14 Coefficient of variation (in percent)

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for array anova_table is provided by the user.
See IMSLS_ANOVA_TABLE.

IMSLS_CONFIDENCE, float confidence (Input)
Confidence level for two-sided interval estimates on the variance
components, in percent. confidence percent confidence intervals are
computed, hence, confidence must be in the interval
[0.0, 100.0). confidence often will be 90.0, 95.0,

or 99.0. For one-sided intervals with confidence level ONECL,
ONECL in the interval [50.0, 100.0), set
confidence = 100.0 - 2.0 * (100.0 - ONECL).

Default: confidence = 95.0

IMSLS_VARIANCE_COMPONENTS, float **variance_components, (Output)
Address to a pointer to an internally allocated array.
variance_components is an n_factors by 9 matrix containing
statistics relating to the particular variance components in the model.
Rows of variance_components correspond to the n_factors
factors. Columns of variance_components are as follows:

240 •••• anova_nested IMSL C/Stat/Library

Column Description

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F -statistic

5 p-value for F test

6 Variance component estimate

7 Percent of variance of variance explained by variance component

8 Lower endpoint for a confidence interval on the variance
component

9 Upper endpoint for a confidence interval on the variance
component

A test for the error variance equal to zero cannot be performed.
variance_components(n_factors, 4) and
variance_components(n_factors, 5) are set to NaN (not a number).

IMSLS_VARIANCE_COMPONENTS_USER, float variance_components[]
(Output) Storage for array variance_components is provided by the
user. See IMSLS_VARIANCE_COMPONENTS.

IMSLS_EMS, float **expect_mean_sq, (Output)
Address to a pointer to an internally allocated array of length
with expected mean square coefficients.

IMSLS_EMS_USER, float expect_mean_sq[], (Output)
Storage for array expect_mean_sq is provided by the user.
See IMSLS_EMS.

IMSLS_Y_MEANS, float **y_means (Output)
Address to a pointer to an internally allocated array containing the
subgroup means.

Equal options Length of y means

0 1 + n_levels[0] + n_levels[1] + � n_levels[
(LNL - LNLNF)-1] (See the description of argument n_levels
for definitions of LNL and LNLNF.)

1 1 + n_levels[0] + n_levels[0] * n_levels[1]
+ � + n_levels[0]* n_levels[1] * � * n_levels
[n_factors – 2]

If the factors are labeled A, B, C, and error, the ordering of the means is grand
mean, A means, AB means, and then ABC means.

Chapter 4: Analysis of Variance anova_nested •••• 241

IMSLS_Y_MEANS_USER, float y_means[], Storage for array y_means
is provided by the user. See IMSLS_Y_MEANS

Description
Routine imsls_f_anova_nested analyzes a nested random model with equal
or unequal numbers in the subgroups. The analysis includes an analysis of
variance table and computation of subgroup means and variance component
estimates. Anderson and Bancroft (1952, pages 325−330) discuss the
methodology. The analysis of variance method is used for estimating the variance
components. This method solves a linear system in which the mean squares are
set to the expected mean squares. A problem that Hocking (1985, pages
324−330) discusses is that this method can yield negative variance component
estimates. Hocking suggests a diagnostic procedure for locating the cause of a
negative estimate. It may be necessary to reexamine the assumptions of the
model.

Example 1
An analysis of a three-factor nested random model with equal numbers in the
subgroups is performed using data discussed by Snedecor and Cochran (1967,
Table 10.16.1, pages 285−288). The responses are calcium concentrations
(in percent, dry basis) as measured in the leaves of turnip greens. Four plants are
taken at random, then three leaves are randomly selected from each plant.
Finally, from each selected leaf two samples are taken to determine calcium
concentration. The model is

yijk = µ + αi + βij + eijk i = 1, 2, 3, 4; j = 1, 2, 3; k = 1, 2

where yijk is the calcium concentration for the k-th sample of the j-th leaf of the
i-th plant, the αi�s are the plant effects and are taken to be independently
distributed

N(,)0 2σ

the βij�s are leaf effects each independently distributed

N(,)0 2σβ

and the εijk�s are errors each independently distributed N(0, σ�). The effects are
all assumed to be independently distributed. The data are given in the following
table:

242 •••• anova_nested IMSL C/Stat/Library

Plant Leaf Samples
1 1

2

3

3.28

3.52

2.88

3.09

3.48

2.80

2 1

2

3

2.46

1.87

2.19

2.44

1.92

2.19

3 1

2

3

2.77

3.74

2.55

2.66

3.44

2.55

4 1

2

3

3.78

4.07

3.31

3.87

4.12

3.31
#include <imsls.h>
#include <stdio.h>
#define Mfloat float
void main()
{

Mfloat pvalue, *aov, *varc, *ymeans, *ems;
Mfloat y[] = {3.28, 3.09, 3.52, 3.48, 2.88, 2.80, 2.46, 2.44, 1.87,

1.92, 2.19, 2.19, 2.77, 2.66, 3.74, 3.44, 2.55, 2.55, 3.78,
3.87, 4.07, 4.12, 3.31, 3.31};

int n_levels[] = {4, 3, 2};
char *aov_labels[] = {

"degrees of freedom for model",
"degrees of freedom for error",
"total (corrected) degrees of freedom",
"sum of squares for model",
"sum of squares for error",
"total (corrected) sum of squares",
"model mean square",
"error mean square",
"F-statistic",
"p-value",
"R-squared (in percent)",

"adjusted R-squared (in percent)",
"est. standard deviation of within error",
"overall mean of y",
"coefficient of variation (in percent)"};

char *ems_labels[] = {
"Effect A and Error",
"Effect A and Effect B",
"Effect A and Effect A",
"Effect B and Error",
"Effect B and Effect B",
"Error and Error"};

Chapter 4: Analysis of Variance anova_nested •••• 243

char *means_labels[] = {
"Grand mean",
" A means 1",
" A means 2",
" A means 3",
" A means 4",
"AB means 1 1",
"AB means 1 2",
"AB means 1 3",
"AB means 2 1",
"AB means 2 2",
"AB means 2 3",
"AB means 3 1",
"AB means 3 2",
"AB means 3 3",
"AB means 4 1",
"AB means 4 2",
"AB means 4 3"};

char *components_labels[] = {
"degrees of freedom for A",
"sum of squares for A",
"mean square of A",
"F-statistic for A",
"p-value for A",
"Estimate of A",
"Percent Variation Explained by A",
"95% Confidence Interval Lower Limit for A",
"95% Confidence Interval Upper Limit for A",
"degrees of freedom for B",

"sum of squares for B",
"mean square of B",
"F-statistic for B",
"p-value for B",
"Estimate of B",
"Percent Variation Explained by B",
"95% Confidence Interval Lower Limit for B",
"95% Confidence Interval Upper Limit for B",
"degrees of freedom for Error",

"sum of squares for Error",
"mean square of Error",
"F-statistic for Error",
"p-value for Error",
"Estimate of Error",
"Percent Explained by Error",
"95% Confidence Interval Lower Limit for Error",
"95% Confidence Interval Upper Limit for Error"};

pvalue = imsls_f_anova_nested(3, 1, n_levels, y,
IMSLS_ANOVA_TABLE, &aov,
IMSLS_Y_MEANS, &ymeans,
IMSLS_VARIANCE_COMPONENTS, &varc,
IMSLS_EMS, &ems,
0);

printf("pvalue = %f\n", pvalue);
imsls_f_write_matrix("* * * Analysis of Variance * * *", 15, 1, aov,

IMSLS_ROW_LABELS, aov_labels,

244 •••• anova_nested IMSL C/Stat/Library

IMSLS_WRITE_FORMAT, "%10.5f",
0);

imsls_f_write_matrix("* * * Expected Mean Square Coefficients * * *"
6, 1, ems,
IMSLS_ROW_LABELS, ems_labels,
IMSLS_WRITE_FORMAT, "%6.2f",
0);

imsls_f_write_matrix("* * * Means * * *", 17, 1, ymeans,
IMSLS_ROW_LABELS, means_labels,
IMSLS_WRITE_FORMAT, "%6.2f",
0);

imsls_f_write_matrix("* * Analysis of Variance / Variance Components * *",
27, 1, varc,
IMSLS_ROW_LABELS, components_labels,
IMSLS_WRITE_FORMAT, "%10.5f",
0);

}

Output
pvalue = 0.079854

* * * Analysis of Variance * * *
degrees of freedom for model 11.00000
degrees of freedom for error 12.00000
total (corrected) degrees of freedom 23.00000
sum of squares for model 10.19054
sum of squares for error 0.07985
total (corrected) sum of squares 10.27040
model mean square 0.92641
error mean square 0.00665
F-statistic 139.21599
p-value 0.00000
R-squared (in percent) 99.22248
adjusted R-squared (in percent) 98.50976
est. standard deviation of within error 0.08158
overall mean of y 3.01208
coefficient of variation (in percent) 2.70826

* * * Expected Mean Square Coefficients * * *
Effect A and Error 1.00
Effect A and Effect B 2.00
Effect A and Effect A 6.00
Effect B and Error 1.00
Effect B and Effect B 2.00
Error and Error 1.00

* * * Means * * *
Grand mean 3.01
A means 1 3.17
A means 2 2.18
A means 3 2.95
A means 4 3.74
AB means 1 1 3.18
AB means 1 2 3.50
AB means 1 3 2.84
AB means 2 1 2.45

Chapter 4: Analysis of Variance anova_balanced •••• 245

AB means 2 2 1.89
AB means 2 3 2.19
AB means 3 1 2.72
AB means 3 2 3.59
AB means 3 3 2.55
AB means 4 1 3.82
AB means 4 2 4.10
AB means 4 3 3.31

* * Analysis of Variance / Variance Components * *
degrees of freedom for A 3.00000
sum of squares for A 7.56034
mean square of A 2.52011
F-statistic for A 7.66516
p-value for A 0.00973
Estimate of A 0.36522
Percent Variation Explained by A 68.53015
95% Confidence Interval Lower Limit for A 0.03955
95% Confidence Interval Upper Limit for A 5.78674
degrees of freedom for B 8.00000
sum of squares for B 2.63020
mean square of B 0.32878
F-statistic for B 49.40642
p-value for B 0.00000
Estimate of B 0.16106
Percent Variation Explained by B 30.22121
95% Confidence Interval Lower Limit for B 0.06967
95% Confidence Interval Upper Limit for B 0.60042
degrees of freedom for Error 12.00000
sum of squares for Error 0.07985
mean square of Error 0.00665
F-statistic for Error ***********
p-value for Error ***********
Estimate of Error 0.00665
Percent Explained by Error 1.24864
95% Confidence Interval Lower Limit for Error 0.00342
95% Confidence Interval Upper Limit for Error 0.01813

anova_balanced
Analyzes a balanced complete experimental design for a fixed, random, or mixed
model.

Synopsis
#include <imsls.h>

float *imsls_f_anova_balanced (int n_factors, int n_levels[], float
y[], int n_random, int index_random_factor[], int
n_model_effects, int n_factors_per_effect[], int
index_factor_per_effect[], ..., 0)

The type double function is imsls_d_anova_balanced.

246 •••• anova_balanced IMSL C/Stat/Library

Required Arguments

int n_factors (Input)
Number of factors (number of subscripts) in the model, including error.

 int n_levels[] (Input)
Array of length n_factors containing the number of levels for each of
the factors.

float y[] (Input)
Array of length n_levels[0] * n_levels[1] *.. .*

n_levels[n_factors-1] containing the responses. y[] must not
contain NaN (not a number) for any of its elements, i.e., missing values
are not allowed.

int n_random (Input)
For positive n_random, |n_random| is the number of random factors.
For negative n_random, |n_random| is the number of random
effects (sources of variation).

 int index_random_factor[] (Input)
Index array of length |n_random| containing either the factor numbers
to be considered random (for n_random positive) or containing the
effect numbers to be considered random (for n_random negative). If
n_random = 0, index_random_factor is not referenced.

 int n_model_effects (Input)
Number of effects (sources of variation) due to the model excluding the
overall mean and error.

int n_factors_per_effect[] (Input)
Array of length n_model_effects containing the number of factors
associated with each effect in the model.

int index_factor_per_effect[] (Input)
Index vector of length n_factors_per_efffect[0] +

n_factors_per_effect[1] + .. . +

n_factors_per_effect[n_model_effects-1]. The first
n_factors_per_effect[0] elements give the factor numbers in the
first effect. The next n_factors_per_effect[1] elements give the
factor numbers in the second effect. The last n_factors_per_effect
[n_model_effects-1] elements give the factor numbers in the last
effect. Main effects must appear before their interactions. In general, an
effect E cannot appear after an effect
F if all of the indices for E appear also in F.

Return Value
The p-value for the F-statistic.

Chapter 4: Analysis of Variance anova_balanced •••• 247

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_anova_balanced (int n_factors, int n_levels[], float
y[], int n_random, int index_random_factor[], int
n_model_effects, int n_factors_per_effect[], int
index_factor_per_effect[],
IMSLS_ANOVA_TABLE, float **anova_table,

IMSLS_ANOVA_TABLE_USER, float anova_table[]
IMSLS_MODEL, int model,
IMSLS_CONFIDENCE, float confidence,
IMSLS_VARIANCE_COMPONENTS, float **variance_components,
IMSLS_VARIANCE_COMPONENTS_USER, float
variance_components[],
IMSLS_EMS, float **ems,
IMSLS_EMS_USER, float ems[],
IMSLS_Y_MEANS, float **y_means,
IMSLS_Y_MEANS_USER, float y_means[],
0)

Optional Arguments
IMSLS_ANOVA_TABLE, float **anova_table, (Output)

Address of a pointer to an internally allocated array of size 15 containing
the analysis of variance table. The analysis of variance statistics are as
follows:

Element Analysis of Variance Statistics

0 Degrees of freedom for the model

1 Degrees of freedom for error

2 Total (corrected) degrees of freedom

3 Sum of squares for the model

4 Sum of squares for error

5 Total (corrected) sum of squares

6 Model mean square

7 Error mean square

8 Overall F-statistic

9 p-value

10 R2 (in percent)

11 adjusted R2 (in percent)

248 •••• anova_balanced IMSL C/Stat/Library

12 estimate of the standard deviation

13 overall mean of Y

14 coefficient of variation (in percent)

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for array anova_table is provided by the user.
See IMSLS_ANOVA_TABLE.

IMSLS_MODEL, int model, (Input)
Model Option

MODEL Meaning

0 Searle model

1 Scheffe model

For the Scheffe model, effects corresponding to interactions of fixed and random
factors have their sum over the subscripts corresponding to fixed factors equal to
zero. Also, the variance of a random interaction effect involving some fixed
factors has a multiplier for the associated variance component that involves the
number of levels in the fixed factors. The Searle model has no summation
restrictions on the random interaction effects and has a multiplier of one for each
variance component. The default is model = 0.

IMSLS_CONFIDENCE, float confidence (Input)
Confidence level for two-sided interval estimates on the variance
components, in percent. confidence percent confidence intervals are
computed, hence, confidence must be in the interval [0.0,

100.0). confidence often will be 90.0, 95.0, or 99.0.

For one-sided intervals with confidence level α, α
in the interval [50.0, 100.0),

set confidence = 100.0 - 2.0 * 100.0 - α).
Default: confidence = 95.0

IMSLS_VARIANCE_COMPONENTS, float **variance_components, (Output)
Address of a pointer to an array, variance_components.
variance_components is an (n_model_effects + 1) by 9 array
containing statistics relating to the particular variance components or
effects in the model and the error. Rows of variance_components
correspond to the n_model_effects effects plus error.

Chapter 4: Analysis of Variance anova_balanced •••• 249

Element Description

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F -statistic

5 p-value for F test

6 Variance component estimate

7 Percent of variance of y explained by random effect

8 Lower endpoint for a confidence interval on the variance component

9 Upper endpoint for a confidence interval on the variance
component

Elements 6 through 9 contain NaN (not a number) if the effect is fixed, i.e., if
there is no variance component to be estimated. If the variance component
estimate is negative, columns 8 and 9 contain NaN.

IMSLS_VARIANCE_COMPONENTS_USER, float variance_components[]
(Output)
Storage for array variance_components is provided by the user.
See IMSLS_VARIANCE_COMPONENTS.

IMSLS_EMS, float **ems, (Output)
Address of a pointer to an internally allocated array of length
(n_model_effects + 1) * (n_model_effects + 2)/2

containing expected mean square coefficients. Suppose the effects are
A, B, and AB. The ordering of the coefficients in ems is as follows:

Error AB B A

A ems[0] ems[1] ems[2] ems[3]

B ems[4] ems[5] ems[6]

AB ems[7] ems[8]

Error ems[9]

IMSLS_EMS_USER, float ems[] (Output)
Storage for ems is provided by the user.
See IMSLS_EMS.

IMSLS_Y_MEANS, float **y_means (Output)
Address of a pointer to an internally allocated array of length
(n_levels(0) + 1) * (n_levels (1) + 1) * .. . * (n_levels (n-1) + 1)

250 •••• anova_balanced IMSL C/Stat/Library

containing the subgroup means. Suppose the factors are A, B, and C. The
ordering of the means is grand mean, A means, B means, C means, AB
means, AC means, BC means, and ABC means.

IMSLS_Y_MEANS_USER, float y_means (Output)
Storage for y_means is provided by the user.
See IMSLS_Y_MEANS.

Description
Function imsls_f_anova_balanced analyzes a balanced complete
experimental design for a fixed, random, or mixed model. The analysis includes
an analysis of variance table, and computation of subgroup means and variance
component estimates. A choice of two parameterizations of the variance
components for the model can be made.

Scheffé (1959, pages 274−289) discusses the parameterization for model = 1.
For example, consider the following model equation with fixed factor A and
random factor B:

yijk = µ + αi + bj + cij + eijk i = 1, 2, …, a; j = 1, 2, …, b; k = 1, 2, …, n

The fixed effects αi�s are subject to the restriction

� ==i
a

i1 0α

the bj�s are random effects identically and independently distributed

N B(,)0 2σ

cij are interaction effects each distributed

N a
a AB(,)0 1 2− σ

and are subject to the restrictions

1 0 for 1, 2, ...,a
i ijc j b=� = =

and the eijk�s are errors identically and independently distributed N(0, σ2). In
general, interactions of fixed and random factors have sums over subscripts
corresponding to fixed factors equal to zero. Also in general, the variance of a
random interaction effect is the associated variance component times a product of
ratios for each fixed factor in the random interaction term. Each ratio depends on
the number of levels in the fixed factor. In the earlier example, the random
interaction AB has the ratio (a −1)/a as a multiplier of

σ AB
2

Chapter 4: Analysis of Variance anova_balanced •••• 251

and

var(y a
aijk B AB) = + − +σ σ σ2 2 21

In a three-way crossed classification model, an ABC interaction effect with A
fixed, B random, and C fixed would have variance

()()a c
ac ABC

− −1 1 2σ

Searle (1971, pages 400−401) discusses the parameterization for model = 0. This
parameterization does not have the summation restrictions on the effects
corresponding to interactions of fixed and random factors. Also, the variance of
each random interaction term is the associated variance component, i.e., without
the multiplier. This parameterization is also used with unbalanced data, which is
one reason for its popularity with balanced data also. In the earlier example,

var yijk B ABd i = + +~ ~σ σ σ2 2 2

Searle (1971, pages 400−404) compares these two parameterizations. Hocking
(1973) considers these different parameterizations and concludes they are
equivalent because they yield the same variance-covariance structure for the
responses. Differences in covariances for individual terms, differences in
expected mean square coefficients and differences in F tests are just a
consequence of the definition of the individual terms in the model and are not
caused by any fundamental differences in the models. For the earlier two-way
model, Hocking states that the relations between the two parameterizations of the
variance components are

σ σ σ

σ σ

B B AB

AB AB

a
2 2 2

2 2

1= +

=

~ ~

~

where
~ ~σ σB AB

2 2 and

are the variance components in the parameterization with model = 0.

The computations for degrees of freedom and sums of squares are the same
regardless of the option specified by model. imsls_f_anova_balanced first
computes degrees of freedom and sum of squares for a full factorial design.
Degrees of freedom for effects in the factorial design that are missing from the
specified model are pooled into the model effect containing the fewest subscripts
but still containing the factorial effect. If no such model effect exists, the factorial
effect is pooled into error. If more than one such effect exists, a terminal error
message is issued indicating a misspecified model.

252 •••• anova_balanced IMSL C/Stat/Library

The analysis of variance method is used for estimating the variance components.
This method solves a linear system in which the mean squares are set to the
expected mean squares. A problem that Hocking (1985, pages 324−330)
discusses is that this method can yield a negative variance component estimate.
Hocking suggests a diagnostic procedure for locating the cause of the negative
estimate. It may be necessary to re-examine the assumptions of the model.

The percentage of variation explained by each random effect is computed
(output in variance_components element 7) as the variance of the associated
random effect divided by the variance of y. The two parameterizations can lead to
different values because of the different definitions of the individual terms in the
model. For example, the percentage associated with the AB interaction term in the
earlier two-way mixed model is computed for model = 1 using the formula

% variation(AB|Model = 1) =

−

+ − +

a
a

a
a

AB

B AB

1

1

2

2 2 2

σ

σ σ σ

while for the parameterization model = 0, the percentage is computed using the
formula

% variation(AB|Model = 0) =
+ +

~
~ ~

σ
σ σ σ

AB

B AB

2

2 2 2

In each case, the variance components are replaced by their estimates (stored in
variance_components element 6).

Confidence intervals on the variance components are computed using the method
discussed by Graybill (1976, Theorem 15.3.5, page 624, and Note 4, page 620).

Example 1
An analysis of a generalized randomized block design is performed using data
discussed by Kirk (1982, Table 6.10-1, pages 293−297). The model is

yijk = µ + αi + bj + cij + eijk i = 1, 2, 3, 4; j = 1, 2, 3, 4; k = 1, 2

where yijk is the response for the k-th experimental unit in block j with treatment
i; the αi�s are the treatment effects and are subject to the restriction

� ==i i1
2 0α

the bj�s are block effects identically and independently distributed

N B(,)0 2σ

cij are interaction effects each distributed

N AB(,)0 3
4

2σ

Chapter 4: Analysis of Variance anova_balanced •••• 253

and are subject to the restrictions

� = ==i ijc j1
4 0 1 2 3 4for , , ,

and the eijk�s are errors, identically and independently distributed N(0, σ�). The
interaction effects are assumed to be distributed independently of the errors.

The data are given in the following table:

Block
Treatment 1 2 3 4

1 3, 6 3, 1 2, 2 3, 2

2 4, 5 4, 2 3, 4 3, 3

3 7, 8 7, 5 6, 5 6, 6

4 7, 8 9, 10 10, 9 8, 11

#include <imsls.h>
#include <stdio.h>

void main()
{
float pvalue = -99.;
int n_levels[] = {4, 4, 2};
int indrf[] = {2, 3};
int nfef[] = {1, 1, 2};
int indef[] = {1, 2, 1, 2};
float y[] = {3.0, 6.0, 3.0, 1.0, 2.0, 2.0, 3.0, 2.0, 4.0, 5.0, 4.0,

2.0, 3.0, 4.0, 3.0, 3.0, 7.0, 8.0, 7.0, 5.0, 6.0, 5.0,
6.0, 6.0, 7.0, 8.0, 9.0, 10.0, 10.0, 9.0, 8.0, 11.0};

float *aov=NULL, *y_means, *variance_components, *ems;

char *aov_labels[] = {
"degrees of freedom for model",
"degrees of freedom for error",
"total (corrected) degrees of freedom",
"sum of squares for model",
"sum of squares for error",
"total (corrected) sum of squares",
"model mean square",
"error mean square",
"F-statistic",
"p-value",
"R-squared (in percent)",
"adjusted R-squared (in percent)",
"est. standard deviation of within error",
"overall mean of y",
"coefficient of variation (in percent)"};

char *ems_labels[] = {
"Effect A and Error",
"Effect A and Effect AB",

254 •••• anova_balanced IMSL C/Stat/Library

"Effect A and Effect B",
"Effect A and Effect A",
"Effect B and Error",
"Effect B and Effect AB",
"Effect B and Effect B",
"Effect AB and Error",
"Effect AB and Effect AB",
"Error and Error"};

char *means_labels[] = {
"Grand mean",
" A means 1",
" A means 2",
" A means 3",
" A means 4",
" B means 1",
" B means 2",
" B means 3",
" B means 4",
"AB means 1 1",
"AB means 1 2",
"AB means 1 3",
"AB means 1 4",
"AB means 2 1",
"AB means 2 2",
"AB means 2 3",
"AB means 2 4",
"AB means 3 1",
"AB means 3 2",
"AB means 3 3",
"AB means 3 4",
"AB means 4 1",
"AB means 4 2",
"AB means 4 3",
"AB means 4 4",};

char *components_labels[] = {
"degrees of freedom for A",
"sum of squares for A",
"mean square of A",
"F-statistic for A",
"p-value for A",
"Estimate of A",
"Percent Variation Explained by A",
"95% Confidence Interval Lower Limit for A",
"95% Confidence Interval Upper Limit for A",
"degrees of freedom for B",
"sum of squares for B",
"mean square of B",
"F-statistic for B",
"p-value for B",
"Estimate of B",
"Percent Variation Explained by B",
"95% Confidence Interval Lower Limit for B",
"95% Confidence Interval Upper Limit for B",
"degrees of freedom for AB",
"sum of squares for AB",
"mean square of AB",
"F-statistic for AB",

Chapter 4: Analysis of Variance anova_balanced •••• 255

"p-value for AB",
"Estimate of AB",
"Percent Variation Explained by AB",
"95% Confidence Interval Lower Limit for AB",
"95% Confidence Interval Upper Limit for AB",
"degrees of freedom for Error",
"sum of squares for Error",
"mean square of Error",
"F-statistic for Error",
"p-value for Error",
"Estimate of Error",
"Percent Explained by Error",
"95% Confidence Interval Lower Limit for Error",
"95% Confidence Interval Upper Limit for Error"};

pvalue = imsls_f_anova_balanced(3, n_levels, y, 2, indrf, 3, nfef, indef,
IMSLS_MODEL, 1,
IMSLS_EMS, &ems,
IMSLS_VARIANCE_COMPONENTS, &variance_components,
IMSLS_Y_MEANS, &y_means,
IMSLS_ANOVA_TABLE, &aov,
0);

printf("p value of F statistic = %f\n", pvalue);
imsls_f_write_matrix("* * * Analysis of Variance * * *", 15, 1, aov,

IMSLS_ROW_LABELS, aov_labels,
IMSLS_WRITE_FORMAT, "%10.5f",
0);

imsls_f_write_matrix("* * * Expected Mean Square Coefficients * * *",
10, 1, ems,
IMSLS_ROW_LABELS, ems_labels,
IMSLS_WRITE_FORMAT, "%6.2f",
0);

imsls_f_write_matrix("* * Analysis of Variance / Variance Components * *",
36, 1,

variance_components,
IMSLS_ROW_LABELS, components_labels,
IMSLS_WRITE_FORMAT, "%10.5f",
0);

imsls_f_write_matrix("means", 25, 1, y_means,
IMSLS_ROW_LABELS, means_labels,
IMSLS_WRITE_FORMAT, "%6.2f",
0);

}

Output
p value of F statistic = 0.000005

* * * Analysis of Variance * * *

degrees of freedom for model 15.00000
degrees of freedom for error 16.00000
total (corrected) degrees of freedom 31.00000
sum of squares for model 216.50000
sum of squares for error 19.00000
total (corrected) sum of squares 235.50000
model mean square 14.43333

256 •••• anova_balanced IMSL C/Stat/Library

error mean square 1.18750
F-statistic 12.15439
p-value 0.00000
R-squared (in percent) 91.93206
adjusted R-squared (in percent) 84.36836
est. standard deviation of within error 1.08972
overall mean of y 5.37500
coefficient of variation (in percent) 20.27395

* * * Expected Mean Square Coefficients * * *
Effect A and Error 1.00
Effect A and Effect AB 2.00
Effect A and Effect B 0.00
Effect A and Effect A 8.00
Effect B and Error 1.00
Effect B and Effect AB 0.00
Effect B and Effect B 8.00
Effect AB and Error 1.00
Effect AB and Effect AB 2.00
Error and Error 1.00

* * Analysis of Variance / Variance Components * *
degrees of freedom for A 3.00000
sum of squares for A 194.50000
mean square of A 64.83334
F-statistic for A 32.87324
p-value for A 0.00004
Estimate of A
Percent Variation Explained by A
95% Confidence Interval Lower Limit for A
95% Confidence Interval Upper Limit for A
degrees of freedom for B 3.00000
sum of squares for B 4.25000
mean square of B 1.41667
F-statistic for B 1.19298
p-value for B 0.34396
Estimate of B 0.02865
Percent Variation Explained by B 1.89655
95% Confidence Interval Lower Limit for B 0.00000
95% Confidence Interval Upper Limit for B 2.31682
degrees of freedom for AB 9.00000
sum of squares for AB 17.75000
mean square of AB 1.97222
F-statistic for AB 1.66082
p-value for AB 0.18016
Estimate of AB 0.39236
Percent Variation Explained by AB 19.48276
95% Confidence Interval Lower Limit for AB 0.00000
95% Confidence Interval Upper Limit for AB 2.75803
degrees of freedom for Error 16.00000
sum of squares for Error 19.00000
mean square of Error 1.18750
F-statistic for Error
p-value for Error
Estimate of Error 1.18750
Percent Explained by Error 78.62069
95% Confidence Interval Lower Limit for Error 0.65868

Chapter 4: Analysis of Variance anova_balanced •••• 257

95% Confidence Interval Upper Limit for Error 2.75057

means
Grand mean 5.38
A means 1 2.75
A means 2 3.50
A means 3 6.25
A means 4 9.00
B means 1 6.00
B means 2 5.13
B means 3 5.13
B means 4 5.25
AB means 1 1 4.50
AB means 1 2 2.00
AB means 1 3 2.00
AB means 1 4 2.50
AB means 2 1 4.50
AB means 2 2 3.00
AB means 2 3 3.50
AB means 2 4 3.00
AB means 3 1 7.50
AB means 3 2 6.00
AB means 3 3 5.50
AB means 3 4 6.00
AB means 4 1 7.50
AB means 4 2 9.50
AB means 4 3 9.50
AB means 4 4 9.50

Chapter 5: Categorical and Discrete Data Analysis Routines •••• 259

Chapter 5: Categorical and Discrete
Data Analysis

Routines
5.1 Statistics in the Two-Way Contingency Table

Two-way contingency table analysis...................contingency_table 260
Exact probabilities in an r × c table;
total enumeration...exact_enumeration 273
Exact probabilities in an r × c table........................... exact_network 275

5.2 Generalized Categorical Models
Generalized linear models...................................... categorical_glm 281

Usage Notes
Routine imsls_f_contingency_table (page 260) computes many statistics of
interest in a two-way table. Statistics computed by this routine includes the usual
chi-squared statistics, measures of association, Kappa, and many others. Exact
probabilities for two-way tables can be computed by
imsls_f_exact_enumeration (page 273), but this routine uses the total
enumeration algorithm and, thus, often uses orders of magnitude more computer
time than imsls_f_exact_network (page 275), which computes the same
probabilities by use of the network algorithm (but can still be quite expensive).

The routine imsls_f_categorical_glm (page 281) in the second section is
concerned with generalized linear models (see McCullagh and Nelder 1983) in
discrete data. This routine can be used to compute estimates and associated
statistics in probit, logistic, minimum extreme value, Poisson, negative binomial
(with known number of successes), and logarithmic models. Classification
variables as well as weights, frequencies and additive constants may be used so
that general linear models can be fit. Residuals, a measure of influence, the
coefficient estimates, and other statistics are returned for each model fit. When
infinite parameter estimates are required, extended maximum likelihood
estimation may be used. Log-linear models can be fit in
imsls_f_categorical_glm through the use of Poisson regression models.

260 •••• contingency_table IMSL C/Stat/Library

Results from Poisson regression models involving structural and sampling zeros
will be identical to the results obtained from the log-linear model routines but will
be fit by a quasi-Newton algorithm rather than through iterative proportional
fitting.

contingency_table
Performs a chi-squared analysis of a two-way contingency table.

Synopsis

#include <imsls.h>

float imsls_f_contingency_table (int n_rows, int n_columns,
float table[], ..., 0)

The type double function is imsls_d_contingency_table.

Required Arguments

int n_rows (Input)
Number of rows in the table.

int n_columns (Input)
Number of columns in the table.

float table[] (Input)
Array of length n_rows × n_columns containing the observed counts in
the contingency table.

Return Value
Pearson chi-squared p-value for independence of rows and columns.

Synopsis with Optional Arguments
#include <imsls.h>

float imsls_f_contingency_table (int n_rows, int n_columns,
float table[],
IMSLS_CHI_SQUARED, int *df, float *chi_squared,

float *p_value,
IMSLS_LRT, int *df, float *g_squared, float *p_value,
IMSLS_EXPECTED, float **expected,
IMSLS_EXPECTED_USER, float expected[],
IMSLS_CONTRIBUTIONS, float **chi_squared_contributions,
IMSLS_CONTRIBUTIONS_USER,

float chi_squared_contributions[],
IMSLS_CHI_SQUARED_STATS, float **chi_squared_stats,
IMSLS_CHI_SQUARED_STATS_USER,

float chi_squared_stats[],

Chapter 5: Categorical and Discrete Data Analysis contingency_table •••• 261

IMSLS_STATISTICS, float **statistics,
IMSLS_STATISTICS_USER, float statistics[],
0)

Optional Arguments
IMSLS_CHI_SQUARED, int *df, float *chi_squared, float *p_value

(Output)
Argument df is the degrees of freedom for the chi-squared tests
associated with the table, chi_squared is the Pearson chi-squared test
statistic, and argument p_value is the probability of a larger Pearson
chi-squared.

IMSLS_LRT, int *df, float *g_squared, float *p_value (Output)
Argument df is the degrees of freedom for the chi-squared tests
associated with the table, argument g_squared is the likelihood ratio
G2 (chi-squared), and argument p_value is the probability of a larger
G2.

IMSLS_EXPECTED, float **expected (Output)
Address of a pointer to the internally allocated array of size
(n_rows + 1) × (n_columns + 1) containing the expected values of
each cell in the table, under the null hypothesis, in the first n_rows rows
and n_columns columns. The marginal totals are in the last row and
column.

IMSLS_EXPECTED_USER, float expected[] (Output)
Storage for array expected is provided by the user. See
IMSLS_EXPECTED.

IMSLS_CONTRIBUTIONS, float **chi_squared_contributions (Output)
Address of a pointer to an internally allocated array of size
(n_rows + 1) × (n_columns + 1) containing the contributions to chi-
squared for each cell in the table in the first n_rows rows and
n_columns columns. The last row and column contain the total
contribution to chi-squared for that row or column.

IMSLS_CONTRIBUTIONS_USER, float chi_squared_contributions[]

(Output)
Storage for array chi_squared_contributions is provided by the
user. See IMSLS_CONTRIBUTIONS.

IMSLS_CHI_SQUARED_STATS, float **chi_squared_stats (Output)
Address of a pointer to an internally allocated array of length 5
containing chi-squared statistics associated with this contingency table.
The last three elements are based on Pearson�s chi-square statistic (see
IMSLS_CHI_SQUARED).

262 •••• contingency_table IMSL C/Stat/Library

The chi-squared statistics are given as follows:

Element Chi-squared Statistics
0 exact mean
1 exact standard deviation
2 phi
3 contingency coefficient
4 Cramer�s V

IMSLS_CHI_SQUARED_STATS_USER, float chi_squared_stats[] (Output)
Storage for array chi_squared_stat is provided by the user. See
IMSLS_CHI_SQUARED_STATS.

IMSLS_STATISTICS, float **statistics (Output)
Address of a pointer to an internally allocated array of size 23 × 5
containing statistics associated with this table. Each row corresponds to
a statistic.

Row Statistic
0 gamma
1 Kendall�s τb

2 Stuart�s τc

3 Somers� D for rows (given columns)
4 Somers� D for columns (given rows)
5 product moment correlation
6 Spearman rank correlation
7 Goodman and Kruskal τ for rows (given columns)
8 Goodman and Kruskal τ for columns (given rows)
9 uncertainty coefficient U (symmetric)

10 uncertainty Ur | c (rows)
11 uncertainty Uc | r (columns)
12 optimal prediction λ (symmetric)
13 optimal prediction λr | c (rows)
14 optimal prediction λc | r (columns)
15 optimal prediction λr | c (rows)
16 optimal prediction λc | r (columns)
17 test for linear trend in row probabilities if n_rows = 2

If n_rows is not 2, a test for linear trend in column
probabilities if n_columns = 2.

18 Kruskal-Wallis test for no row effect

Chapter 5: Categorical and Discrete Data Analysis contingency_table •••• 263

Row Statistic
19 Kruskal-Wallis test for no column effect
20 kappa (square tables only)
21 McNemar test of symmetry (square tables only)
22 McNemar one degree of freedom test of symmetry

(square tables only)

If a statistic cannot be computed, or if some value is not relevant for the
computed statistic, the entry is NaN (Not a Number). The columns are as
follows:

Column Value
0 estimated statistic

1 standard error for any parameter value

2 standard error under the null hypothesis

3 t value for testing the null hypothesis

4 p-value of the test in column 3

In the McNemar tests, column 0 contains the statistic, column 1 contains
the chi-squared degrees of freedom, column 3 contains the exact p-value
(1 degree of freedom only), and column 4 contains the chi-squared
asymptotic p-value. The Kruskal-Wallis test is the same except no exact
p-value is computed.

IMSLS_STATISTICS_USER, float statistics[] (Output)
Storage for array statistics provided by the user. See
IMSLS_STATISTICS.

Description
Function imsls_f_contingency_table computes statistics associated with an
r × c (n_rows × n_columns) contingency table. The function computes the chi-
squared test of independence, expected values, contributions to chi-squared, row
and column marginal totals, some measures of association, correlation,
prediction, uncertainty, the McNemar test for symmetry, a test for linear trend, the
odds and the log odds ratio, and the kappa statistic (if the appropriate optional
arguments are selected).

Notation

Let xij denote the observed cell frequency in the ij cell of the table and n denote
the total count in the table. Let pij = pi�pj� denote the predicted cell probabilities
under the null hypothesis of independence, where pi� and pj� are the row and
column marginal relative frequencies. Next, compute the expected cell counts as
eij = npij.

264 •••• contingency_table IMSL C/Stat/Library

Also required in the following are auv and buv for u, v = 1, …, n. Let (rs, cs)
denote the row and column response of observation s. Then, auv = 1, 0, or −1,
depending on whether ru < rv, ru = rv, or ru > rv, respectively. The buv are
similarly defined in terms of the cs variables.

Chi-squared Statistic

For each cell in the table, the contribution to χ2 is given as (xij − eij)2/eij. The
Pearson chi-squared statistic (denoted χ2) is computed as the sum of the cell
contributions to chi-squared. It has (r − 1) (c − 1) degrees of freedom and tests
the null hypothesis of independence, i.e., H0:pij = pi�pj�. The null hypothesis is
rejected if the computed value of χ2 is too large.

The maximum likelihood equivalent of χ2, G2 is computed as follows:

G x x npij
i j

ij ij
2 2= − �

,

ln /d i

G2 is asymptotically equivalent to χ2 and tests the same hypothesis with the same
degrees of freedom.

Measures Related to Chi-squared (Phi, Contingency Coefficient, and
Cramer�s V)

There are three measures related to chi-squared that do not depend on sample
size:

phi, = /

contingency coefficient, =

Cramer' s ,

φ χ

χ χ

χ

2

2 2

2

n

P n

V V n r c

/

/ min ,

+

=

e j
b gc h

Since these statistics do not depend on sample size and are large when the
hypothesis of independence is rejected, they can be thought of as measures of
association and can be compared across tables with different sized samples.
While both P and V have a range between 0.0 and 1.0, the upper bound of P is
actually somewhat less than 1.0 for any given table (see Kendall and Stuart 1979,
p. 587). The significance of all three statistics is the same as that of the
χ2 statistic, chi_squared.

The distribution of the χ2 statistic in finite samples approximates a chi-squared
distribution. To compute the exact mean and standard deviation of the χ2 statistic,
Haldane (1939) uses the multinomial distribution with fixed table marginals. The
exact mean and standard deviation generally differ little from the mean and
standard deviation of the associated chi-squared distribution.

Chapter 5: Categorical and Discrete Data Analysis contingency_table •••• 265

Standard Errors and p-values for Some Measures of Association

In Columns 1 through 4 of statistics, estimated standard errors and asymptotic
p-values are reported. Estimates of the standard errors are computed in two ways.
The first estimate, in Column 1 of the array statistics, is asymptotically valid
for any value of the statistic. The second estimate, in Column 2 of the array, is
only correct under the null hypothesis of no association. The z-scores in Column
3 of statistics are computed using this second estimate of the standard errors. The
p-values in Column 4 are computed from this z-score. See Brown and Benedetti
(1977) for a discussion and formulas for the standard errors in Column 2.

Measures of Association for Ranked Rows and Columns

The measures of association, φ, P, and V, do not require any ordering of the row
and column categories. Function imsls_f_contingency_table also computes
several measures of association for tables in which the rows and column
categories correspond to ranked observations. Two of these tests, the product-
moment correlation and the Spearman correlation, are correlation coefficients
computed using assigned scores for the row and column categories. The cell
indices are used for the product-moment correlation, while the average of the tied
ranks of the row and column marginals is used for the Spearman rank correlation.
Other scores are possible.

Gamma, Kendall�s τb, Stuart�s τc, and Somers� D are measures of association that
are computed like a correlation coefficient in the numerator. In all these
measures, the numerator is computed as the �covariance� between the
auv variables and buv variables defined above, i.e., as follows:

a buv
vu

uv��

Recall that auv and buv can take values −1, 0, or 1. Since the product auvbuv = 1
only if auv and buv are both 1 or are both −1, it is easy to show that this
��covariance�� is twice the total number of agreements minus the number of
disagreements, where a disagreement occurs when auvbuv = −1.

Kendall�s τb is computed as the correlation between the auv variables and the
buv variables (see Kendall and Stuart 1979, p. 593). In a rectangular table (r ≠ c),
Kendall�s τb cannot be 1.0 (if all marginal totals are positive). For this reason,
Stuart suggested a modification to the denominator of τ in which the denominator
becomes the largest possible value of the �covariance.� This maximizing value is
approximately n2m/(m − 1), where m = min (r, c). Stuart�s τc uses this
approximate value in its denominator. For large n, τc ≈ mτb/(m − 1).

Gamma can be motivated in a slightly different manner. Because the �covariance�
of the auv variables and the buv variables can be thought of as twice the number of
agreements minus the disagreements, 2(A − D), where A is the number of
agreements and D is the number of disagreements, Gamma is motivated as the
probability of agreement minus the probability of disagreement, given that either
agreement or disagreement occurred. This is shown as γ = (A − D)/(A + D).

266 •••• contingency_table IMSL C/Stat/Library

Two definitions of Somers� D are possible, one for rows and a second for
columns. Somers� D for rows can be thought of as the regression coefficient for
predicting auv from buv. Moreover, Somer�s D for rows is the probability of
agreement minus the probability of disagreement, given that the column variable,
buv, is not 0. Somers� D for columns is defined in a similar manner.

A discussion of all of the measures of association in this section can be found in
Kendall and Stuart (1979, p. 592).

Measures of Prediction and Uncertainty

Optimal Prediction Coefficients: The measures in this section do not require
any ordering of the row or column variables. They are based entirely upon
probabilities. Most are discussed in Bishop et al. (1975, p. 385).

Consider predicting (or classifying) the column for a given row in the table.
Under the null hypothesis of independence, choose the column with the highest
column marginal probability for all rows. In this case, the probability of
misclassification for any row is 1 minus this marginal probability. If
independence is not assumed within each row, choose the column with the highest
row conditional probability. The probability of misclassification for the row
becomes 1 minus this conditional probability.

Define the optimal prediction coefficient λc | r for predicting columns from rows
as the proportion of the probability of misclassification that is eliminated because
the random variables are not independent. It is estimated by

λ c r

m im
i

m

p p

p|

()
=

− − −

−

•

•

�1 1

1

b g

where m is the index of the maximum estimated probability in the row (pim) or
row margin (p·m). A similar coefficient is defined for predicting the rows from the
columns. The symmetric version of the optimal prediction λ is obtained by
summing the numerators and denominators of λr | c and λc | r, then dividing.
Standard errors for these coefficients are given in Bishop et al. (1975, p. 388).

A problem with the optimal prediction coefficients λ is that they vary with the
marginal probabilities. One way to correct this is to use row conditional
probabilities. The optimal prediction λ* coefficients are defined as the
corresponding λ coefficients in which first the row (or column) marginals are
adjusted to the same number of observations. This yields

λ c r

j j i j j i
ii

j j i
i

p p

R p
|

| |

|

max max ()

max ()
∗ =

−

−

��

�

where i indexes the rows, j indexes the columns, and pj|i is the (estimated)
probability of column j given row i.

Chapter 5: Categorical and Discrete Data Analysis contingency_table •••• 267

λ r c|
∗

is similarly defined.

Goodman and Kruskal τ: A second kind of prediction measure attempts to
explain the proportion of the explained variation of the row (column) measure
given the column (row) measure. Define the total variation in the rows as follows:

n x ni
i

/ () /2 22− •� b g

Note that this is 1/(2n) times the sums of squares of the auv variables.

With this definition of variation, the Goodman and Kruskal τ coefficient for rows
is computed as the reduction of the total variation for rows accounted for by the
columns, divided by the total variation for the rows. To compute the reduction in
the total variation of the rows accounted for by the columns, note that the total
variation for the rows within column j is defined as follows:

q x x xj j ij
i

i= −• •�/ () /2 22 b g

The total variation for rows within columns is the sum of the qj variables.
Consistent with the usual methods in the analysis of variance, the reduction in the
total variation is given as the difference between the total variation for rows and
the total variation for rows within the columns.

Goodman and Kruskal�s τ for columns is similarly defined. See Bishop et al.
(1975, p. 391) for the standard errors.

Uncertainty Coefficients: The uncertainty coefficient for rows is the increase in
the log-likelihood that is achieved by the most general model over the
independence model, divided by the marginal log-likelihood for the rows. This is
given by the following equation:

U

x x x nx

x x n
r c

ij i j ij
i j

i i
i

|
,

log /

log /
=

• •

• •

�

�

d i

b g

The uncertainty coefficient for columns is similarly defined. The symmetric
uncertainty coefficient contains the same numerator as Ur | c and Uc | r but
averages the denominators of these two statistics. Standard errors for U are given
in Brown (1983).

Kruskal-Wallis: The Kruskal-Wallis statistic for rows is a one-way analysis-of-
variance-type test that assumes the column variable is monotonically ordered. It
tests the null hypothesis that no row populations are identical, using average ranks
for the column variable. The Kruskal-Wallis statistic for columns is similarly
defined. Conover (1980) discusses the Kruskal-Wallis test.

268 •••• contingency_table IMSL C/Stat/Library

Test for Linear Trend: When there are two rows, it is possible to test for a
linear trend in the row probabilities if it is assumed that the column variable is
monotonically ordered. In this test, the probabilities for row 1 are predicted by
the column index using weighted simple linear regression. This slope is given by

�

/ /

β =

− −

−

• • •

•

�

�

x x x x n j j

x j j

j j j
j

j
j

1 1

2

d id i

d i

where

j x j nj
j

= •� /

is the average column index. An asymptotic test that the slope is 0 may then be
obtained (in large samples) as the usual regression test of zero slope.

In two-column data, a similar test for a linear trend in the column probabilities is
computed. This test assumes that the rows are monotonically ordered.

Kappa: Kappa is a measure of agreement computed on square tables only. In the
kappa statistic, the rows and columns correspond to the responses of two judges.
The judges agree along the diagonal and disagree off the diagonal. Let

p x nii
i

0 =� /

denote the probability that the two judges agree, and let

p e nc ii
i

=� /

denote the expected probability of agreement under the independence model.
Kappa is then given by (p0 − pc)/(1 − pc).

McNemar Tests: The McNemar test is a test of symmetry in a square
contingency table. In other words, it is a test of the null hypothesis H0:θij = θji.
The multiple degrees-of-freedom version of the McNemar test with r (r − 1)/2
degrees of freedom is computed as follows:

x x

x x
ij ji

ij jii j

−

+<
�
d i
d i

2

The single degree-of-freedom test assumes that the differences, xij − xji, are all in
one direction. The single degree-of-freedom test will be more powerful than the
multiple degrees-of-freedom test when this is the case. The test statistic is given
as follows:

Chapter 5: Categorical and Discrete Data Analysis contingency_table •••• 269

x x

x x

ij ji
i j

ij ji
i j

−
F
H
GG

I
K
JJ

+
<

<

�

�

d i

d i

2

The exact probability can be computed by the binomial distribution.

Examples

Example 1
The following example is taken from Kendall and Stuart (1979) and involves the
distance vision in the right and left eyes. Output contains only the p-value.

#include <imsls.h>

void main()
{

int n_rows = 4;
int n_columns = 4;
float table[4][4] = {821, 112, 85, 35,

116, 494, 145, 27,
72, 151, 583, 87,
43, 34, 106, 331};

float p_value;

p_value = imsls_f_contingency_table(n_rows, n_columns,
&table[0][0], 0);

printf ("P-value = %10.6f.\n", p_value);

}

Output

P-value = 0.000000.

Example 2
The following example, which illustrates the use of Kappa and McNemar tests,
uses the same distance vision data as the previous example. The available
statistics are output using optional arguments.

#include <imsls.h>

void main()
{

int n_rows = 4;
int n_columns = 4;
int df1, df2;
float table[16] = {821.0, 112.0, 85.0, 35.0,

116.0, 494.0, 145.0, 27.0,
72.0, 151.0, 583.0, 87.0,
43.0, 34.0, 106.0, 331.0};

float p_value1, p_value2, chi_squared, g_squared;

270 •••• contingency_table IMSL C/Stat/Library

float *expected, *chi_squared_contributions;
float *chi_squared_stats, *statistics;
char *labels[] = {

"Exact mean",
"Exact standard deviation",
"Phi",
"P",
"Cramer’s V"};

char *stat_row_labels[] = {"Gamma", "Tau B", "Tau C",
"D-Row", "D-Column", "Correlation", "Spearman",
"GK tau rows", "GK tau cols.", "U - sym.", "U - rows",
"U - cols.", "Lambda-sym.", "Lambda-row", "Lambda-col.",
"l-star-rows", "l-star-col.", "Lin. trend",
"Kruskal row", "Kruskal col.", "Kappa", "McNemar",
"McNemar df=1"};

char *stat_col_labels[] = {"","statistic", "standard error",
"std. error under Ho", "t-value testing Ho",
"p-value"};

imsls_f_contingency_table (n_rows, n_columns, table,
IMSLS_CHI_SQUARED, &df1, &chi_squared, &p_value1,
IMSLS_LRT, &df2, &g_squared, &p_value2,
IMSLS_EXPECTED, &expected,
IMSLS_CONTRIBUTIONS,

&chi_squared_contributions,
IMSLS_CHI_SQUARED_STATS, &chi_squared_stats,
IMSLS_STATISTICS, &statistics,
0);

printf("Pearson chi-squared statistic %11.4f\n", chi_squared);
printf("p-value for Pearson chi-squared %11.4f\n", p_value1);
printf("degrees of freedom %11d\n", df1);
printf("G-squared statistic %11.4f\n", g_squared);
printf("p-value for G-squared %11.4f\n", p_value2);
printf("degrees of freedom %11d\n", df2);

imsls_f_write_matrix("* * * Table Values * * *\n", 4, 4,
table,
IMSLS_WRITE_FORMAT, "%11.1f",
0);

imsls_f_write_matrix("* * * Expected Values * * *\n", 5, 5,
expected,
IMSLS_WRITE_FORMAT, "%11.2f",
0);

imsls_f_write_matrix("* * * Contributions to Chi-squared* * *\n",
5, 5,
chi_squared_contributions,
IMSLS_WRITE_FORMAT, "%11.2f",
0);

imsls_f_write_matrix("* * * Chi-square Statistics * * *\n",
5, 1,
chi_squared_stats,
IMSLS_ROW_LABELS, labels,
IMSLS_WRITE_FORMAT, "%11.4f",
0);

imsls_f_write_matrix("* * * Table Statistics * * *\n",
23, 5,
statistics,

Chapter 5: Categorical and Discrete Data Analysis contingency_table •••• 271

IMSLS_ROW_LABELS, stat_row_labels,
IMSLS_COL_LABELS, stat_col_labels,
IMSLS_WRITE_FORMAT, "%9.4f",
0);

}

Output

Pearson chi-squared statistic 3304.3682
p-value for Pearson chi-squared 0.0000
degrees of freedom 9
G-squared statistic 2781.0188
p-value for G-squared 0.0000
degrees of freedom 9

* * * Table Values * * *

1 2 3 4
1 821.0 112.0 85.0 35.0
2 116.0 494.0 145.0 27.0
3 72.0 151.0 583.0 87.0
4 43.0 34.0 106.0 331.0

* * * Expected Values * * *

1 2 3 4 5
1 341.69 256.92 298.49 155.90 1053.00
2 253.75 190.80 221.67 115.78 782.00
3 289.77 217.88 253.14 132.21 893.00
4 166.79 125.41 145.70 76.10 514.00
5 1052.00 791.00 919.00 480.00 3242.00

* * * Contributions to Chi-squared* * *

1 2 3 4 5
1 672.36 81.74 152.70 93.76 1000.56
2 74.78 481.84 26.52 68.08 651.21
3 163.66 20.53 429.85 15.46 629.50
4 91.87 66.63 10.82 853.78 1023.10
5 1002.68 650.73 619.88 1031.08 3304.37

* * * Chi-square Statistics * * *

Exact mean 9.0028
Exact standard deviation 4.2402
Phi 1.0096
P 0.7105
Cramer’s V 0.5829

* * * Table Statistics * * *

statistic standard error std. error t-value testing
under Ho Ho

Gamma 0.7757 0.0123 0.0149 52.1897
Tau B 0.6429 0.0122 0.0123 52.1897
Tau C 0.6293 0.0121 52.1897
D-Row 0.6418 0.0122 0.0123 52.1897
D-Column 0.6439 0.0122 0.0123 52.1897

272 •••• contingency_table IMSL C/Stat/Library

Correlation 0.6926 0.0128 0.0172 40.2669
Spearman 0.6939 0.0127 0.0127 54.6614
GK tau rows 0.3420 0.0123
GK tau cols. 0.3430 0.0122
U - sym. 0.3171 0.0110
U - rows 0.3178 0.0110
U - cols. 0.3164 0.0110
Lambda-sym. 0.5373 0.0124
Lambda-row 0.5374 0.0126
Lambda-col. 0.5372 0.0126
l-star-rows 0.5506 0.0136
l-star-col. 0.5636 0.0127
Lin. trend
Kruskal row 1561.4861 3.0000
Kruskal col. 1563.0300 3.0000
Kappa 0.5744 0.0111 0.0106 54.3583
McNemar 4.7625 6.0000
McNemar df=1 0.9487 1.0000 0.3459

p-value
Gamma 0.0000
Tau B 0.0000
Tau C 0.0000
D-Row 0.0000
D-Column 0.0000
Correlation 0.0000
Spearman 0.0000
GK tau rows
GK tau cols.
U - sym.
U - rows
U - cols.
Lambda-sym.
Lambda-row
Lambda-col.
l-star-rows
l-star-col.
Lin. trend
Kruskal row 0.0000
Kruskal col. 0.0000
Kappa 0.0000
McNemar 0.5746
McNemar df=1 0.3301

Warning Errors
IMSLS_DF_GT_30 The degrees of freedom for

�IMSLS_CHI_SQUARED� are
greater than 30. The exact mean,
standard deviation, and the normal
distribution function should be
used.

IMSLS_EXP_VALUES_TOO_SMALL Some expected values are less than
#. Some asymptotic p-values may
not be good.

Chapter 5: Categorical and Discrete Data Analysis exact_enumeration •••• 273

IMSLS_PERCENT_EXP_VALUES_LT_5 Twenty percent of the expected
values are calculated less than 5.

exact_enumeration
Computes exact probabilities in a two-way contingency table using the total
enumeration method.

Synopsis

#include <imsls.h>

float imsls_f_exact_enumeration (int n_rows, int n_columns,
float table[], ..., 0)

The type double function is imsls_d_exact_enumeration.

Required Arguments

int n_rows (Input)
Number of rows in the table.

int n_columns (Input)
Number of columns in the table.

float table[] (Input)
Array of length n_rows × n_columns containing the observed counts in
the contingency table.

Return Value
The p-value for independence of rows and columns. The p-value represents the
probability of a more extreme table where �extreme� is taken in the Neyman-
Pearson sense. The p-value is �two-sided�.

Synopsis with Optional Arguments
#include <imsls.h>

float imsls_f_exact_enumeration (int n_rows, int n_columns, float
table[],
IMSLS_PROB_TABLE, float *prt,
IMSLS_P_VALUE, float *p_value,
IMSLS_CHECK_NUMERICAL_ERROR, float *check,
0)

Optional Arguments
IMSLS_PROB_TABLE, float *prt (Output)

Probablitity of the observed table occuring, given that the null
hypothesis of independent rows and columns is true.

274 •••• exact_enumeration IMSL C/Stat/Library

IMSLS_P_VALUE, float *p_value (Output)
The p-value for independence of rows and columns. The p-value
represents the probability of a more extreme table where �extreme� is
taken in the Neyman-Pearson sense. The p-value is �two-sided�.

The p-value is also returned in functional form (see �Return Value�).

A table is more extreme if its probability (for fixed marginals) is less
than or equal to prt.

IMSLS_CHECK_NUMERICAL_ERROR, float *check (Output)
Sum of the probabilities of all tables with the same marginal totals.
Parameter check should have a value of 1.0. Deviation from 1.0
indicates numerical error.

Description
Function imsls_f_exact_enumeration computes exact probabilities for an
r × c contingency table for fixed row and column marginals (a marginal is the
number of counts in a row or column), where r = n_rows and c = n_columns.
Let fij denote the count in row i and column j of a table, and let fi� and f�j denote
the row and column marginals. Under the hypothesis of independence, the
(conditional) probability of the fixed marginals of the observed table is given by

P

f f

f f
f

i
i

r

j
j

c

ij
j

c

i

r=
•

=
•

=

••
==

∏ ∏

∏∏

! !

! !

1 1

11

where f�� is the total number of counts in the table. Pf corresponds to output
argument prt.

A �more extreme� table X is defined in the probablistic sense as more extreme
than the observed table if the conditional probability computed for table X (for
the same marginal sums) is less than the conditional probability computed for the
observed table. The user should note that this definition can be considered �two-
sided� in the cell counts.

Because imsls_f_exact_enumeration used total enumeration in computing
the probability of a more extreme table, the amount of computer time required
increases very rapidly with the size of the table. Tables with a large total count f��
or a large value of r × c should not be analyzed using
imsls_f_exact_enumeration. In such cases, try using
imsls_f_exact_network.

Example

In this example, the exact conditional probability for the 2 × 2 contingency table

Chapter 5: Categorical and Discrete Data Analysis exact_network •••• 275

8 12
8 2
L
NM
O
QP

is computed.

#include <stdio.h>

#include <imsls.h>

void main()

{

float p;

float table[4] = {8, 12,

8, 2};

p = imsls_f_exact_enumeration(2, 2, table, 0);

printf("p-value = %9.4f\n", p);

}

Output

p-value = 0.0577

exact_network
Computes Fisher exact probabilities and a hybrid approximation of the Fisher
exact method for a two-way contingency table using the network algorithm.

Synopsis
#include <imsls.h>

float imsls_f_exact_network (int n_rows, int n_columns,
float table[], ..., 0)

The type double function is imsls_d_exact_network.

Required Arguments

int n_rows (Input)
Number of rows in the table.

int n_columns (Input)
Number of columns in the table.

float table[] (Input)
Array of length n_rows × n_columns containing the observed counts
in the contingency table.

276 •••• exact_network IMSL C/Stat/Library

Return Value
The p-value for independence of rows and columns. The p-value represents the
probability of a more extreme table where �extreme� is taken in the Neyman-
Pearson sense. The p-value is �two-sided�.

Synopsis with Optional Arguments
#include <imsls.h>

float imsls_f_exact_network (int n_rows, int n_columns,
float table[],
IMSLS_PROB_TABLE, float *prt,
IMSLS_P_VALUE, float *p_value,
IMSLS_APPROXIMATION_PARAMETERS, float expect,

float percent, float expected_minimum,
IMSLS_NO_APPROXIMATION,
IMSLS_WORKSPACE, int factor1, int factor2,

int max_attempts, int *n_attempts,
0)

Optional Arguments
IMSLS_PROB_TABLE, float *prt (Output)

Probability of the observed table occurring given that the null hypothesis
of independent rows and columns is true.

IMSLS_P_VALUE, float *p_value (Output)
The p-value for independence of rows and columns. The p-value
represents the probability of a more extreme table where �extreme� is in
the Neyman-Pearson sense. The p_value is �two-sided�. The p-value is
also returned in functional form (see �Return Value�).

A table is more extreme if its probability (for fixed marginals) is less
than or equal to prt.

IMSLS_APPROXIMATION_PARAMETERS, float expect, float percent,
float expected_minimum. (Input)
Parameter expect is the expected value used in the hybrid
approximation to Fisher�s exact test algorithm for deciding when to use
asymptotic probabilities when computing path lengths. Parameter
percent is the percentage of remaining cells that must have estimated
expected values greater than expect before asymptotic probabilities can
be used in computing path lengths. Parameter expected_minimum is
the minimum cell estimated value allowed for asymptotic chi-squared
probabilities to be used.

Asymptotic probabilities are used in computing path lengths whenever
percent or more of the cells in the table have estimated expected
values of expect or more, with no cell having expected value less than
expected_minimum. See the �Description� section for details.

Chapter 5: Categorical and Discrete Data Analysis exact_network •••• 277

Defaults: expect = 5.0, percent = 80.0, expected_minimum = 1.0
Note that these defaults correspond to the �Cochran� condition.

IMSLS_NO_APPROXIMATION,
The Fisher exact test is used. Arguments expect, percent, and
expected_minimum are ignored.

IMSLS_WORKSPACE, int factor1, int factor2,
int max_attempts, (Input)
int *n_attempts (Output)
The network algorithm requires a large amount of workspace. Some of
the workspace requirements are well-defined, while most of the
workspace requirements can only be estimated. The estimate is based
primarily on table size.

Function imsls_f_exact_enumeration allocates a default amount of
workspace suitable for small problems. If the algorithm determines that
this initial allocation of workspace is inadaquate, the memory is freed, a
larger amount of memory allocated (twice as much as the previous
allocation), and the network algorithm is re-started. The algorithm
allows for up to max_attempts attempts to complete the algorithm.

Because each attempt requires computer time, it is suggested that
factor1 and factor2 be set to some large numbers (like 1,000 and
30,000) if the problem to be solved is large. It is suggested that
factor2 be 30 times larger than factor1. Although
imsls_f_exact_enumeration will eventually work its way up to a
large enough memory allocation, it is quicker to allocate enough
memory initially.

The known (well-defined) workspace requirements are as follows:
Define f�� = ΣΣfij equal to the sum of all cell frequencies in the observed
table, nt = f�� + 1, mx = max (n_rows, n_columns),
mn = min (n_rows, n_columns),
t1 = max (800 + 7mx, (5 + 2mx) (n_rows + n_columns + 1)), and
t2 = max (400 + mx, + 1, n_rows + n_columns + 1).

The following amount of integer workspace is allocated:
3mx + 2mn + t1.

The following amount of float (or double, if using
imsls_d_exact_network) workspace is allocated: nt + t2.

The remainder of the workspace that is required must be estimated and
allocated based on factor1 and factor2. The amount of integer
workspace allocated is 6n (factor1 + factor2). The amount of real
workspace allocated is n (6factor1 + 2factor2). Variable n is the
index for the attempt, 1 < n ≤ max_attempts.

Defaults: factor1 = 100, factor2 = 3000, max_attempts = 10

278 •••• exact_network IMSL C/Stat/Library

Description
Function imsls_f_exact_network computes Fisher exact probabilities or a
hybrid algorithm approximation to Fisher exact probabilities for an r × c
contingency table with fixed row and column marginals (a marginal is the number
of counts in a row or column), where r = n_rows and c = n_columns. Let
fij denote the count in row i and column j of a table, and let fi and f�j denote the
row and column marginals. Under the hypothesis of independence, the
(conditional) probability of the fixed marginals of the observed table is given by

P

f f

f f
f

i
i

r

j
j

c

ij
j

c

i

r=
•

=
•

=

••
==

∏ ∏

∏∏

! !

! !

1 1

11

where f�� is the total number of counts in the table. Pf corresponds to output
argument prt.

A �more extreme� table X is defined in the probablistic sense as more extreme
than the observed table if the conditional probability computed for table X (for
the same marginal sums) is less than the conditional probability computed for the
observed table. The user should note that this definition can be considered �two-
sided� in the cell counts.

See Example 1 for a comparison of execution times for the various algorithms.
Note that the Fisher exact probability and the usual asymptotic chi-squared
probability will usually be different. (The network approximation is often 10
times faster than the Fisher exact test, and even faster when compared to the total
enumeration method.)

Examples

Example 1
The following example demonstrates and compares the various methods of
computing the chi-squared p-value with respect to accuracy and execution time.
As seen in the output of this example, the Fisher exact probability and the usual
asymptotic chi-squared probability (generated using function
imsls_f_contingency_table) can be different. Also, note that the network
algorithm with approximation can be up to 10 times faster than the network
algorithm without approximation, and up to 100 times faster than the total
enumeration method.

#include <stdio.h>
#include <imsls.h>

void main()
{

int n_rows = 3;
int n_columns = 5;

Chapter 5: Categorical and Discrete Data Analysis exact_network •••• 279

float p;
float table[15] = {20, 20, 0, 0, 0,

10, 10, 2, 2, 1,
20, 20, 0, 0, 0};

double a, b;

printf("Asymptotic Chi-Squared p-value\n");
p = imsls_f_contingency_table(n_rows, n_columns, table, 0);
printf("p-value = %9.4f\n", p);

printf("\nNetwork Algorithm with Approximation\n");
a = imsls_ctime();
p = imsls_f_exact_network(n_rows, n_columns, table, 0);
b = imsls_ctime();
printf("p-value = %9.4f\n", p);
printf("Execution time = %10.4f\n", b-a);

printf("\nNetwork Algoritm without Approximation\n");
a = imsls_ctime();
p = imsls_f_exact_network(n_rows, n_columns, table,

IMSLS_NO_APPROXIMATION, 0);
b = imsls_ctime();
printf("p-value = %9.4f\n", p);
printf("Execution time = %10.4f\n", b-a);

printf("\nTotal Enumeration Method\n");
a = imsls_ctime();
p = imsls_f_exact_enumeration(n_rows, n_columns, table, 0);
b = imsls_ctime();
printf("p-value = %9.4f\n", p);
printf("Execution time = %10.4f\n", b-a);

}

Output
Asymptotic Chi-Squared p-value
p-value = 0.0323

Network Algorithm with Approximation
p-value = 0.0601
Execution time = 0.0400

Network Algoritm without Approximation
p-value = 0.0598
Execution time = 0.4300

Total Enumeration Method
p-value = 0.0597
Execution time = 3.1400

Example 2
This document example demonstrates the optional keyword IMSLS_WORKSPACE
and how different workspace settings affect execution time. Setting the workspace
available too low results in poor performance since the algorithm will fail, re-
allocate a larger amount of workspace (a factor of 10 larger) and re-start the

280 •••• exact_network IMSL C/Stat/Library

calculations (See Test #3, for which n_attempts is returned with a value of 2).
Setting the workspace available very large will provide no improvement in
performance.

#include <stdio.h>
#include <imsls.h>

void main()
{

int n_rows = 3;
int n_columns = 5;
float p;
float table[15] = {20, 20, 0, 0, 0,

10, 10, 2, 2, 1,
20, 20, 0, 0, 0};

double a, b;
int i, n_attempts, simulation_size = 10;

printf("Test #1, factor1 = 1000, factor2 = 30000\n");
a = imsls_ctime();
for (i=0; i<simulation_size; i++) {

p = imsls_f_exact_network(n_rows, n_columns, table,
IMSLS_NO_APPROXIMATION,
IMSLS_WORKSPACE, 1000, 30000, 10, &n_attempts, 0);

}
b = imsls_ctime();
printf("n_attempts = %2d\n", n_attempts);
printf("Execution time = %10.4f\n", b-a);

printf("\nTest #2, factor1 = 100, factor2 = 3000\n");
a = imsls_ctime();
for (i=0; i<simulation_size; i++) {

p = imsls_f_exact_network(n_rows, n_columns, table,
IMSLS_NO_APPROXIMATION,
IMSLS_WORKSPACE, 100, 3000, 10, &n_attempts, 0);

}
b = imsls_ctime();
printf("n_attempts = %2d\n", n_attempts);
printf("Execution time = %10.4f\n", b-a);

printf("\nTest #3, factor1 = 10, factor2 = 300\n");
a = imsls_ctime();
for (i=0; i<simulation_size; i++) {

p = imsls_f_exact_network(n_rows, n_columns, table,
IMSLS_NO_APPROXIMATION,
IMSLS_WORKSPACE, 10, 300, 10, &n_attempts, 0);

}
b = imsls_ctime();
printf("n_attempts = %2d\n", n_attempts);
printf("Execution time = %10.4f\n", b-a);

}

Output

Test #1, factor1 = 1000, factor2 = 30000
n_attempts = 1
Execution time = 4.3700

Chapter 5: Categorical and Discrete Data Analysis categorical_glm •••• 281

Test #2, factor1 = 100, factor2 = 3000
n_attempts = 1
Execution time = 4.2900

Test #3, factor1 = 10, factor2 = 300
n_attempts = 2
Execution time = 8.3700

Warning Errors
IMSLS_HASH_TABLE_ERROR_2 The value �ldkey� = # is too small. �ldkey�

is calculated as
�factor1�*pow(10,�n_attempt�−1) ending
this execution attempt.

IMSLS_HASH_TABLE_ERROR_3 The value �ldstp� = # is too small. �ldstp�
is calculated as
�factor2�*pow(10,�n_attempt�−1) ending
this execution attempt.

Fatal Errors
IMSLS_HASH_TABLE_ERROR_1 The hash table key cannot be computed

because the largest key is larger than the
largest representable integer. The algorithm
cannot proceed.

categorical_glm
Analyzes categorical data using logistic, Probit, Poisson, and other generalized
linear models.

Synopsis
#include <imsls.h>

int imsls_f_categorical_glm (int n_observations, int n_class,
int n_continuous, int model, float x[], ..., 0)

The type double function is imsls_d_categorical_glm.

Required Arguments

int n_observations (Input)
Number of observations.

int n_class (Input)
Number of classification variables.

int n_continuous (Input)
Number of continuous variables.

282 •••• categorical_glm IMSL C/Stat/Library

int model (Input)
Argument model specifies the model used to analyze the data. The six
models are as follows:

model Relationship* PDF of Response Variable
0 Exponential Poisson
1 Logistic Negative Binomial
2 Logistic Logarithmic
3 Logistic Binomial
4 Probit Binomial
5 Log-log Binomial

Note that the lower bound of the response variable is 1 for model = 3
and is 0 for all other models. See the �Description� section for more
information about these models.

float x[] (Input)
Array of size n_observations (n_class + n_continuous) + m
containing data for the independent variables, dependent variable, and
optional parameters.

The columns must be ordered such that the first n_class columns
contain data for the class variables, the next n_continuous columns
contain data for the continuous variables, and the next column contains
the response variable. The final (and optional) m − 1 columns contain
the optional parameters.

Return Value
An integer value indicating the number of estimated coefficients in the model.

Synopsis with Optional Arguments
#include <imsls.h>

int imsls_f_categorical_glm (int n_observations, int n_class,
int n_continuous, int model, float x[],
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_COL_FREQUENCIES, int ifrq,
IMSLS_X_COL_FIXED_PARAMETER, int ifix,
IMSLS_X_COL_DIST_PARAMETER, int ipar,
IMSLS_X_COL_VARIABLES, int iclass[], int icontinuous[],

int iy,
IMSLS_EPS, float eps,
IMSLS_MAX_ITERATIONS, int max_iterations,

*Relationship between the parameter, θ or λ, and a linear model of the explanatory variables, X β.

Chapter 5: Categorical and Discrete Data Analysis categorical_glm •••• 283

IMSLS_INTERCEPT,
IMSLS_NO_INTERCEPT,
IMSLS_EFFECTS, int n_effects, int n_var_effects[],

int indices_effects,
IMSLS_INITIAL_EST_INTERNAL,
IMSLS_INITIAL_EST_INPUT, int n_coef_input,

float estimates[],
IMSLS_MAX_CLASS, int max_class,
IMSLS_CLASS_INFO, int **n_class_values,

float **class_values,
IMSLS_CLASS_INFO_USER, int n_class_values[],

float class_values[],
IMSLS_COEF_STAT, float **coef_statistics,
IMSLS_COEF_STAT_USER, float coef_statistics[],
IMSLS_CRITERION, float *criterion,
IMSLS_COV, float **cov,
IMSLS_COV_USER, float cov[],
IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
IMSLS_CASE_ANALYSIS, float **case_analysis,
IMSLS_CASE_ANALYSIS_USER, float case_analysis[],
IMSLS_LAST_STEP, float **last_step,
IMSLS_LAST_STEP_USER, float last_step[],
IMSLS_OBS_STATUS, int **obs_status,
IMSLS_OBS_STATUS_USER, int obs_status[],
IMSLS_ITERATIONS, int *n, float **iterations,
IMSLS_ITERATIONS_USER, int *n, float iterations[],
IMSLS_N_ROWS_MISSING, int *n_rows_missing,
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of input array x.
Default: x_col_dim = n_class + n_continuous +1

IMSLS_X_COL_FREQUENCIES, int ifrq (Input)
Column number ifrg of x containing the frequency of response for
each observation.

IMSLS_X_COL_FIXED_PARAMETER, int ifix (Input)
Column number ifix in x containing a fixed parameter for each
observation that is added to the linear response prior to computing the
model parameter. The �fixed� parameter allows one to test hypothesis
about the parameters via the log-likelihoods.

IMSLS_X_COL_DIST_PARAMETER, int ipar (Input)
Column number ipar in x containing the value of the known
distribution parameter for each observation, where x[i][ipar] is the

284 •••• categorical_glm IMSL C/Stat/Library

known distribution parameter associated with the i-th observation. The
meaning of the distributional parameter depends upon model as follows:

model Parameter Meaning of x [i] [ipar]

0 E ln (E) is a fixed intercept to be included in
the linear predictor (i.e., the offset).

1 S Number of successes required for the
negative binomial distribution.

2 - Not used for this model.
3-5 N Number of trials required for the binomial

distribution.

Default: When model ≠ 2, each observation is assumed to have a
parameter value of 1. When model = 2, this parameter is not referenced.

IMSLS_X_COL_VARAIBLES, int iclass[], int icontinuous[], int iy

(Input)
This keyword allows specification of the variables to be used in the
analysis and overrides the default ordering of variables described for
input argument x. Columns are numbered 0 to x_col_dim_1. To avoid
errors, always specify the keyword IMSLS_X_COL_DIM when using this
keyword.

Argument iclass is an index vector of length n_class containing the
column numbers of x that correspond to classification variables.

Argument icontinuous is an index vector of length n_continuous
containing the column numbers of x that correspond to continuous
variables.

Argument iy indicates the column of x which contains the independent
variable.

IMSLS_EPS, float eps (Input)
Argument eps is the convergence criterion. Convergence is assumed
when the maximum relative change in any coefficient estimate is less
than eps from one iteration to the next or when the relative change in
the log-likelihood, criterion, from one iteration to the next is less than
eps / 100.0.
Default: eps = 0.001

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations. Use max_iterations = 0 to compute the
Hessian, stored in cov, and the Newton step, stored in last_step, at the
initial estimates (The initial estimates must be input. Use keyword
IMSLS_INITIAL_EST_INPUT).
Default: max_iterations = 30

IMSLS_INTERCEPT, or

Chapter 5: Categorical and Discrete Data Analysis categorical_glm •••• 285

IMSLS_NO_INTERCEPT,
By default, or if IMSLS_INTERCEPT is specified, the intercept is
automatically included in the model. If IMSLS_NO_INTERCEPT is
specified, there is no intercept in the model (unless otherwise provided
for by the user).

IMSLS_EFFECTS, int n_effects, int n_var_effects[],
int indices_effects[] (Input)
Variable n_effects is the number of effects (sources of variation) in
the model. Variable n_var_effects is an array of length n_effects
containing the number of variables associated with each effect in the
model. Argument indices_effects is an index array of length
n_var_effects [0] + n_var_effects [1] + …
+ n_var_effects [n_effects − 1]. The first n_var_effects [0]
elements give the column numbers of x for each variable in the first
effect. The next n_var_effects [1] elements give the column numbers
for each variable in the second effect. The last
n_var_effects [n_effects − 1] elements give the column
numbers for each variable in the last effect.

IMSLS_INITIAL_EST_INTERNAL, or
IMSLS_INITIAL_EST_INPUT, int n_coef_input, float estimates[]

(Input)
By default, or if IMSLS_INIT_INTERNAL is specified, then unweighted
linear regression is used to obtain initial estimates. If
IMSLS_INITIAL_EST_INPUT is specified, then the n_coef_input
elements of estimates contain initial estimates of the parameters
(which requires that the user know the number of coefficients in the
model prior to the call to imsls_f_categorical_glm which can be
obtained by calling imsls_f_regressors_for_glm.

IMSLS_MAX_CLASS, int max_class (Input)
An upper bound on the sum of the number of distinct values taken on by
each classification variable.
Default: max_class = n_observations × n_class

IMSLS_CLASS_INFO, int **n_class_values, float **class_values

(Output)
Argument n_class_values the address of a pointer to the internally
allocated array of length n_class containing the number of values
taken by each classification variable; the i-th classification variable has
n_class_values [i] distinct values. Argument class_values is the
address of a pointer to the internally allocated array of length

n_class_values

n_class

i
i=

−

�
0

1

containing the distinct values of the classification variables in ascending
order. The first n_class_values [0] elements of class_values

286 •••• categorical_glm IMSL C/Stat/Library

contain the values for the first classification variables, the next
n_class_values [1] elements contain the values for the second
classification variable, etc.

IMSLS_CLASS_INFO_USER, int n_class_values[],
float class_values[] (Output)
Storage for arrays n_class_values and class_values is provided
by the user. See IMSLS_CLASS_INFO.

IMSLS_COEF_STAT, float **coef_statistics (Output)
Address of a pointer to an internally allocated array of size
n_coefficients × 4 containing the parameter estimates and
associated statistics, where n_coefficients can be computed by
calling imsls_regressors_for_glm.

Column Statistic
0 Coefficient Estimate.
1 Estimated standard deviation of the estimated coefficient.
2 Asymptotic normal score for testing that the coefficient is

zero.
3 The p-value associated with the normal score in column 2.

IMSLS_COEF_STAT_USER, float coef_statistics[] (Output)
Storage for array coef_statistics is provided by the user. See
IMSLS_COEF_STAT.

IMSLS_CRITERION, float *criterion (Output)
Optimized criterion. The criterion to be maximized is a constant plus the
log-likelihood.

IMSLS_COV, float **cov (Output)
Address of a pointer to the internally allocated array of size
n_coefficients × n_coefficients containing the estimated
asymptotic covariance matrix of the coefficients. For
max_iterations = 0, this is the Hessian computed at the initial
parameter estimates, where n_coefficients can be computed by
calling imsls_regressors_for_glm.

IMSLS_COV_USER, float cov[] (Ouput)
Storage for array cov is provided by the user. See IMSLS_COV above.

IMSLS_MEANS, float **means (Output)
Address of a pointer to the internally allocated array containing the
means of the design variables. The array is of length n_coefficients
if IMSLS_NO_INTERCEPT is specified, and of length
n_coefficients − 1 otherwise, where n_coefficients can be
computed by calling imsls_regressors_for_glm.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

Chapter 5: Categorical and Discrete Data Analysis categorical_glm •••• 287

IMSLS_CASE_ANALYSIS, float **case_analysis (Output)
Address of a pointer to the internally allocated array of size
n_observations × 5 containing the case analysis.

Column Statistic
0 Predicted mean for the observation if model = 0. Other-

wise, contains the probability of success on a single trial.
1 The residual.
2 The estimated standard error of the residual.
3 The estimated influence of the observation.
4 The standardized residual.

Case statistics are computed for all observations except where missing
values prevent their computation.

IMSLS_CASE_ANALYSIS_USER, float case_analysis[] (Output)
Storage for array case_analysis is provided by the user. See
IMSLS_CASE_ANALYSIS.

IMSLS_LAST_STEP, float **last_step (Output)
Address of a pointer to the internally allocated array of length
n_coefficients containing the last parameter updates (excluding step
halvings). For max_iterations = 0, last_step contains the inverse
of the Hessian times the gradient vector, all computed at the initial
parameter estimates.

IMSLS_LAST_STEP_USER, float last_step[] (Output)
Storage for array last_step is provided by the user. See
IMSLS_LAST_STEP.

IMSLS_OBS_STATUS, int **obs_status (Output)
Address of a pointer to the internally allocated array of length
n_observations indicating which observations are included in the
extended likelihood.

obs_status [i] Status of observation

0 Observation i is in the likelihood
1 Observation i cannot be in the likelihood because

it contains at least one missing value in x.
2 Observation i is not in the likelihood. Its

estimated parameter is infinite.

IMSLS_OBS_STATUS_USER, int obs_status[] (Output)
Storage for array obs_status is provided by the user. See
IMSLS_OBS_STATUS.

IMSLS_N_ROWS_MISSING, int *n_rows_missing (Output)
Number of rows of data that contain missing values in one or more of the

288 •••• categorical_glm IMSL C/Stat/Library

following arrays or columns of x; ipar, iy, ifrq, ifix, iclass,
icontinuous, or indices_effects.

Remarks
1. Dummy variables are generated for the classification variables as follows:

An ascending list of all distinct values of each classification variable is
obtained and stored in class_values. Dummy variables are then
generated for each but the last of these distinct values. Each dummy
variable is zero unless the classification variable equals the list value
corresponding to the dummy variable, in which case the dummy variable is
one. See keyword IMSLS_LEAVE_OUT_LAST for optional argument
IMSLS_DUMMY in routine imsls_f_regressors_for_glm (Chapter 2).

2. The �product� of a classification variable with a covariate yields dummy
variables equal to the product of the covariate with each of the dummy
variables associated with the classification variable.

3. The �product� of two classification variables yields dummy variables in
the usual manner. Each dummy variable associated with the first
classification variable multiplies each dummy variable associated with
the second classification variable. The resulting dummy variables are
such that the index of the second classification variable varies fastest.

Description
Function imsls_f_categorical_glm uses iteratively reweighted least squares
to compute (extended) maximum likelihood estimates in some generalized linear
models involving categorized data. One of several models, including the probit,
logistic, Poisson, logarithmic, and negative binomial models, may be fit.

Note that each row vector in the data matrix can represent a single observation;
or, through the use of optional argument IMSLS_X_COL_FREQUENCIES, each
row can represent several observations. Also note that classification variables and
their products are easily incorporated into the models via the usual regression-
type specifications.

The models available in imsls_f_categorical_glm are:

Model PDF of the Response
Variable

Parameterization

0 f (y) = (λy exp (−λ)) / y! λ = N × exp (ω + η)

1
f y

S y
y

S yb g b g�
� �

�

F
HG

I
KJ �

1
1 1� � θ

ω η
ω η

=
+

+ +
exp

exp
b g
b g1

2 f (y) = (1 − θ)y / (yln θ) θ
ω η

ω η
=

+
+ +
exp

exp
b g
b g1

Chapter 5: Categorical and Discrete Data Analysis categorical_glm •••• 289

Model PDF of the Response
Variable

Parameterization

3
f y N

y
y N yb g b g=

F
HG
I
KJ − −θ θ1 θ

ω η
ω η

=
+

+ +
exp

exp
b g
b g1

4
f y N

y
y N yb g b g=

F
HG
I
KJ − −θ θ1 θ = Φ (ω + η)

5
f y N

y
y N yb g b g=

F
HG
I
KJ − −θ θ1 θ = 1 − exp (−exp (ω + η))

Here, Φ denotes the cumulative normal distribution, N and S are known
distribution parameters specified for each observation via the optional argument
IMSLS_X_COL_DIST_PARAMETER, and ω is an optional fixed parameter of the
linear response, γi, specified for each observation. (If
IMSLS_X_COL_FIXED_PARAMETER is not specified, then ω is taken to be 0.)
Since the log-log model (model = 5) probabilities are not symmetric with respect
to 0.5, quantitatively, as well as qualitatively, different models result when the
definitions of �success� and �failure� are interchanged in this distribution. In this
model and all other models involving θ, θ is taken to be the probability of a
�success�.

Computational Details
The computations proceed as follows:

1. The input parameters are checked for consistency and validity.

2. Estimates of the means of the �independent� or design variables are
computed. The frequency or the observation in all but binomial
distribution models is taken from vector frequencies. In binomial
distribution models, the frequency is taken as the product of
n = parameter [i] and frequencies [i]. Means are computed as

x
f x

f
i i

i

= �
�

3. By default, and when IMSLS_INITIAL_EST_INTERNAL is specified,
initial estimates of the coefficients are obtained (based upon the
observation intervals) as multiple regression estimates relating
transformed observation probabilities to the observation design vector.
For example, in the binomial distribution models, θ may be estimated as

�θ = y parameteri i

and, when model = 3, the linear relationship is given by

290 •••• categorical_glm IMSL C/Stat/Library

ln � / �θ θ β1− ≈e je j X

while if model = 4, Φ-1 (θ) = Xβ. When computing initial estimates,
standard modifications are made to prevent illegal operations such as
division by zero. Regression estimates are obtained at this point, as well
as later, by use of function imsls_f_regression (Chapter 2).

4. Newton-Raphson iteration for the maximum likelihood estimates is
implemented via iteratively re-weighted least squares. Let

Ψ xi
Tβe j

denote the log of the probability of the i-th observation for coefficients
β. In the least-squares model, the weight of the i-th observation is taken
as the absolute value of the second derivative of

Ψ xi
Tβe j

with respect to

γ βi i
Tx=

(times the frequency of the observation), and the dependent variable is
taken as the first derivative Ψ with respect to γi, divided by the square
root of the weight times the frequency. The Newton step is given by

() ()1"()Ti i i i ix x x−Ψ Ψ′∆β = γ γ� �

where all derivatives are evaluated at the current estimate of γ and
βn+1 = β − ∆β. This step is computed as the estimated regression
coefficients in the least-squares model. Step halving is used when
necessary to ensure a decrease in the criterion.

5. Convergence is assumed when the maximum relative change in any
coefficient update from one iteration to the next is less than eps or when
the relative change in the log-likelihood from one iteration to the next is
less than eps / 100. Convergence is also assumed after maxit iterations
or when step halving leads to a step size of less than 0.0001 with no
increase in the log-likelihood.

6. Residuals are computed according to methods discussed by Pregibon
(1981). Let li (γi) denote the log-likelihood of the i-th observation
evaluated at γi. Then, the standardized residual is computed as

r
l

l
i

i i

i i

�
�

�

�

�

�

�

b g
b g

where

�γ i

Chapter 5: Categorical and Discrete Data Analysis categorical_glm •••• 291

is the value of γi when evaluated at the optimal

�β

The denominator of this expression is used as the �standard error of the
residual� while the numerator is �raw� residual. Following Cook and
Weisberg (1982), the influence of the i-th observation is assumed to be

� �� �
�l l li i

T
i i� � �� � �b g b g b g1

This quantity is a one-step approximation to the change in the estimates
when the i-th observation is deleted. Here, the partial derivatives are
with respect to β.

Programming Notes
1. Indicator (dummy) variables are created for the classification variables

using function imsls_f_regressors_for_glm (Chapter 2) using
keyword IMSLS_LEAVE_OUT_LAST as the argument to the
IMSLS_DUMMY optional argument.

2. To enhance precision, �centering� of covariates is per-
formed if the model has an intercept and
n_observations − n_rows_missing > 1. In doing so,
the sample means of the design variables are subracted from each
observation prior to its inclusion in the model. On convergence, the
intercept, its variance, and its covariance with the remaining estimates
are transformed to the uncentered estimate values.

3. Two methods for specifying a binomial distribution model are possible.
In the first method, frequencies contains the frequency of the observation
while y is 0 or 1 depending upon whether the observation is a success or
failure. In this case, N = parameter [i] is always 1. The model is treated
as repeated Bernoulli trials, and interval observations are not possible. A
second method for specifying binomial models is to use y to represent
the number of successes in parameter [i] trials. In this case, frequencies
will usually be 1.

Examples

Example 1
The first example is from Prentice (1976) and involves the mortality of beetles
after five hours exposure to eight different concentrations of carbon disulphide.
The table below lists the number of beetles exposed (N) to each concentration
level of carbon disulphide (x, given as log dosage) and the number of deaths
which result (y). The data is given as follows:

292 •••• categorical_glm IMSL C/Stat/Library

Log Dosage Number of
Beetles Exposed

Number of Deaths

1.690 59 6

1.724 60 13

1.755 62 18

1.784 56 28

1.811 63 52

1.836 59 53

1.861 62 61

1.883 60 60

The number of deaths at each concentration level are fitted as a binomial response
using logit (model = 3), probit (model = 4), and log-log
(model = 5) models. Note that the log-log model yields a smaller absolute log
likelihood (14.81) than the logit model (18.78) or the probit model (18.23). This
is to be expected since the response curve of the log-log model has an asymmetric
appearance, but both the logit and probit models are symmetric about θ = 0.5.

Example 2
Consider the use of a loglinear model to analyze survival-time data. Laird and
Oliver (1981) investigate patient survival post heart valve replacement surgery.
Surveilance after surgery of the 109 patients included in the study ranged from 3
to 97 months. All patients were classified by heart valve type (aortic or mitral)
and by age (less than 55 years or at least 55 years). The data could be considered
as a three-way contingency table where patients are classified by valve type, age,
and survival (yes or no). However, it would be inappropriate to analyze this data
using the standard methodology associated with contingency tables; since, this
methodology ignores survival time.

Consider a variable, say exposure time (Eij), that is defined as the sum of the
length of times patients of each cross-classification are at risk. The length of time
for a patient that dies is the number of months from surgery until death and for a
survivor, the length of time is the number of months from surgery until the study
ends or the patient withdraws from the study. Now we can model the effect of
A = age and V = valve type on the expected number of deaths conditional on
exposure time. Thus, for the data (shown in the table below), assume the number
of deaths are independent Poisson random variables with means mij and fit the
following model,

log
m
E

uij

ij
i
A

j
VF

HG
I
KJ = + +λ λ

where u is the overall mean,

Chapter 5: Categorical and Discrete Data Analysis categorical_glm •••• 293

λ i
A

is the effect of age, and

λ j
V

is the effect of the valve type.

Heart Valve Type
Age Aortic (0) Mitral (1)

< 55 years (Age = 0) Deaths 4 1
Exposure 1259 2082

≥ 55 years (Age = 1) Deaths 7 9
Exposure 1417 1647

From the coefficient statistics table of the output, note that the risk is estimated to
be e1.22 = 3.39 times higher for older patients in the study. This increase in risk is
significant (p = 0.02). However, the decrease in risk for the mitral valve patients
is estimated to be e-0.33 = 0.72 times that of the aortic valve patients and this risk
is not significant (p = 0.45).

Warning Errors
IMSLS_TOO_MANY_HALVINGS Too many step halvings. Convergence is

assumed.

IMSLS_TOO_MANY_ITERATIONS Too many iterations. Convergence is
assumed.

Fatal Errors
IMSLS_TOO_FEW_COEF IMSLS_INITIAL_EST_INPUT is specified

and �n_coef_input� = #. The model
specified requires # coefficients.

IMSLS_MAX_CLASS_TOO_SMALL The number of distinct values of the
classification variables exceeds
�max_class� = #.

IMSLS_INVALID_DATA_8 �n_class_values[#]� = #. The number of
distinct values for each classification
variable must be greater than one.

IMSLS_NMAX_EXCEEDED The number of observations to be deleted
has exceeded �lp_max� = #. Rerun with a
different model or increase the workspace.

Chapter 6: Nonparametric Statistics Routines •••• 295

Chapter 6: Nonparametric Statistics

Routines
6.1 One sample tests - Nonparametric Statistics

Sign test .. sign_test 296
Wilcoxon rank sum test wilcoxon_sign_rank 299
Noehter�s test for cyclical trend noether_cyclical_trend 303
Cox and Stuarts� sign test for trends in location
and dispersion .. cox_stuart_trends_test 306
Tie statistics.. tie_statistics 311

6.2 Two or more samples
Wilcoxon�s rank sum testwilcoxon_rank_sum 313
Kruskal-Wallis test..kruskal_wallis_test 318
Friedman�s test... friedmans_test 321
Cochran's Q test.. cochran_q_test 326
K-sample trends test ..k_trends_test 328

Usage Notes
Much of what is considered nonparametric statistics is included in other chapters.
Topics of possible interest in other chapters are: nonparametric measures of
location and scale (Chapter 1, �Basic Statistics�), nonparametric measures in a
contingency table (Chapter 5, �Categorical and Discrete Data Analysis�),
measures of correlation in a contingency table (Chapter 3, �Correlation and
Covariance�), and tests of goodness of fit and randomness (Chapter 7, �Tests of
Goodness of Fit and Randomness�).

Missing Values

Most routines described in this chapter automatically handle missing values
(NaN, �Not a Number�; see the introduction of this manual).

296 •••• sign_test IMSL C/Stat/Library

Tied Observations

Many of the routines described in this chapter contain an argument IMSLS_FUZZ
in the input. Observations that are within fuzz of each other in absolute value are
said to be tied. Moreover, in some routines, an observation within fuzz of some
value is said to be equal to that value. In routine
imsls_f_wilcoxon_sign_rank (page 299), for example, such observations
are eliminated from the analysis. If fuzz = 0.0, observations must be identically
equal before they are considered to be tied. Other positive values of fuzz allow
for numerical imprecision or roundoff error.

sign_test
Performs a sign test.

Synopsis
#include <imsls.h>

float imsls_f_sign_test (int n_observations, float x[], ..., 0)

The type double function is imsls_d_sign_test.

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of length n_observations containing the input data.

Return Value
Binomial probability of n_positive_deviations or more positive differences
in n_observations − n_zero_deviation trials. Call this value probability. If
no option is chosen, the null hypothesis is that the median equals 0.0.

Synopsis with Optional Arguments
#include <imsls.h>

float imsls_f_sign_test (int n_observations, float x[],
IMSLS_PERCENTAGE, float percentage,
IMSLS_PERCENTILE, float percentile,
IMSLS_N_POSITIVE_DEVIATIONS,

int *n_positive_deviations,
IMSLS_N_ZERO_DEVIATIONS, int *n_zero_deviations,
0)

Chapter 6: Nonparametric Statistics sign_test •••• 297

Optional Arguments
IMSLS_PERCENTAGE, float percentage (Input)

Value in the range (0, 1). Argument percentile is the
100 × percentage percentile of the population.
Default: percentage = 0.5

IMSLS_PERCENTILE, float percentile (Input)
Hypothesized percentile of the population from which x was drawn.
Default: percentile = 0.0

IMSLS_N_POSITIVE_DEVIATIONS, int *n_positive_deviations

(Output)
Number of positive differences x[j − 1] − percentile for
j = 1, 2, …, n_observations.

IMSLS_N_ZERO_DEVIATIONS, int *n_zero_deviations (Output)
Number of zero differences (ties) x[j − 1] − percentile for
j = 1, 2, …, n_observations.

Description
Function imsls_f_sign_test tests hypotheses about the proportion p of a
population that lies below a value q, where p corresponds to argument
percentage and q corresponds to argument percentile. In continuous
distributions, this can be a test that q is the 100 p-th percentile of the population
from which x was obtained. To carry out testing, imsls_f_sign_test tallies
the number of values above q in n_positive_deviations. The binomial
probability of n_positive_deviations or more values above q is then
computed using the proportion p and the sample size n_observations
(adjusted for the missing observations and ties).

Hypothesis testing is performed as follows for the usual null and alternative
hypotheses:

• H0: Pr(x ≤ q) ≥ p (the p-th quantile is at least q)
H1: Pr(x ≤ q) < p
Reject H0 if probability is less than or equal to the significance level

• H0: Pr(x ≤ q) ≤ p (the p-th quantile is at least q)
H1: Pr(x ≤ q) > p
Reject H0 if probability is greater than or equal to 1 minus the significance
level

• H0: Pr (x = q) = p (the p-th quantile is q)
H1: Pr((x ≤ q) < p) or Pr((x ≤ q) > p)
Reject H0 if probability is less than or equal to half the significance level or
greater than or equal to 1 minus half the significance level

298 •••• sign_test IMSL C/Stat/Library

The assumptions are as follows:

1. They are independent and identically distributed.

2. Measurement scale is at least ordinal; i.e., an ordering less than, greater
than, and equal to exists in the observations.

Many uses for the sign test are possible with various values of p and q. For
example, to perform a matched sample test that the difference of the medians of
y and z is 0.0, let p = 0.5, q = 0.0, and xi = yi − zi in matched observations
y and z. To test that the median difference is c, let q = c.

Examples

Example 1
This example tests the hypothesis that at least 50 percent of a population is
negative. Because 0.18 < 0.95, the null hypothesis at the 5-percent level of
significance is not rejected.

#include <imsls.h>

void main ()
{

int n_observations = 19;
float probability;
float x[19] = {92.0, 139.0, -6.0, 10.0, 81.0, -11.0, 45.0,

-25.0, -4.0, 22.0, 2.0, 41.0, 13.0, 8.0, 33.0,
45.0, -33.0, -45.0, -12.0};

probability = imsls_f_sign_test(n_observations, x, 0);

printf("probability = %10.6f\n", probability);
}

Output
probability = 0.179642

Example 2
This example tests the null hypothesis that at least 75 percent of a population is
negative. Because 0.923 < 0.95, the null hypothesis at the 5-percent level of
significance is rejected.

#include <imsls.h>

void main ()
{

int n_observations = 19;
int n_positive_deviations, n_zero_deviations;
float probability;
float percentage = 0.75;
float percentile = 0.0;
float x[19] = {92.0, 139.0, -6.0, 10.0, 81.0, -11.0, 45.0,

-25.0, -4.0, 22.0, 2.0, 41.0, 13.0, 8.0, 33.0,

Chapter 6: Nonparametric Statistics wilcoxon_sign_rank •••• 299

45.0, -33.0, -45.0, -12.0};

probability = imsls_f_sign_test(n_observations, x, IMSLS_PERCENTAGE,
percentage, IMSLS_PERCENTILE, percentile,
IMSLS_N_POSITIVE_DEVIATIONS, &n_positive_deviations,
IMSLS_N_ZERO_DEVIATIONS, &n_zero_deviations, 0);

printf("probability = %10.6f.\n", probability);
printf("Number of positive deviations is %d.\n",

n_positive_deviations);
printf("Number of ties is %d.\n", n_zero_deviations);

}

Output
probability = 0.922543.
Number of positive deviations is 12.
Number of ties is 0.

wilcoxon_sign_rank
Performs a Wilcoxon signed rank test.

Synopsis
#include <imsls.h>

float *imsls_f_wilcoxon_sign_rank (int n_observations,
float x[], ..., 0)

The type double function is imsls_d_wilcoxon_sign_rank.

Required Arguments

int n_observations (Input)
Number of observations in x.

float x[] (Input)
Array of length n_observations containing the data.

Return Value
Pointer to an array of length two containing the values described below.

The asymptotic probability of not exceeding the standardized (to an asymptotic
variance of 1.0) minimum of (W+, W-) using method 1 under the null hypothesis
that the distribution is symmetric about 0.0.

And, the asymptotic probability of not exceeding the standardized (to an
asymptotic variance of 1.0) minimum of (W+, W-) using method 2 under the null
hypothesis that the distribution is symmetric about 0.0.

300 •••• wilcoxon_sign_rank IMSL C/Stat/Library

Synopsis with Optional Arguments
#include <imsls.h>

float * imsls_f_wilcoxon_sign_rank (int n_observations,
float x[],
IMSLS_FUZZ, float fuzz,

IMSLS_STAT, float **stat,

IMSLS_STAT_USER, float stat[],

IMSLS_N_MISSING, float *n_missing,

IMSLS_RETURN_USER, float prob[],

0)

Optional Arguments
IMSLS_FUZZ, float fuzz (Input)

Nonnegative constant used to determine ties in computing ranks in the
combined samples. A tie is declared when two observations in the
combined sample are within fuzz of each other.
Default value for fuzz is 0.0.

IMSLS_STAT, float **stat (Output)
Address of a pointer to an internally allocated array of length
10 containing the following statistics:

Row Statistics
0 The positive rank sum, W+, using method

1 The absolute value of the negative rank sum, W-, using method 1.

2 The standardized (to anasymptotic variance of 1.0) minimum of
(W+, W-) using method

3 The asymptotic probability of not exceeding stat(2) under the
null hypothesis that the distribution is symmetric about 0.0.

4 The positive rank sum, W+, using method 2.

5 The absolute value of the negative rank sum, W-, using method 2.

6 The standardized (to an asymptotic variance of 1.0) minimum of
(W+, W-) using method 2.

7 The asymptotic probability of not exceeding stat(6) under the
null hypothesis that the distribution is symmetric about 0.0.

8 The number of zero observations.

9 The total number of observations that are tied, and that are not
within fuzz of zero.

Chapter 6: Nonparametric Statistics wilcoxon_sign_rank •••• 301

IMSLS_STAT_USER, float stat[] (Output)
Storage for array stat is provided by the user.
See IMSLS_STAT.

IMSLS_N_MISSING, float *n_missing, (Output)
Number of missing values in y.

IMSLS_RETURN_USER, float prob[], (Output)
User allocated storage for return values.
See Return Value.

Description
Function imsls_f_wilcoxon_sign_rank performs a Wilcoxon signed rank
test of symmetry about zero. In one sample, this test can be viewed as a test
that the population median is zero. In matched samples, a test that the medians
of the two populations are equal can be computed by first computing difference
scores. These difference scores would then be used as input to
imsls_f_wilcoxon_sign_rank. A general reference for the methods used is
Conover (1980).

Routine imsls_f_wilcoxon_sign_rank computes statistics for two methods
for handling zero and tied observations. In the first method, observations within
fuzz of zero are not counted, and the average rank of tied observations is used.
(Observations within fuzz of each other are said to be tied.) In the second
method, observations within fuzz of zero are randomly assigned a positive or
negative sign, and the ranks of tied observations are randomly permuted.

The W+ and W− statistics are computed as the sums of the ranks of the positive
observations and the sum of the ranks of the negative observations, respectively.
Asymptotic probabilities are computed using standard methods (see, e.g.,
Conover 1980, page 282).

The W+ and W− statistics may be used to test the following hypotheses about the
median, M. In deciding whether to reject the null hypothesis, use the bracketed
statistic if method 2 for handling ties is preferred. Possible null hypotheses and
alternatives are given as follows:
• H� : M ≤ 0 H� : M > 0

Reject if stat[0] [or stat[4]] is too large.
• H� : M ≥ 0 H� : M < 0

Reject if stat[1] [or stat[5]] is too large.
• H� : M = 0 H� : M ≠ 0

Reject if stat[2][or stat[6]] is too small. Alternatively, if an asymptotic
test is desired, reject if 2 * stat[3] [or 2 * stat[7]] is less than the
significance level.

Tabled values of the test statistic can be found in the references. If possible,
tabled values should be used. If the number of nonzero observations is too large,

302 •••• wilcoxon_sign_rank IMSL C/Stat/Library

then the asymptotic probabilities computed by imsls_f_wilcoxon_sign_rank
can be used.

The assumptions required for the hypothesis tests are as follows:

1. The distribution of each Xi is symmetric.

2. The Xi are mutually independent.

3. All Xi�s have the same median.

4. An ordering of the observations exists (i.e., X� > X� and X� > X� implies
that X� > X�).

If other assumptions are made, related hypotheses that are more (or less)
restrictive can be tested.

Example
This example illustrates the application of the Wilcoxon signed rank test to a
test on a difference of two matched samples (matched pairs) {X1 = 223, 216,
211, 212, 209, 205, 201; and X2 = 208, 205, 202, 207, 206, 204, 203}. A test that
the median difference is 10.0 (rather than 0.0) is performed by subtracting 10.0
from each of the differences prior to calling wilcoxon_sign_rank. As can be
seen from the output, the null hypothesis is rejected. The warning error will
always be printed when the number of observations is 50 or less unless printing is
turned off for warning errors.

#include <imsls.h>

#include <stdio.h>

void main()

{
float *stat=NULL, *result=NULL;
int nobs = 7, nmiss;
float fuzz = .0001;
float x[] = {-25., -21., -19., -15., -13., -11., -8.};
result = imsls_f_wilcoxon_sign_rank(nobs, x,

IMSLS_N_MISSING, &nmiss,
IMSLS_FUZZ, fuzz,
IMSLS_STAT, &stat,
0);

printf("Statistic\t\t\tMethod 1\tMethod 2\n");
printf("W+\t\t\t\t %3.0f\t\t %3.0f\n", stat[0], stat[4]);
printf("W-\t\t\t\t %3.0f\t\t %3.0f\n", stat[1], stat[5]);
printf("Standardized Minimum\t\t%6.4f\t\t%6.4f\n", stat[2], stat[6]);
printf("p-value\t\t\t\t %6.4f\t\t %6.4f\n\n", stat[3], stat[7]);
printf("Number of zeros\t\t\t%3.0f\n", stat[8]);
printf("Number of ties\t\t\t%3.0f\n", stat[9]);
printf("Number of missing\t\t %d\n", nmiss);

}

Chapter 6: Nonparametric Statistics noether_cyclical_trend •••• 303

Output

*** WARNING ERROR 4 from imsls_f_wilcoxon_sign_rank. NOBS = 7. The number
*** of observations, NOBS, is less than 50, and exact
*** tables should be referenced for probabilities.

Statistic Method 1 Method 2
W+....................... 0 0
W-....................... 28 28
Standardized Minimum..... -2.3664 -2.3664
p-value.................. 0.0090 0.0090

Number of zeros.......... 0
Number of ties........... 0
Number of missing........ 0

noether_cyclical_trend
Performs the Noether test for cyclical trend.

Synopsis
#include <imsls.h>

float *imsls_f_noether_cyclical_trend (int n_observations,
float x[], ..., 0)

The type double function is imsls_d_noether_cyclical_trend.

Required Arguments

int n_observations (Input)
Number of observations in x. n_observations must be greater than
or equal to 3.

float x[] (Input)
Array of length n_observations containing the data in chronological
order.

Return Value
Array, p, of length 3 containing the probabilities of stat[1] or more, stat[2]
or more, or stat[3] or more monotonic sequences.

If stat[0] is less than 1, p[0] is set to NaN (not a number).

Synopsis with Optional Arguments
#include <imsls.h>

304 •••• noether_cyclical_trend IMSL C/Stat/Library

float *imsls_f_noether_cyclical_trend ((int n_observations,
float x[],
IMSLS_FUZZ, float fuzz,

IMSLS_STAT, int **stat,

IMSLS_STAT_USER, int stat[],

IMSLS_N_MISSING, int *n_missing,

IMSLS_RETURN_USER, float p[],

0)

Optional Arguments
IMSLS_FUZZ, float fuzz (Input)

Nonnegative constant used to determine ties in computing ranks in the
combined samples. A tie is declared when two observations in the
combined sample are within fuzz of each other.
Default value for fuzz is 0.0.

IMSLS_STAT, int **stat (Output)
Address of a pointer to an internally allocated array of length 6
containing the following statistics:

Row Statistics
stat[0] The number of consecutive sequences of length three used to detect

cyclical trend when tying middle elements are eliminated from the
sequence, and the next consecutive observation is used.

stat[1] The number of monotonic sequences of length three in the set defined by
stat[0].

stat[2] The number of nonmonotonic sequences where tied threesomes are
counted as nonmonotonic.

stat[3] The number of monotonic sequences where tied threesomes are counted as
monotonic.

stat[4] The number of middle observations eliminated because they were tied in
forming the stat[0] sequences.

stat[5] The number of tied sequences found in forming the stat[2] and
stat[3] sequences. A sequence is called a tied sequence if the middle
element is tied with either of the two other elements.

IMSLS_STAT_USER, int stat[] (Output)
Storage for array stat is provided by the user.
See IMSLS_STAT.

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values in X.

Chapter 6: Nonparametric Statistics noether_cyclical_trend •••• 305

IMSLS_RETURN_USER, float p[] (Input)
User allocated array of length 3 containing the return values.

Description

Routine imsls_f_noether_cyclical_trend performs the Noether test for
cyclical trend (Noether 1956) for a sequence of measurements. In this test, the
observations are first divided into sets of three consecutive observations. Each set
is then inspected, and if the set is monotonically increasing or decreasing, the
count variable is incremented.

The count variables, stat[1], stat[2], and stat[3], differ in the manner in
which ties are handled. A tie can occur in a set (of size three) only if the middle
element is tied with either of the two ending elements. Tied ending elements are
not considered. In stat[1], tied middle observations are eliminated, and a new
set of size 3 is obtained by using the next observation in the sample. In stat[2],
the original set of size three is used, and tied middle observations are counted as
nonmonotonic. In stat[3], tied middle observations are counted as monotonic.

The probabilities of occurrence of the counts are obtained from the binomial
distribution with p = 1/3, where p is the probability that a random sample of size
three from a continuous distribution is monotonic. The binomial sample size is, of
course, the number of sequences of size three found (adjusted for ties).

Hypothesis test:

H� : q = Pr(Xi > Xi - 1 > Xi - 2) + Pr(Xi < Xi - 1 < Xi - 2) ≤ 1/3 H� : q > 1/3
Reject if p[0] (or p[1] or p[2] depending on the method used for handling ties)
is less than the significance level of the test.

Assumption: The observations are independent and are from a continuous
distribution.

Example
A test for cyclical trend in a sequence of 1000 randomly generated observations is
performed. Because of the sample used, there are no ties and all three test
statistics yield the same result.

#include <imsls.h>

#include <stdio.h>

void main()

{

float *pvalue=NULL;

int nobs = 1000, nmiss, *stat = NULL;

float *x = NULL;

imsls_random_seed_set(123457);

x = imsls_f_random_uniform(nobs, 0);

306 •••• cox_stuart_trends_test IMSL C/Stat/Library

pvalue = imsls_f_noether_cyclical_trend(nobs, x,

IMSLS_STAT, &stat,

IMSLS_N_MISSING, &nmiss,

0);

imsls_f_write_matrix("P", 0, 2, pvalue, 0);

imsls_i_write_matrix("STAT", 0, 5, stat, 0);

printf("\n n missing = %d\n", nmiss);

}

Output
P
0 1 2

0.6979 0.6979 0.6979
STAT
0 1 2 3 4 5

333 107 107 107 0 0
n missing = 0

cox_stuart_trends_test
Performs the Cox and Stuart sign test for trends in location and dispersion.

Synopsis
#include <imsls.h>

float *imsls_f_cox_stuart_trends_test (int n_observations,
float x[], ..., 0)

The type double function is imsls_d_ cox_stuart_trends_test.

Required Arguments

int n_observations (Input)
Number of observations in x. n_observations must be greater
than or equal to 3.

float x[] (Input)
Array of length n_observations containing the data in chronological
order.

Return Value

Array, pstat, of length 8 containing the probabilities. The first four elements
of pstat are computed from two groups of observations.

Chapter 6: Nonparametric Statistics cox_stuart_trends_test •••• 307

I pstat[I]

0 Probability of nstat[0] + nstat[2] or more negative signs
(ties are considered negative).

1 Probability of obtaining nstat[1] or more positive signs (ties are
considered negative).

2 Probability of nstat[0] + nstat[2] or more negative signs (ties are
considered positive).

3 Probability of obtaining nstat[1] or more positive signs (ties are
considered positive).

The last four elements of pstat are computed from three groups of
observations.

4 Probability of nstat[0] + nstat[2] or more negative signs (ties
are considered negative).

5 Probability of obtaining nstat[1] or more positive signs (ties are
considered negative).

6 Probability of nstat[0] + nstat[2] or more negative signs (ties
are considered positive).

7 Probability of obtaining nstat[1] or more positive signs (ties are
considered positive).

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_cox_stuart_trends_test (int n_observations,
float x[],
IMSLS_DISPERSION, int k, int ids,

IMSLS_FUZZ, float fuzz,

IMSLS_STAT, int **nstat,

IMSLS_STAT_USER, int nstat[],

IMSLS_N_MISSING, int *n_missing,

IMSLS_RETURN_USER, float pstat[],

0)

Optional Arguments
IMSLS_DISPERSION, int k, int ids, (Input)

If IMSLS_DISPERSION is called, the Cox and Stuart tests for trends in
dispersion are computed. Otherwise, as default, the Cox and Stuart tests
for trends in location are computed. k is the number of consecutive x
elements to be used to measure dispersion.

308 •••• cox_stuart_trends_test IMSL C/Stat/Library

If ids is zero, the range is used as a measure of dispersion.
Otherwise, the centered sum of squares is used.

IMSLS_FUZZ, float fuzz (Input)
Value used to determine when elements in x are tied.
If |x[i] – x[j]| is less than or equal to fuzz, x[i] and x[j]

are said to be tied. fuzz must be nonnegative. Default value for fuzz is
0.0.

IMSLS_STAT, int **nstat (Output)
Address of a pointer to an internally allocated array of length 8
containing the following statistics:

I nstat[I]

0 Number of negative differences (two groups)

1 Number of positive differences (two groups)

2 Number of zero differences (two groups)

3 Number of differences used to calculate pstat[0]

through pstat[3] (two groups).

4 Number of negative differences (three groups)

5 Number of positive differences (three groups)

6 Number of zero differences (three groups)

7 Number of differences used to calculate pstat

[4] through pstat[7] (three groups).

IMSLS_STAT_USER, int nstat[] (Output)
Storage for array nstat is provided by the user.
See IMSLS_STAT.

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values in X.

IMSLS_RETURN_USER, float pstat[] (Input)
User allocated array of length 8 containing the return values.

Description
Function imsls_f_cox_stuart_trends_test tests for trends in dispersion or
location in a sequence of random variables depending upon the call of
IMSLS_DISPERSION. A derivative of the sign test is used
(see Cox and Stuart 1955).

Location Test

For the location test (Default) with two groups, the observations are first
divided into two groups with the middle observation thrown out if there are an

Chapter 6: Nonparametric Statistics cox_stuart_trends_test •••• 309

odd number of observations. Each observation in group one is then compared
with the observation in group two that has the same lexicographical order. A
count is made of the number of times a group-one observation is less than
(nstat[0]), greater than (nstat[1]), or equal to (nstat[2]), its counterpart in
group two. Two observations are counted as equal if they are within fuzz of one
another.

In the three-group test, the observations are divided into three groups, with the
center group losing observations if the division is not exact. The first and third
groups are then compared as in the two-group case, and the counts are stored in
nstat[4] through nstat[6].

Probabilities in pstat are computed using the binomial distribution with sample
size equal to the number of observations in the first group (nstat[3] or
nstat[7]), and binomial probability p = 0.5.

Dispersion Test

The dispersion tests (when optional argument IMSLS_DISPERSION is called)
proceed exactly as with the tests for location, but using one of two derived
dispersion measures. The input value k is used to define n_observations/k
groups of consecutive observations starting with observation 1. The first k
observations define the first group, the next k observations define the second
group, etc., with the last observations omitted if n_observations is not evenly
divisible by k. A dispersion score is then computed for each group as either the
range (ids = 0), or a multiple of the variance (ids ≠ 0) of the observations in the
group. The dispersion scores form a derived sample. The tests proceed on the
derived sample as above.

Ties

Ties are defined as occurring when a group one observation is within fuzz of its
last group counterpart. Ties imply that the probability distribution of X is not
strictly continuous, which means that Pr(X� > X�) ≠ 0.5 under the null hypothesis
of no trend (and the assumption of independent identically distributed
observations). When ties are present, the computed binomial probabilities are not
exact, and the hypothesis tests will be conservative.

Hypothesis tests

In the following, i indexes an observation from group 1, while j indexes the
corresponding observation in group 2 (two groups) or group 3 (three groups).
• H� : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5

H� : Pr(Xi > Xj) < Pr(Xi < Xj)
Hypothesis of upward trend. Reject if pstat[2] (or pstat[6])is less than
the significance level.

310 •••• cox_stuart_trends_test IMSL C/Stat/Library

• H� : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5
H� : Pr(Xi > Xj) > Pr(Xi < Xj)
Hypothesis of downward trend. Reject if pstat[1] (or pstat[5]) is less
than the significance level.

• H� : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5
H� : Pr(Xi > Xj) ≠ Pr(Xi < Xj)
Two tailed test. Reject if 2 max(pstat[1], pstat[2]) (or 2
max(pstat[5], pstat[6]) is less than the significance level.

Assumptions

1. The observations are a random sample; i.e., the observations are
independently and identically distributed.

2. The distribution is continuous.

Example
This example illustrates both the location and dispersion tests. The data, which
are taken from Bradley (1968), page 176, give the closing price of AT&T on the
New York stock exchange for 36 days in 1965. Tests for trends in location
(Default), and for trends in dispersion (IMSLS_DISPERSION) are performed.
Trends in location are found.

#include <imsls.h>

#include <stdio.h>

void main()

{

float *pstat=NULL;

int nobs = 36, ids = 0, k = 2, nmiss, *stat = NULL;

float fuzz = 0.001;

float x[] = {9.5, 9.875, 9.25, 9.5, 9.375, 9.0, 8.75, 8.625, 8.0, 8.25,
8.25, 8.375, 8.125, 7.875, 7.5, 7.875, 7.875, 7.75,7.75, 7.75, 8.0, 7.5,
7.5, 7.125, 7.25, 7.25, 7.125, 6.75,6.5, 7.0, 7.0, 6.75, 6.625, 6.625,
7.125, 7.75};

pstat = imsls_f_cox_stuart_trends_test(nobs, x,

IMSLS_FUZZ, fuzz,

IMSLS_STAT, &stat,

IMSLS_N_MISSING, &nmiss,

0);

imsls_i_write_matrix("nstat", 1, 8, stat, 0);

imsls_f_write_matrix("pstat", 1, 8, pstat,

IMSLS_WRITE_FORMAT, "%10.5f", 0);

printf("n missing = %d\n", nmiss);

pstat = imsls_f_cox_stuart_trends_test(nobs, x,

Chapter 6: Nonparametric Statistics tie_statistics •••• 311

IMSLS_DISPERSION, k, ids,

IMSLS_FUZZ, fuzz,

IMSLS_STAT, &stat,

IMSLS_N_MISSING, &nmiss,

0);

imsls_i_write_matrix("nstat", 0, 7, stat, 0);

imsls_f_write_matrix("pstat", 0, 7, pstat, 0);

printf("n missing = %d\n", nmiss);

}

Output
*** WARNING Error from imsls_cox_stuart_trends_test. At least one tie is
detected in X.

NSTAT
0 1 2 3 4 5 6 7
0 17 1 18 0 12 0 12

PSTAT
0 1 2 3 4

1.00000 0.00007 1.00000 0.00000 1.00000

5 6 7
0.00024 1.00000 0.00024

n missing = 0

*** WARNING Error from imsls_cox_stuart_trends_test. At least one tie is
detected in X.

NSTAT
0 1 2 3 4 5 6 7
4 3 2 9 4 2 0 6

PSTAT
0 1 2 3 4

0.253906 0.910156 0.746094 0.500000 0.343750

5 6 7
0.890625 0.343750 0.890625

n missing = 0

tie_statistics
Compute tie statistics for a sample of observations.

Synopsis
#include <imsls.h>

float *imsls_f_tie_statistics (int n_oservations, float x[], ..., 0)

312 •••• tie_statistics IMSL C/Stat/Library

The type double function is imsls_d_tie_statistics.

Required Arguments

int n_observations (Input)
Number of observations in x.

float x[] (Input)
Array of length n_observations containing the observations.

x must be ordered monotonically increasing with all missing values removed.

Return Value
Array of length 4 containing the tie statistics.

ties[0]

ties[1]

ties[2]

ties[3]

= −

= − +

= − +

= − −

=

=

=

=

�

�

�

�

t t

t t t

t t t

t t t

j j
j

j j j
j

j j
j

j

j j
j

j

1 2

1 1 12

1 2 5

1 2

1

1

1

1

d i

d id i

d id i

d id i

τ

τ

τ

τ

/

/

where tj is the number of ties in the j-th group (rank) of ties, and τ is the number
of tie groups in the sample.

Synopsis with Optional Arguments
#include <imsls.h>

float * imsls_f_tie_statistics (int n_oservations, float x[],
IMSLS_FUZZ, float fuzz,

IMSLS_RETURN_USER, float ties[],
0)

Optional Arguments
IMSLS_FUZZ, float fuzz, (Input)

Value used to determine ties.
Observations i and j are tied if the successive differences
x[k + 1] – x[k] between observations i and j, inclusive, are all
less than fuzz. fuzz must be nonnegative. Default: fuzz = 0.0

Chapter 6: Nonparametric Statistics wilcoxon_rank_sum •••• 313

IMSLS_RETURN_USER, float ties[], (Output)
If specified ties[] returns the tie statistics. Storage for ties[]
is provided by the user. See Return Value.

Description
Function imsls_f_tie_statistics computes tie statistics for a monotonically
increasing sample of observations. �Tie statistics� are statistics that may be used
to correct a continuous distribution theory nonparametric test for tied
observations in the data. Observations i and j are tied if the successive differences
X(k + 1) − X(k), inclusive, are all less than fuzz. Note that if each of the
monotonically increasing observations is equal to its predecessor plus a constant,
if that constant is less than fuzz, then all observations are contained in one tie
group. For example, if fuzz = 0.11, then the following observations are all in one
tie group.
0.0, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00

Example
We want to compute tie statistics for a sample of length 7.

#include <imsls.h>

#include <stdio.h>

void main()

{

float *ties=NULL;

int nobs = 7;

float fuzz = .001;

float x[] = {1.0, 1.0001, 1.0002, 2., 3., 3., 4.};

ties = imsls_f_tie_statistics(nobs, x,

IMSLS_FUZZ, fuzz,

0);

imsls_f_write_matrix("TIES\n", 0, 3, ties,

IMSLS_WRITE_FORMAT, "%5.2f",

0);

}

Output
TIES
0 1 2 3
4.00 2.50 84.00 6.00

wilcoxon_rank_sum
Performs a Wilcoxon rank sum test.

314 •••• wilcoxon_rank_sum IMSL C/Stat/Library

Synopsis
#include <imsls.h>

float imsls_f_wilcoxon_rank_sum (int n1_observations, float x1[],
int n2_observations, float x2[], ..., 0)

The type double function is imsls_d_wilcoxon_rank_sum.

Required Arguments

int n1_observations (Input)
Number of observations in the first sample.

float x1[] (Input)
Array of length n1_observations containing the first sample.

int n2_observations (Input)
Number of observations in the second sample.

float x2[] (Input)
Array of length n2_observations containing the second sample.

Return Value
The two-sided p-value for the Wilcoxon rank sum statistic that is computed with
average ranks used in the case of ties.

Synopsis with Optional Arguments
#include <imsls.h>

float imsls_f_wilcoxon_rank_sum (int n1_observations, float x1[],
int n2_observations, float x2[],
IMSLS_FUZZ, float fuzz,
IMSLS_STAT, float **stat,
IMSLS_STAT_USER, float stat[],
0)

Optional Arguments
IMSLS_FUZZ, float fuzz (Input)

Nonnegative constant used to determine ties in computing ranks in the
combined samples. A tie is declared when two observations in the
combined sample are within fuzz of each other.
Default: fuzz = 100 × imsls_f_machine(4) × max {|xi1|, |xj2|}

IMSLS_STAT, float **stat (Output)
Address of a pointer to an internally allocated array of length 10
containing the following statistics:

Chapter 6: Nonparametric Statistics wilcoxon_rank_sum •••• 315

Row Statistics
0 Wilcoxon W statistic (the sum of the ranks of the x

observations) adjusted for ties in such a manner that W is
as small as possible

1 2 × E(W) − W, where E(W) is the expected value of W
2 probability of obtaining a statistic less than or equal to

min{W, 2 × E(W) − W}
3 W statistic adjusted for ties in such a manner that W is as

large as possible
4 2 × E(W) − W, where E(W) is the expected value of W,

adjusted for ties in such a manner that W is as large as
possible

5 probability of obtaining a statistic less than or equal to
min{W, 2 × E(W) − W}, adjusted for ties in such a manner
that W is as large as possible

6 W statistic with average ranks used in case of ties
7 estimated standard error of stat [6] under the null

hypothesis of no difference
8 standard normal score associated with stat [6]
9 two-sided p-value associated with stat[8]

IMSLS_STAT_USER, float stat[] (Output)
Storage for array stat is provided by the user. See IMSLS_STAT.

Description
Function imsls_f_wilcoxon_rank_sum performs the Wilcoxon rank sum test
for identical population distribution functions. The Wilcoxon test is a linear
transformation of the Mann-Whitney U test. If the difference between the two
populations can be attributed solely to a difference in location, then the Wilcoxon
test becomes a test of equality of the population means (or medians) and is the
nonparametric equivalent of the two-sample t-test. Function
imsls_f_wilcoxon_rank_sum obtains ranks in the combined sample after first
eliminating missing values from the data. The rank sum statistic is then computed
as the sum of the ranks in the x1 sample. Three methods for handling ties are
used. (A tie is counted when two observations are within fuzz of each other.)
Method 1 uses the largest possible rank for tied observations in the smallest
sample, while Method 2 uses the smallest possible rank for these observations.
Thus, the range of possible rank sums is obtained.

Method 3 for handling tied observations between samples uses the average rank
of the tied observations. Asymptotic standard normal scores are computed for the
W score (based on a variance that has been adjusted for ties) when average ranks

316 •••• wilcoxon_rank_sum IMSL C/Stat/Library

are used (see Conover 1980, p. 217), and the probability associated with the two-
sided alternative is computed.

Hypothesis Tests
In each of the following tests, the first line gives the hypothesis (and its
alternative) under the assumptions 1 to 3 below, while the second line gives the
hypothesis when assumption 4 is also true. The rejection region is the same for
both hypotheses and is given in terms of Method 3 for handling ties. Another
output statistic should be used, (stat[0] or stat[3]), if another method for
handling ties is desired.

Test Null Hypothesis Alternative
Hypothesis

Action

1 H0:Pr(x1 < x2) = 0.5 H1:Pr(x1 < x2) ≠ 0.5 Reject if stat [9] is less than the
significance level of the test.
Alternatively,

H0:E(x1) = E(x2) H1:E(x1) ≠ E(x2) reject the null hypothesis if stat
[6] is too large or too small.

2 H0:Pr(x1 < x2) ≤ 0.5 H1:Pr(x1 < x2) > 0.5 Reject if stat [6] is too small

H0:E(x1) ≥ E(x2) H1:E(x1) < E(x2)

3 H0:Pr(x1 < x2) ≥ 0.5 H1:Pr(x1 < x2) < 0.5 Reject if stat [6] is too large

Ho:E(x1) ≤ E(x2)) H1:E(x1) > E(x2)

Assumptions
1. Arguments x1 and x2 contain random samples from their respective

populations.

2. All observations are mutually independent.

3. The measurement scale is at least ordinal (i.e., an ordering less than,
greater than, or equal to exists among the observations).

4. If f(x) and g(y) are the distribution functions of x and y, then
g(y) = f(x + c) for some constant c(i.e., the distribution of y is, at worst, a
translation of the distribution of x).

Tables of critical values of the W statistic are given in the references for small
samples.

Examples

Example 1
The following example is taken from Conover (1980, p. 224). It involves the
mixing time of two mixing machines using a total of 10 batches of a certain kind

Chapter 6: Nonparametric Statistics wilcoxon_rank_sum •••• 317

of batter, five batches for each machine. The null hypothesis is not rejected at the
5-percent level of significance. The warning error is always printed when one or
more ties are detected, unless printing for warning errors is turned off. See
function imsls_error_options (Chapter 14).

#include <imsls.h>

void main()
{

int n1_observations = 5;
int n2_observations = 5;
float x1[5] = {7.3, 6.9, 7.2, 7.8, 7.2};
float x2[5] = {7.4, 6.8, 6.9, 6.7, 7.1};
float p_value;

p_value = imsls_f_wilcoxon_rank_sum(n1_observations, x1,
n2_observations, x2, 0);

printf("p-value = %11.4f\n", p_value);

}

Output
*** WARNING Error IMSLS_AT_LEAST_ONE_TIE from imsls_f_wilcoxon_rank_sum.
*** At least one tie is detected between the samples.

p-value = 0.1412

Example 2
The following example uses the same data as the previous example. Now, all the
statistics are output in the array stat.

#include <imsls.h>

void main()
{

int n1_observations = 5;
int n2_observations = 5;
float x1[5] = {7.3, 6.9, 7.2, 7.8, 7.2};
float x2[5] = {7.4, 6.8, 6.9, 6.7, 7.1};
float *stat;
char *labels[10] = {"Wilcoxon W statistic",

"2*E(W) - W",
"p-value",
"Adjusted Wilcoxon statistic",
"Adjusted 2*E(W) - W",
"Adjusted p-value",
"W statistics for averaged ranks............",
"Standard error of W (averaged ranks)",
"Standard normal score of W (averaged ranks)",
"Two-sided p-value of W (averaged ranks"};

imsls_f_wilcoxon_rank_sum(n1_observations, x1,
n2_observations, x2,
IMSLS_STAT, &stat,
0);

imsls_f_write_matrix("statistics", 10, 1, stat,

318 •••• kruskal_wallis_test IMSL C/Stat/Library

IMSLS_ROW_LABELS, labels,
IMSLS_WRITE_FORMAT, "%7.3f",
0);

}

Output
*** WARNING Error IMSLS_AT_LEAST_ONE_TIE from imsls_f_wilcoxon_rank_sum.
*** At least one tie is detected between the samples.

statistics
Wilcoxon W statistic 34.000
2*E(W) - W 21.000
p-value 0.110
Adjusted Wilcoxon statistic 35.000
Adjusted 2*E(W) - W 20.000
Adjusted p-value 0.075
W statistics for averaged ranks............ 34.500
Standard error of W (averaged ranks) 4.758
Standard normal score of W (averaged ranks) 1.471
Two-sided p-value of W (averaged ranks 0.141

Warning Errors
IMSLS_NOBSX_NOBSY_TOO_SMALL �n1_observations� = # and

�n2_observations� = #. Both
sample sizes, �n1_observations�
and �n2_observations�, are less
than 25. Significance levels should
be obtained from tabled values.

IMSLS_AT_LEAST_ONE_TIE At least one tie is detected
between the samples.

Fatal Errors
IMSLS_ALL_X_Y_MISSING Each element of �x1� and/or �x2�

is a missing (NaN, Not a Number)
value.

kruskal_wallis_test
Performs a Kruskal-Wallis test for identical population medians.

Synopsis
#include <imsls.h>

float *imsls_f_kruskal_wallis_test (int n_groups, int ni[],
float y[], ..., 0)

The type double function is imsls_d_kruskal_wallis_test.

Chapter 6: Nonparametric Statistics kruskal_wallis_test •••• 319

Required Arguments

int n_groups (Input)
Number of groups.

int ni[] (Input)
Array of length n_groups containing the number of responses for each
of the n_groups groups.

float y[] (Input)
Array of length ni[0] + ... + ni[n_groups-1] that contains the
responses for each of the n_groups groups. y must be sorted by group,
with the ni[0] observations in group 1 coming first, the ni[1]

observations in group two coming second, and so on.

Return Value
Array of length 4 containing the Kruskal-Wallis statistics.

I stat[I]

0 Kruskal-Wallis H statistic.

1 Asymptotic probability of a larger H under the null hypothesis of
identical population medians.

2 H corrected for ties.

3 Asymptotic probability of a larger H (corrected for ties) under the null
hypothesis of identical populations

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_kruskal_wallis_test (int n_groups, int ni, float y[],
IMSLS_FUZZ, float fuzz,
IMSLS_RETURN_USER, float stat[],

0)

Optional Arguments
IMSLS_FUZZ, float fuzz (Input)

Constant used to determine ties in y. If (after sorting)
|y[i] – y[i + 1]| is less than or equal to fuzz, then a tie
is counted. fuzz must be nonnegative.

IMSLS_RETURN_USER, float stat[] (Output)
User defined array for storage of Kruskal-Wallis statistics.

320 •••• kruskal_wallis_test IMSL C/Stat/Library

Description
The function imsls_f_kruskal_wallis_test generalizes the Wilcoxon two-
sample test computed by routine imsls_f_wilcoxon_rank_sum
(page 313) to more than two populations. It computes a test statistic for testing
that the population distribution functions in each of K populations are identical.
Under appropriate assumptions, this is a nonparametric analogue of the one-way
analysis of variance. Since more than two samples are involved, the alternative is
taken as the analogue of the usual analysis of variance alternative, namely that the
populations are not identical.

The calculations proceed as follows: All observations are ranked regardless of the
population to which they belong. Average ranks are used for tied observations
(observations within fuzz of each other). Missing observations (observations
equal to NaN, not a number) are not included in the ranking. Let Ri denote the
sum of the ranks in the i-th population. The test statistic H is defined as:

H
S

R
n

N N

i

K
i

i
= −FHG

I
KJ

+

=
�1 1

4
1

2

2 2b g

where N is the total of the sample sizes, ni is the number of observations in the
i-th sample, and S� is computed as the (bias corrected) sample variance of the Ri.

The null hypothesis is rejected when stat[3] (or stat[1]) is less than the
significance level of the test. If the null hypothesis is rejected, then the procedures
given in Conover (1980, page 231) may be used for multiple comparisons. The
routine imsls_f_kruskal_wallis_test computes asymptotic probabilities
using the chi-squared distribution when the number of groups is 6 or greater, and
a Beta approximation (see Wallace 1959) when the number of groups is 5 or less.
Tables yielding exact probabilities in small samples may be obtained from Owen
(1962).

Example
The following example is taken from Conover (1980, page 231). The data
represents the yields per acre of four different methods for raising corn. Since
H = 25.5, the four methods are clearly different. The warning error is always
printed when the Beta approximation is used, unless printing for warning errors is
turned off.

#include <imsls.h>

void main()

{

int ngroup = 4, ni[] = {9, 10, 7, 8};

float y[] = {83., 91., 94., 89., 89., 96., 91., 92., 90., 91., 90.,

81., 83., 84., 83., 88., 91., 89., 84., 101., 100., 91.,

93., 96., 95., 94., 78., 82., 81., 77., 79., 81., 80.,

81.};

float fuzz = .001, stat[4];

Chapter 6: Nonparametric Statistics friedmans_test •••• 321

char *rlabel[] = {"H (no ties) =",

"Prob (no ties) =",

"H (ties) =",

"Prob (ties) ="};

imsls_f_kruskal_wallis_test(ngroup, ni, y,

IMSLS_FUZZ, fuzz,

IMSLS_RETURN_USER, stat,

0);

imsls_f_write_matrix(" ", 4, 1, stat,

IMSLS_ROW_LABELS, rlabel,

0);

}

Output
*** WARNING ERROR from imsls_kruskal_wallis_test. The chi-squared degrees
*** of freedom are less than 5, so the Beta approximation is used.

H (no ties) = 25.46
Prob (no ties) = 0.00
H (ties) = 25.63
Prob (ties) = 0.00

friedmans_test
Performs Friedman�s test for a randomized complete block design.

Synopsis
#include <imsls.h>

float imsls_f_friedmans_test (int n_blocks, int n_treatments,
float y[], ..., 0)

The type double function is imsls_d_friedmans_test.

Required Arguments

int n_blocks (Input)
Number of blocks.

int n_treatments (Input)
Number of treatments.

float y[] (Input)
Array of size n_blocks * n_treatments containing the
observations. The first n_treatments positions of y[] contain the
observations on treatments 1, 2, �, n_treatments in the first block.
The second n_treatments positions contain the observations in the
second block, etc., and so on.

322 •••• friedmans_test IMSL C/Stat/Library

Return Value
The Chi-squared approximation of the asymptotic p-value for Friedman�s
two-sided test statistic.

Synopsis with Optional Arguments
#include <imsls.h>

float imsls_f_friedmans_test (int n_blocks, int n_treatments,

float y[],
IMSLS_FUZZ, float fuzz,
IMSLS_ALPHA, float alpha,
IMSLS_STAT, float **stat,
IMSLS_STAT_USER, float stat[],
IMSLS_SUM_RANK, int **sum_ranks,
IMSLS_SUM_RANK_USER, int sum_rank[]
IMSLS_DIFFERENCE, float *difference,

0)

Optional Arguments
IMSLS_FUZZ, float fuzz (Input)

Constant used to determine ties. In the ordered observations, if
|y[i] –y[i + 1]| is less than or equal to fuzz, then y[i] and

y[i + 1] are said to be tied. Default value is 0.0.

IMSLS_ALPHA, float alpha (Input)
Critical level for multiple comparisons. alpha should be between 0 and
1 exclusive. Default value is 0.05.

IMSLS_STAT, float **stat (Output)
Address of a pointer to an array of length 6 containing the Friedman
statistics. Probabilities reported are computed under the appropriate null
hypothesis.

I stat(I)

0 Friedman two-sided test statistic.

1 Approximate F value for stat[0].

2 Page test statistic for testing the ordered alternative that the median of
treatment i is less than or equal to the median of treatment i + 1, with
strict inequality holding for some i.

3 Asymptotic p-value for stat[0]. Chi-squared approximation.

4. Asymptotic p-value for stat[1]. F approximation.

5. Asymptotic p-value for stat[2]. Normal approximation.

Chapter 6: Nonparametric Statistics friedmans_test •••• 323

IMSLS_STAT_USER, float stat[] (Output)
Storage for array stat is provided by the user. See IMSLS_STAT.

IMSLS_SUM_RANK, float **sum_rank, (Output)
Address of a pointer to an array of length n_treatments

containing the sum of the ranks of each treatment.

IMSLS_SUM_RANK_USER, float sum_rank[], (Output)
Storage for array sum_rank is provided by the user.
See IMSLS_SUM_RANK.

IMSLS_DIFFERENCE, float *difference, (Output
Minimum absolute difference in two elements of sum_rank to infer at
the alpha level of significance that the medians of the corresponding
treatments are different.

Description
Function imsls_f_friedmans_test may be used to test the hypothesis of
equality of treatment effects within each block in a randomized block design. No
missing values are allowed. Ties are handled by using the average ranks. The test
statistic is the nonparametric analogue of an analysis of variance F test statistic.

The test proceeds by first ranking the observations within each block. Let A
denote the sum of the squared ranks, i.e., let

A Yij
j

b

i

k

=
==
�� Rankd i2

11

where Rank(Yij) is the rank of the i-th observation within the j-th block, b = NB is
the number of blocks, and k = NT is the number of treatments. Let

B
b

Ri
i

k

=
=
�

1 2

1

where

R Yi ij
j

b

=
=
�Rankd i

1

The Friedman test statistic (stat[0]) is given by:

T
k bB b k k

A bk k
=

− − +

− +

1 1 4

1 4

2 2

2

b g b ge j
b g

/

/

324 •••• friedmans_test IMSL C/Stat/Library

that, under the null hypothesis, has an approximate chi-squared distribution with
k − 1 degrees of freedom. The asymptotic probability of obtaining a larger chi-
squared random variable is returned in stat[3].

If the F distribution is used in place of the chi-squared distribution, then the usual
oneway analysis of variance F-statistic computed on the ranks is used. This
statistic, reported in stat[1], is given by

F
b T

b k T
=

−
− −

1
1
b g
b g

and asymptotically follows an F distribution with (k − 1) and (b − 1)(k − 1)
degrees of freedom under the null hypothesis. stat[4] is the asymptotic
probability of obtaining a larger F random variable. (If A = B, stat[0] and
stat[1] are set to machine infinity, and the significance levels are reported as
k!/(k!)b, unless this computation would cause underflow, in which case the
significance levels are reported as zero.) Iman and Davenport (1980) discuss the
relative advantages of the chi-squared and F approximations. In general, the
F approximation is considered best.

The Friedman T statistic is related both to the Kendall coefficient of concordance
and to the Spearman rank correlation coefficient. See Conover (1980) for a
discussion of the relationships.

If, at the α = alpha level of significance, the Friedman test results in rejection of
the null hypothesis, then an asymptotic test that treatments i and j are different is
given by: reject H� if |Ri − Rj| > D, where

D = − − −−t b A B b k1 2 2 1 1α / /b g b gb gc h
where t has (b − 1)(k − 1) degrees of freedom. Page�s statistic (stat[2]) is used
to test the same null hypothesis as the Friedman test but is sensitive to a
monotonic increasing alternative. The Page test statistic is given by

Q jRi
i

k

=
=
�

1

It is largest (and thus most likely to reject) when the Ri are monotonically
increasing.

Assumptions
The assumptions in the Friedman test are as follows:

1. The k-vectors of responses within each of the b blocks are mutually
independent (i.e., the results within one block have no effect on the
results within another block).

2. Within each block, the observations may be ranked.

Chapter 6: Nonparametric Statistics friedmans_test •••• 325

The hypothesis tested is that each ranking of the random variables within each
block is equally likely. The alternative is that at least one of the treatments tends
to have larger values than one or more of the other treatments. The Friedman test
is a test for the equality of treatment means or medians.

Example
The following example is taken from Bradley (1968), page 127, and tests the
hypothesis that 4 drugs have the same effects upon a person�s visual acuity.
Five subjects were used.

#include <imsls.h>

void main()

{

int n_blocks = 5, n_treatments = 4;

float y[20] = {.39,.55,.33,.41,.21,.28,.19,.16,.73,.69,.64,

.62,.41,.57,.28,.35,.65,.57,.53,.60};

float fuzz = .001,

alpha = .05;

float pvalue, *sum_rank, stat[6], difference;

pvalue = imsls_f_friedmans_test(n_blocks,

n_treatments, y,

IMSLS_SUM_RANK, &sum_rank,

IMSLS_STAT_USER, stat,

IMSLS_DIFFERENCE, &difference,

0);

printf("\np value for Friedman's T = %f\n\n", pvalue);

printf("Friedman's T = %4.2f\n", stat[0]);

printf("Friedman's F = %4.2f\n", stat[1]);

printf("Page Test =%5.2f\n", stat[2]);

printf("Prob Friedman's T = %7.5f\n", stat[3]);

printf("Prob Friedman's F = %7.5f\n", stat[4]);

printf("Prob Page Test = %7.5f\n", stat[5]);

printf("Sum of Ranks = %4.2f %4.2f %4.2 %4.2f\n"

sum_rank[0], sum_rank[1], sum_rank[2], sum_rank[3]);

printf("difference = %7.5f\n", difference);

}

Output
P value for Friedman’s T = 0.040566

Friedman T......... 8.28
Friedman F......... 4.93
Page test.......... 111.00

326 •••• cochran_q_test IMSL C/Stat/Library

Prob Friedman T.... 0.04057
Prob Friedman F.... 0.01859
Prob Page test..... 0.98495
Sum of Ranks....... 16.00 17.00 7.00 10.00
D.................. 6.65638

The Friedman null hypothesis is rejected at the α = .05 while the Page null
hypothesis is not. (A Page test with a monotonic decreasing alternative would be
rejected, however.) Using sum_rank and difference, one can conclude that
treatment 3 is different from treatments 1 and 2, and that treatment 4 is different
from treatment 2, all at the α = .05 level of significance.

cochran_q_test
Performs a Cochran Q test for related observations.

Synopsis

#include <imsls.h>

float imsls_f_cochran_q_test (int n_observations, int n_variables,
float *x, ..., 0)

The type double function is imsls_d_cochran_q_test.

Required Arguments

int n_observations (Input)
Number of blocks for each treatment.

int n_variables (Input)
Number of treatments.

float *x (Input)
Array of size n_observations × n_variables containing the matrix
of dichotomized data. There are n_observations readings of zero or
one on each of the n_variables treatments.

Return Value
The p-value, p_value, for the Cochran Q statistic.

Synopsis with Optional Arguments
#include <imsls.h>

float imsls_f_cochran_q_test (int n_observations,
int n_variables, float *x,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_Q_STATISTIC, float *q,
0)

Chapter 6: Nonparametric Statistics cochran_q_test •••• 327

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Number of columns in x.
Default: x_col_dim = n_variables

IMSLS_Q_STATISTIC, float *q (Output)
Cochran�s Q statistic.

Description
Function imsls_f_cochran_q_test computes the Cochran Q test statistic that
may be used to determine whether or not M matched sets of responses differ
significantly among themselves. The data may be thought of as arising out of a
randomized block design in which the outcome variable must be success or
failure, coded as 1.0 and 0.0, respectively. Within each block, a multivariate
vector of 1�s of 0�s is observed. The hypothesis is that the probability of success
within a block does not depend upon the treatment.

Assumptions
1. The blocks are a random sample from the population of all possible

blocks.

2. The outcome of each treatment is dichotomous.

Hypothesis
The hypothesis being tested may be stated in at least two ways.

1. H0 : All treatments have the same effect.
H1 : The treatments do not all have the same effect.

2. Let pij denote the probability of outcome 1.0 in block i, treatment j.
H0:pi1 = pi2 = … = pic for each i.
H1:pij ≠ pik for some i, and some j ≠ k.
where c (equal to n_variables) is the number of treatments.

The null hypothesis is rejected if Cochrans�s Q statistic is too large.

Remarks
1. The input data must consist of zeros and ones only. For example, the

data may be pass-fail information on n_variables questions asked of
n_observations people or the test responses of n_observations
individuals to n_variables different conditions.

2. The resulting statistic is distributed approximately as chi-squared with
n_variables − 1 degrees of freedom if n_observations is not too
small. n_observations greater than or equal to 5 × n_variables is a
conservative recommendation.

328 •••• k_trends_test IMSL C/Stat/Library

Example
The following example is taken from Siegal (1956, p. 164). It measures the
responses of 18 women to 3 types of interviews.

#include <imsls.h>
main()
{

float pq;
float x[54] = {

0.0, 0.0, 0.0,
1.0, 1.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 0.0,
1.0, 0.0, 0.0,
1.0, 1.0, 0.0,
1.0, 1.0, 0.0,
0.0, 1.0, 0.0,
1.0, 0.0, 0.0,
0.0, 0.0, 0.0,
1.0, 1.0, 1.0,
1.0, 1.0, 1.0,
1.0, 1.0, 0.0,
1.0, 1.0, 0.0,
1.0, 1.0, 0.0,
1.0, 1.0, 1.0,
1.0, 1.0, 0.0,
1.0, 1.0, 0.0};

pq = imsls_f_cochran_q_test(18, 3, x, 0);
printf("pq = %9.5f\n", pq);
return;

}

Output
pq = 0.00024

Warning Errors
IMSLS_ALL_0_OR_1 �x� consists of either all ones or all zeros.

�q� is set to NaN (not a number). �pq� is set
to 1.0.

Fatal Errors
IMSLS_INVALID_X_VALUES �x[#][#]� = #. �x� must consist of zeros and

ones only.

k_trends_test
Performs a k-sample trends test against ordered alternatives.

Chapter 6: Nonparametric Statistics k_trends_test •••• 329

Synopsis
#include <imsls.h>

float *imsls_f_ k_trends_test (int n_groups, int ni[], float y[], ...,
0)

The type double function is imsls_d_ k_trends_test.

Required Arguments

int n_groups (Input)
Number of groups. Must be greater than or equal to 3.

int ni[] (Input)
Array of length n_groups containing the number of responses for each
of the n_groups groups.

float y[] (Input)
Array of length ni[0] + ... + ni[n_groups-1] that contains the
responses for each of the n_groups groups. y must be sorted by group,
with the ni[0] observations in group 1 coming first, the ni[1]

observations in group two coming second, and so on.

Return Value
Array of length 17 containing the test results.

I stat[I]

0 Test statistic (ties are randomized).

1 Conservative test statistic with ties counted in favor of the null
hypothesis.

2 p-value associated with stat[0].

3 p-value associated with stat[1].

4 Continuity corrected stat[2].

5 Continuity corrected stat [3].

6 Expected mean of the statistic.

7 Expected kurtosis of the statistic. (The expected skewness is zero.)

8 Total sample size.

9 Coefficient of rank correlation based upon stat[0].

10 Coefficient of rank correlation based upon stat[1].

11 Total number of ties between samples.

12 The t-statistic associated with stat [2].

330 •••• k_trends_test IMSL C/Stat/Library

13 The t-statistic associated with stat[3].

14 The t-statistic associated with stat [4].

15 The t-statistic associated with stat[5].

16 Degrees of freedom for each t-statistic.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_k_trends_test (int n_groups, int ni, float y[],
IMSLS_RETURN_USER, float stat[],

0)

Optional Arguments
IMSLS_RETURN_USER, float stat[] (Output)

User defined array for storage of test results.

Description
Function imsls_f_k_trends_test performs a k-sample trends test against
ordered alternatives. The alternative to the null hypothesis of equality is that
F�(X) < F�(X) < … Fk(X), where F�, F�, etc., are cumulative distribution
functions, and the operator < implies that the less than relationship holds for all
values of X. While the trends test used in k_trends_test requires that the
background populations be continuous, ties occurring within a sample have no
effect on the test statistic or associated probabilities. Ties between samples are
important, however. Two methods for handling ties between samples are used.
These are:

1. Ties are randomly split (stat[0]).

2. Ties are counted in a manner that is unfavorable to the alternative
hypothesis (stat[1]).

Computational Procedure
Consider the matrices

M m
X Xkm

ij
km ki mj= =

<F
HG

I
KJe j 2

0

if

otherwise

where Xki is the i-th observation in the k-th population, Xmj is the j-th observation
in the m-th population, and each matrix Mkm is nk by nm where ni = ni(i). Let
Skm denote the sum of all elements in Mkm. Then, stat[1] is computed as the
sum over all elements in Skm, minus the expected value of this sum (computed as

n nk mk m<�

Chapter 6: Nonparametric Statistics k_trends_test •••• 331

when there are no ties and the distributions in all populations are equal). In
stat[0], ties are broken randomly, and the element in the summation is taken as
2.0 or 0.0 depending upon the result of breaking the tie.

stat[2] and stat[3] are computed using the t distribution. The probabilities
reported are asymptotic approximations based upon the t statistics in stat[12]
and stat[13], which are computed as in Jonckheere (1954, page 141).
Similarly, stat[4] and stat[5] give the probabilities for stat[14] and
stat[15], the continuity corrected versions of stat[2] and stat[3]. The
degrees of freedom for each t statistic (stat[16]) are computed so as to make
the t distribution selected as close as possible to the actual distribution of the
statistic (see Jonckheere 1954, page 141).

stat[6], the variance of the test statistic stat[0], and stat[7], the kurtosis
of the test statistic, are computed as in Jonckheere (1954, page 138). The
coefficients of rank correlation in stat[8] and stat[9] reduce to the
Kendall τ statistic when there are just two groups.

Exact probabilities in small samples can be obtained from tables in Jonckheere
(1954). Note, however, that the t approximation appears to be a good one.

Assumptions
1. The Xmi for each sample are independently and identically distributed

according to a single continuous distribution.

2. The samples are independent.

Hypothesis tests
H� : F�(X) ≥ F�(X) ≥ … ≥ Fk(X)
H� : F�(X) < F�(X) < … < Fk(X)
Reject if stat[2] (or stat[3], or stat[4] or stat[5], depending upon the
method used) is too large.

Example
The following example is taken from Jonckheere (1954, page 135). It involves
four observations in four independent samples.

#include <imsls.h>

#include <stdio.h>

void main()

{

float *stat;

int n_groups = 4;

int ni[] = {4, 4, 4, 4};

char *fmt = "%9.5f";

char *rlabel[] = {

332 •••• k_trends_test IMSL C/Stat/Library

"stat[0] - Test Statistic (random)",

"stat[1] - Test Statistic (null hypothesis) ...",

"stat[2] - p-value for stat[0]",

"stat[3] - p-value for stat[1]",

"stat[4] - Continuity corrected for stat[2]",

"stat[5] - Continuity corrected for stat[3]",

"stat[6] - Expected mean",

"stat[7] - Expected kurtosis",

"stat[8] - Total sample size",

"stat[9] - Rank corr. coef. based on stat[0] ...",

"stat[10]- Rank corr. coef. based on stat[1] ...",

"stat[11]- Total number of ties",

"stat[12]- t-statistic associated w/stat[2]",

"stat[13]- t-statistic asscoiated w/stat[3]",

"stat[14]- t-statistic associated w/stat[4]",

"stat[15]- t-statistic asscoiated w/stat[5]",

"stat[16]- Degrees of freedom"};

float y[] = {19., 20., 60., 130., 21., 61., 80., 129.,

40., 99., 100., 149., 49., 110., 151., 160.};

stat = imsls_f_k_trends_test(n_groups, ni, y, 0);

imsls_f_write_matrix("stat", 17, 1, stat,

IMSLS_WRITE_FORMAT, fmt,

IMSLS_ROW_LABELS, rlabel,

0);

}

Output
stat(0) - Test statistic (random) 46.00000
stat(1) - Test statistic (null hypothesis) .. 46.00000
stat(2) - p-value for stat(0) 0.01483
stat(3) - p-value for stat(1) 0.01483
stat(4) - Continuity corrected stat(2) 0.01683
stat(5) - Continuity corrected stat(3) 0.01683
stat(6) - Expected mean 458.66666
stat(7) - Expected kurtosis -0.15365
stat(8) - Total sample size 16.00000
stat(9)- Rank corr. coef. based on stat(0) . 0.47917
stat(10)- Rank corr. coef. based on stat(1) . 0.47917
stat(11)- Total number of ties 0.00000
stat(12)- t-statistic associated w/stat(2) .. 2.26435
stat(13)- t-statistic associated w/stat(3) .. 2.26435
stat(14)- t-statistic associated w/stat(4) .. 2.20838

Chapter 6: Nonparametric Statistics k_trends_test •••• 333

stat(15)- t-statistic associated w/stat(5) .. 2.20838
stat(16)- Degrees of freedom 36.04963

Chapter 7: Tests of Goodness of Fit Routines •••• 335

Chapter 7: Tests of Goodness of Fit

Routines
7.1 General Goodness-of-fit tests

Chi-squared goodness-of-fit test chi_squared_test 336
Shapiro-Wilk W test for normality.............................. normality_test 344
One-sample continuos data Kolmogorov-Smirnov
..kolmogorov_one 348
Two-sample continuos data Kolmogorov-Smirnov
.. kolmogorov_two 351
Mardia�s test for multivariate normality
..multivar_normality_test 354

7.2 Tests for Randomness
Runs test, Paris-serial test, d2 test or triplets tests
... randomness_test 358

Usage Notes
The routines in this chapter are used to test for goodness of fit and randomness.
The goodness-of-fit tests are described in Conover (1980). There are two
goodness-of-fit tests for general distributions, a Kolmogorov-Smirnov test and a
chi-squared test. The user supplies the hypothesized cumulative distribution
function for these two tests. There are three routines that can be used to test
specifically for the normal or exponential distributions.

The tests for randomness are often used to evaluate the adequacy of
pseudorandom number generators. These tests are discussed in Knuth (1981).

The Kolmogorov-Smirnov routines in this chapter compute exact probabilities
in small to moderate sample sizes. The chi-squared goodness-of-fit test may be
used with discrete as well as continuous distributions.

The Kolmogorov-Smirnov and chi-squared goodness-of-fit test routines allow for
missing values (NaN, not a number) in the input data. The routines that test for
randomness do not allow for missing values.

336 •••• chi_squared_test IMSL C/Stat/Library

chi_squared_test
Performs a chi-squared goodness-of-fit test.

Synopsis
#include <imsls.h>

float imsls_f_chi_squared_test (float user_proc_cdf(),
int n_observations, int n_categories, float x[], ..., 0)

The type double function is imsls_d_chi_squared_test.

Required Arguments

float user_proc_cdf (float y) (Input)
User-supplied function that returns the hypothesized, cumulative
distribution function at the point y.

int n_observations (Input)
Number of data elements input in x.

int n_categories (Input)
Number of cells into which the observations are to be tallied.

float x[] (Input)
Array with n_observations components containing the vector of data
elements for this test.

Return Value
The p-value for the goodness-of-fit chi-squared statistic.

Synopsis with Optional Arguments
#include <imsls.h>

float imsls_f_chi_squared_test (float user_proc_cdf(),
int n_observations, int n_categories, float x[],
IMSLS_N_PARAMETERS_ESTIMATED, int n_parameters,
IMSLS_CUTPOINTS, float **cutpoints,
IMSLS_CUTPOINTS_USER, float cutpoints[],
IMSLS_CUTPOINTS_EQUAL,
IMSLS_CHI_SQUARED, float *chi_squared,
IMSLS_DEGREES_OF_FREEDOM, float *df,
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_BOUNDS, float lower_bound, float upper_bound,
IMSLS_CELL_COUNTS, float **cell_counts,
IMSLS_CELL_COUNTS_USER, float cell_counts[],
IMSLS_CELL_EXPECTED, float **cell_expected,
IMSLS_CELL_EXPECTED_USER, float cell_expected[],

Chapter 7: Tests of Goodness of Fit chi_squared_test •••• 337

IMSLS_CELL_CHI_SQUARED, float **cell_chi_squared,
IMSLS_CELL_CHI_SQUARED_USER, float cell_chi_squared[],
0)

Optional Arguments
IMSLS_N_PARAMETERS_ESTIMATED, int n_parameters (Input)

Number of parameters estimated in computing the cumulative
distribution function.

IMSLS_CUTPOINTS, float **cutpoints (Output)
Address of a pointer to an internally allocated array of length
n_categories − 1 containing the vector of cutpoints defining the cell
intervals. The intervals defined by the cutpoints are such that the lower
endpoint is not included and the upper endpoint is included in any
interval. If IMSLS_CUTPOINTS_EQUAL is specified, equal probability
cutpoints are computed and returned in cutpoints.

IMSLS_CUTPOINTS_USER, float cutpoints [] (Input/Output)
Storage for array cutpoints is provided by the user. See
IMSLS_CUTPOINTS.

IMSLS_CUTPOINTS_EQUAL

If IMSLS_CUTPOINTS_USER is specified, then equal probability
cutpoints can still be used if, in addition, the
IMSLS_CUTPOINTS_EQUAL option is specified. If
IMSLS_CUTPOINTS_USER is not specified, equal probability cutpoints
are used by default.

IMSLS_CHI_SQUARED, float *chi_squared (Output)
If specified, the chi-squared test statistic is returned in *chi_squared.

IMSLS_DEGREES_OF_FREEDOM, float *df (Output)
If specified, the degrees of freedom for the chi-squared goodness-of-fit
test is returned in *df.

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array with n_observations components containing the vector
frequencies for the observations stored in x.

IMSLS_BOUNDS, float lower_bound, float upper_bound (Input)
If IMSLS_BOUNDS is specified, then lower_bound is the lower bound
of the range of the distribution and upper_bound is the upper bound of
this range. If lower_bound = upper_bound, a range on the whole real
line is used (the default). If the lower and upper endpoints are different,
points outside the range of these bounds are ignored. Distributions
conditional on a range can be specified when IMSLS_BOUNDS is used.
By convention, lower_bound is excluded from the first interval, but
upper_bound is included in the last interval.

338 •••• chi_squared_test IMSL C/Stat/Library

IMSLS_CELL_COUNTS, float **cell_counts (Output)
Address of a pointer to an internally allocated array of length
n_categories containing the cell counts. The cell counts are the
observed frequencies in each of the n_categories cells.

IMSLS_CELL_COUNTS_USER, float cell_counts[] (Output)
Storage for array cell_counts is provided by the user. See
IMSLS_CELL_COUNTS.

IMSLS_CELL_EXPECTED, float **cell_expected (Output)
Address of a pointer to an internally allocated array of length
n_categories containing the cell expected values. The expected value
of a cell is the expected count in the cell given that the hypothesized
distribution is correct.

IMSLS_CELL_EXPECTED_USER, float cell_expected[] (Output)
Storage for array cell_expected is provided by the user. See
IMSLS_CELL_EXPECTED.

IMSLS_CELL_CHI_SQUARED, float **cell_chi_squared (Output)
Address of a pointer to an internally allocated array of length
n_categories containing the cell contributions to chi-squared.

IMSLS_CELL_CHI_SQUARED_USER, float cell_chi_squared[] (Output)
Storage for array cell_chi_squared is provided by the user. See
IMSLS_CELL_CHI_SQUARED.

Description
Function imsls_f_chi_squared_test performs a chi-squared goodness-of-fit
test that a random sample of observations is distributed according to a specified
theoretical cumulative distribution. The theoretical distribution, which can be
continuous, discrete, or a mixture of discrete and continuous distributions, is
specified by the user-defined function user_proc_cdf. Because the user is
allowed to give a range for the observations, a test that is conditional on the
specified range is performed.

Argument n_categories gives the number of intervals into which the
observations are to be divided. By default, equiprobable intervals are computed
by imsls_f_chi_squared_test, but intervals that are not equiprobable can be
specified through the use of optional argument IMSLS_CUTPOINTS.

Regardless of the method used to obtain the cutpoints, the intervals are such that
the lower endpoint is not included in the interval, while the upper endpoint is
always included. If the cumulative distribution function has discrete elements,
then user-provided cutpoints should always be used since
imsls_f_chi_squared_test cannot determine the discrete elements in
discrete distributions.

Chapter 7: Tests of Goodness of Fit chi_squared_test •••• 339

By default, the lower and upper endpoints of the first and last intervals are −∞
and +∞, respectively. If IMSLS_BOUNDS is specified, the endpoints are user-
defined by the two arguments lower_bound and upper_bound.

A tally of counts is maintained for the observations in x as follows:
• If the cutpoints are specified by the user, the tally is made in the interval

to which xi belongs, using the user-specified endpoints.
• If the cutpoints are determined by imsls_f_chi_squared_test, then

the cumulative probability at xi, F(xi), is computed by the function
user_proc_cdf.

The tally for xi is made in interval number �mF(xi) + 1�, where
m = n_categories and �·� is the function that takes the greatest integer that is
no larger than the argument of the function. Thus, if the computer time required
to calculate the cumulative distribution function is large, user-specified cutpoints
may be preferred to reduce the total computing time.

If the expected count in any cell is less than 1, then the chi-squared approximation
may be suspect. A warning message to this effect is issued in this case, as well as
when an expected value is less than 5.

Examples

Example 1
This example illustrates the use of imsls_f_chi_squared_test on a
randomly generated sample from the normal distribution. One-thousand randomly
generated observations are tallied into 10 equiprobable intervals. The null
hypothesis, that the sample is from a normal distribution, is specified by use of
imsls_f_normal_cdf (Chapter 11) as the hypothesized distribution function.
In this example, the null hypothesis is not rejected.

#include <imsls.h>

#define SEED 123457
#define N_CATEGORIES 10
#define N_OBSERVATIONS 1000

main()
{

float *x, p_value;

imsls_random_seed_set(SEED);
/* Generate Normal deviates */

x = imsls_f_random_normal (N_OBSERVATIONS, 0);
/* Perform chi squared test */

p_value = imsls_f_chi_squared_test (imsls_f_normal_cdf,
N_OBSERVATIONS,
N_CATEGORIES, x, 0);

/* Print results */
printf ("p-value = %7.4f\n", p_value);

}

340 •••• chi_squared_test IMSL C/Stat/Library

Output
p-value = 0.1546

Example 2
In this example, optional arguments are used for the data in the initial example.

#include <imsls.h>

#define SEED 123457
#define N_CATEGORIES 10
#define N_OBSERVATIONS 1000

main()
{

float *cell_counts, *cutpoints, *cell_chi_squared;
float chi_squared_statistics[3], *x;
char *stat_row_labels[] = {"chi-squared",

"degrees of freedom","p-value"};
imsls_random_seed_set(SEED);

/* Generate normal deviates */
x = imsls_f_random_normal (N_OBSERVATIONS, 0);

/* Perform chi squared test */
chi_squared_statistics[2] =

imsls_f_chi_squared_test (imsls_f_normal_cdf,
N_OBSERVATIONS, N_CATEGORIES, x,

IMSLS_CUTPOINTS, &cutpoints,
IMSLS_CELL_COUNTS, &cell_counts,
IMSLS_CELL_CHI_SQUARED, &cell_chi_squared,
IMSLS_CHI_SQUARED, &chi_squared_statistics[0],
IMSLS_DEGREES_OF_FREEDOM, &chi_squared_statistics[1],
0);

/* Print results */
imsls_f_write_matrix ("\nChi Squared Statistics\n", 3, 1,

chi_squared_statistics,
IMSLS_ROW_LABELS, stat_row_labels,
0);

imsls_f_write_matrix ("Cut Points", 1, N_CATEGORIES-1,
cutpoints, 0);

imsls_f_write_matrix ("Cell Counts", 1, N_CATEGORIES,
cell_counts, 0);

imsls_f_write_matrix ("Cell Contributions to Chi-Squared", 1,
N_CATEGORIES, cell_chi_squared,
0);

}

Output
Chi Squared Statistics

chi-squared 13.18
degrees of freedom 9.00
p-value 0.15

Cut Points
1 2 3 4 5 6

Chapter 7: Tests of Goodness of Fit chi_squared_test •••• 341

-1.282 -0.842 -0.524 -0.253 -0.000 0.253

7 8 9
0.524 0.842 1.282

Cell Counts
1 2 3 4 5 6

106 109 89 92 83 87

7 8 9 10
110 104 121 99

Cell Contributions to Chi-Squared
1 2 3 4 5 6

0.36 0.81 1.21 0.64 2.89 1.69

7 8 9 10
1.00 0.16 4.41 0.01

Example 3
In this example, a discrete Poisson random sample of size 1,000 with parameter
θ = 5.0 is generated by function imsls_f_random_poisson (Chapter 12). In
the call to imsls_f_chi_squared_test, function imsls_f_poisson_cdf
(Chapter 11) is used as function user_proc_cdf.

#include <imsls.h>

#define SEED 123457
#define N_CATEGORIES 10
#define N_PARAMETERS_ESTIMATED 0
#define N_NUMBERS 1000
#define THETA 5.0

float user_proc_cdf(float);

main()
{

int i, *poisson;
float cell_statistics[3][N_CATEGORIES];
float chi_squared_statistics[3], x[N_NUMBERS];
float cutpoints[] = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5,

7.5, 8.5, 9.5};
char *cell_row_labels[] = {"count", "expected count",

"cell chi-squared"};
char *cell_col_labels[] = {"Poisson value", "0", "1", "2",

"3", "4", "5", "6", "7",
"8", "9"};

char *stat_row_labels[] = {"chi-squared",
"degrees of freedom","p-value"};

imsls_random_seed_set(SEED);
/* Generate the data */

poisson = imsls_random_poisson(N_NUMBERS, THETA, 0);
/* Copy data to a floating point vector*/

for (i = 0; i < N_NUMBERS; i++)

342 •••• chi_squared_test IMSL C/Stat/Library

x[i] = poisson[i];

chi_squared_statistics[2] =
imsls_f_chi_squared_test(user_proc_cdf, N_NUMBERS,

N_CATEGORIES, x,
IMSLS_CUTPOINTS_USER, cutpoints,
IMSLS_CELL_COUNTS_USER, &cell_statistics[0][0],
IMSLS_CELL_EXPECTED_USER, &cell_statistics[1][0],
IMSLS_CELL_CHI_SQUARED_USER, &cell_statistics[2][0],
IMSLS_CHI_SQUARED, &chi_squared_statistics[0],
IMSLS_DEGREES_OF_FREEDOM, &chi_squared_statistics[1],
0);

/* Print results */
imsls_f_write_matrix("\nChi-squared Statistics\n", 3, 1,

&chi_squared_statistics[0],
IMSLS_ROW_LABELS, stat_row_labels,
0);

imsls_f_write_matrix("\nCell Statistics\n", 3, N_CATEGORIES,
&cell_statistics[0][0],

IMSLS_ROW_LABELS, cell_row_labels,
IMSLS_COL_LABELS, cell_col_labels,
IMSLS_WRITE_FORMAT, "%9.1f",
0);

}

float user_proc_cdf(float k)
{

float cdf_v;

cdf_v = imsls_f_poisson_cdf ((int) k, THETA);
return cdf_v;

}

Output
Chi-squared Statistics

chi-squared 10.48
degrees of freedom 9.00
p-value 0.31

Cell Statistics

Poisson value 0 1 2 3 4
count 41.0 94.0 138.0 158.0 150.0
expected count 40.4 84.2 140.4 175.5 175.5
cell chi-squared 0.0 1.1 0.0 1.7 3.7

Poisson value 5 6 7 8 9
count 159.0 116.0 75.0 37.0 32.0
expected count 146.2 104.4 65.3 36.3 31.8
cell chi-squared 1.1 1.3 1.4 0.0 0.0

Chapter 7: Tests of Goodness of Fit chi_squared_test •••• 343

Programming Notes
Function user_proc_cdf must be supplied with calling sequence
user_proc_cdf(y), which returns the value of the cumulative distribution
function at any point y in the (optionally) specified range. Many of the
cumulative distribution functions in Chapter 11, �Probability Distribution
Functions and Inverses,� can be used for user_proc_cdf, either directly if the
calling sequence is correct or indirectly if, for example, the sample means and
standard deviations are to be used in computing the theoretical cumulative
distribution function.

Warning Errors
IMSLS_EXPECTED_VAL_LESS_THAN_1 An expected value is less than 1.

IMSLS_EXPECTED_VAL_LESS_THAN_5 An expected value is less than 5.

Fatal Errors
IMSLS_ALL_OBSERVATIONS_MISSING All observations contain missing

values.

IMSLS_INCORRECT_CDF_1 Function user_proc_cdf is not a
cumulative distribution function.
The value at the lower bound must
be nonnegative, and the value at
the upper bound must not be
greater than 1.

IMSLS_INCORRECT_CDF_2 Function user_proc_cdf is not a
cumulative distribution function.
The probability of the range of the
distribution is not positive.

IMSLS_INCORRECT_CDF_3 Function user_proc_cdf is not a
cumulative distribution function.
Its evaluation at an element in x is
inconsistent with either the
evaluation at the lower or upper
bound.

IMSLS_INCORRECT_CDF_4 Function user_proc_cdf is not a
cumulative distribution function.
Its evaluation at a cutpoint is
inconsistent with either the
evaluation at the lower or upper
bound.

344 •••• normality_test IMSL C/Stat/Library

IMSLS_INCORRECT_CDF_5 An error has occurred when
inverting the cumulative
distribution function. This function
must be continuous and defined
over the whole real line.

normality_test
Performs a test for normality.

Synopsis

#include <imsls.h>

float imsls_f_normality_test (int n_observations, float x[], ..., 0)

The type double function is imsls_d_normality_test.

Required Arguments

int n_observations (Input)
Number of observations. Argument n_observations must be in the
range from 3 to 2,000, inclusive, for the Shapiro-Wilk W test and must
be greater than 4 for the Lilliefors test.

float x[] (Input)
Array of size n_observations containing the observations.

Return Value
The p-value for the Shapiro-Wilk W test or the Lilliefors test for normality. The
Shapiro-Wilk test is the default. If the Lilliefors test is used, probabilities less
than 0.01 are reported as 0.01, and probabilities greater than 0.10 for the normal
distribution are reported as 0.5. Otherwise, an approximate probability is
computed.

Synopsis with Optional Arguments
#include <imsls.h>

float imsls_f_normality_test (int n_observations, float x[],
IMSLS_SHAPIRO_WILK_W, float *shapiro_wilk_w,
IMSLS_LILLIEFORS, float *max_difference,
IMSLS_CHI_SQUARED, int n_categories, float *df,

float *chi_squared,
0)

Chapter 7: Tests of Goodness of Fit normality_test •••• 345

Optional Arguments
IMSLS_SHAPIRO_WILK_W, float *shapiro_wilk_w (Output)

Indicates the Shapiro-Wilk W test is to be performed. The Shapiro-Wilk
W statistic is returned in shapiro_wilk_w. Argument
IMSLS_SHAPIRO_WILK_W is the default test.

IMSLS_LILLIEFORS, float *max_difference (Output)
Indicates the Lilliefors test is to be performed. The maximum absolute
difference between the empirical and the theoretical distributions is
returned in max_difference.

IMSLS_CHI_SQUARED, int n_categories (Input),
float *df, float *chi_squared (Output)
Indicates the chi-squared goodness-of-fit test is to be performed.
Argument n_categories is the number of cells into which the
observations are to be tallied. The degrees of freedom for the test are
returned in argument df, and the chi-square statistic is returned in
argument chi_squared.

Description
Three methods are provided for testing normality: the Shapiro-Wilk W test, the
Lilliefors test, and the chi-squared test.

Shapiro-Wilk W Test
The Shapiro-Wilk W test is thought by D�Agostino and Stevens (1986, p. 406) to
be one of the best omnibus tests of normality. The function is based on the
approximations and code given by Royston (1982a, b, c). It can be used in
samples as large as 2,000 or as small as 3. In the Shapiro and Wilk test, W is
given by

W a x x xi i i= −� �b ge j b ge j
2 2/

where x(i) is the i-th largest order statistic and x is the sample mean. Royston
(1982) gives approximations and tabled values that can be used to compute the
coefficients ai, i = 1, …, n, and obtains the significance level of the W statistic.

Lilliefors Test
This function computes Lilliefors test and its p-values for a normal distribution in
which both the mean and variance are estimated. The one-sample, two-sided
Kolmogorov-Smirnov statistic D is first computed. The p-values are then
computed using an analytic approximation given by Dallal and Wilkinson (1986).
Because Dallal and Wilkinson give approximations in the range
(0.01, 0.10) if the computed probability of a greater D is less than 0.01, an
IMSLS_NOTE is issued and the p-value is set to 0.50. Note that because

346 •••• normality_test IMSL C/Stat/Library

parameters are estimated, p-values in Lilliefors test are not the same as in the
Kolmogorov-Smirnov Test.

Observations should not be tied. If tied observations are found, an informational
message is printed. A general reference for the Lilliefors test is Conover (1980).
The original reference for the test for normality is Lilliefors (1967).

Chi-Squared Test
This function computes the chi-squared statistic, its p-value, and the degrees of
freedom of the test. Argument n_categories finds the number of intervals into
which the observations are to be divided. The intervals are equiprobable except
for the first and last interval which are infinite in length.

If more flexibility is desired for the specification of intervals, the same test can be
performed with a call to function imsls_f_chi_squared_test (page 336)
using the optional arguments described for that function.

Examples

Example 1
The following example is taken from Conover (1980, pp. 195, 364). The data
consists of 50 two-digit numbers taken from a telephone book. The W test fails to
reject the null hypothesis of normality at the .05 level of significance.

#include <imsls.h>

void main()
{

int n_observations = 50;
float x[] = {23.0, 36.0, 54.0, 61.0, 73.0, 23.0,

37.0, 54.0, 61.0, 73.0, 24.0, 40.0,
56.0, 62.0, 74.0, 27.0, 42.0, 57.0,
63.0, 75.0, 29.0, 43.0, 57.0, 64.0,
77.0, 31.0, 43.0, 58.0, 65.0, 81.0,
32.0, 44.0, 58.0, 66.0, 87.0, 33.0,
45.0, 58.0, 68.0, 89.0, 33.0, 48.0,
58.0, 68.0, 93.0, 35.0, 48.0, 59.0,
70.0, 97.0};

float p_value;

/* Shapiro-Wilk test */
p_value = imsls_f_normality_test (n_observations, x,

0);
printf ("p-value = %11.4f.\n", p_value);

}

Output
p-value = 0.2309

Chapter 7: Tests of Goodness of Fit normality_test •••• 347

Example 2
The following example uses the same data as the previous example. Here, the
Shapiro-Wilk W statistic is output.

#include <imsls.h>

void main()
{

int n_observations = 50;
float x[] = {23.0, 36.0, 54.0, 61.0, 73.0, 23.0,

37.0, 54.0, 61.0, 73.0, 24.0, 40.0,
56.0, 62.0, 74.0, 27.0, 42.0, 57.0,
63.0, 75.0, 29.0, 43.0, 57.0, 64.0,
77.0, 31.0, 43.0, 58.0, 65.0, 81.0,
32.0, 44.0, 58.0, 66.0, 87.0, 33.0,
45.0, 58.0, 68.0, 89.0, 33.0, 48.0,
58.0, 68.0, 93.0, 35.0, 48.0, 59.0,
70.0, 97.0};

float p_value, shapiro_wilk_w;

/* Shapiro-Wilk test */
p_value = imsls_f_normality_test (n_observations, x,

IMSLS_SHAPIRO_WILK_W,
&shapiro_wilk_w,
0);

printf ("p-value = %11.4f.\n", p_value);
printf ("Shapiro Wilk W statistic = %11.4f.\n",

shapiro_wilk_w);

}

Output
p-value = 0.2309.
Shapiro Wilk W statistic = 0.9642

Warning Errors
IMSLS_ALL_OBS_TIED All observations in �x� are tied.

Fatal Errors
IMSLS_NEED_AT_LEAST_5 All but # elements of �x� are missing. At

least five nonmissing observations are
necessary to continue.

IMSLS_NEG_IN_EXPONENTIAL In testing the exponential distribution, an
invalid element in �x� is found (�x[]� = #).
Negative values are not possible in
exponential distributions.

IMSLS_NO_VARIATION_INPUT There is no variation in the input data. All
nonmissing observations are tied.

348 •••• kolmogorov_one IMSL C/Stat/Library

kolmogorov_one
Performs a Kolmogorov-Smirnov one-sample test for continuous distributions.

Synopsis
#include <imsls.h>

float *imsls_f_kolmogorov_one (float cdf(), int n_observations,
float x[], ..., 0)

The type double function is imsls_d_kolmogorov_one.

Required Arguments

float cdf (float x) (Input)
User-supplied function to compute the cumulative distribution function
(CDF) at a given value. The form is CDF(x), where
x is the value at which cdf is to be evaluated (Input)
and cdf is the value of CDF at x. (Output)

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of size n_observations containing the observations.

Return Value
Pointer to an array of length 3 containing Z, p 1 , and p2 .

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_kolmogorov_one (float cdf(), int n_observations,
float x[],
IMSLS_DIFFERENCES, int **differences,
IMSLS_DIFFERENCES_USER, int differences[]

IMSLS_N_MISSING, int *n_missing,
IMSLS_RETURN_USER, , float test_statistic[]

0)

Optional Arguments
IMSLS_DIFFERENCES, int **differences (Output)

Address of a pointer to the internally allocated array containing
Dn , Dn

+, Dn
-.

IMSLS_DIFFERENCES_USER, int differences[]

Storage for the array differences is provided by the user.
See IMSLS_DIFFERENCES.

Chapter 7: Tests of Goodness of Fit kolmogorov_one •••• 349

IMSLS_N_MISSING, int *n_missing (Ouput)
Number of missing values is returned in *n_missing.

IMSLS_RETURN_USER, float test_statistics[] (Output)
If specified, the Z-score and the p-values for hypothesis test against both
one-sided and two-sided alternatives is stored in array
test_statistics provided by the user.

Description

The routine imsls_f_kolmogorov_one performs a Kolmogorov-Smirnov
goodness-of-fit test in one sample. The hypotheses tested follow:

• = ≠
• ≥ <
• ≤ >

∗ ∗

∗ ∗

∗ ∗

H F x F x H F x F x
H F x F x H F x F x
H F x F x H F x F x

0 1

0 1

0 1

: () () : () ()
: () () : () ()
: () () : () ()

where F is the cumulative distribution function (CDF) of the random variable, and
the theoretical cdf, F* , is specified via the user-supplied function cdf. Let
n = n_observations − n_missing. The test statistics for both one-sided
alternatives

D differencesn
+ = []1

and

D differencesn
− = []2

and the two-sided (Dn = differences[0]) alternative are computed as well as
an asymptotic z-score (differences[3]) and p-values associated with the one-
sided (differences[4]) and two-sided (differences[5]) hypotheses. For
n > 80, asymptotic p-values are used (see Gibbons 1971). For n ≤ 80, exact
one-sided p-values are computed according to a method given by Conover (1980,
page 350). An approximate two-sided test p-value is obtained as twice the one-
sided p-value. The approximation is very close for one-sided p-values less than
0.10 and becomes very bad as the one-sided p-values get larger.

Programming Notes
1. The theoretical CDF is assumed to be continuous. If the CDF is not

continuous, the statistics

Dn
∗

will not be computed correctly.

2. Estimation of parameters in the theoretical CDF from the sample data
will tend to make the p-values associated with the test statistics too
liberal. The empirical CDF will tend to be closer to the theoretical CDF
than it should be.

350 •••• kolmogorov_one IMSL C/Stat/Library

3. No attempt is made to check that all points in the sample are in the
support of the theoretical CDF. If all sample points are not in the support
of the CDF, the null hypothesis must be rejected.

Example
In this example, a random sample of size 100 is generated via routine
imsls_f_random_uniform (Chapter 12) for the uniform (0, 1) distribution. We
want to test the null hypothesis that the cdf is the standard normal distribution
with a mean of 0.5 and a variance equal to the uniform (0, 1) variance (1/12).

#include <imsls.h>

#include <stdio.h>

float cdf(float);

void main()

{

float *statistics=NULL, *diffs = NULL, *x=NULL;

int nobs = 100, nmiss;

imsls_random_seed_set(123457);

x = imsls_f_random_uniform(nobs, 0);

statistics = imsls_f_kolmogorov_one(cdf, nobs, x,

IMSLS_N_MISSING, &nmiss,

IMSLS_DIFFERENCES, &diffs,

0);

printf("D = %8.4f\n", diffs[0]);

printf("D+ = %8.4f\n", diffs[1]);

printf("D- = %8.4f\n", diffs[2]);

printf("Z = %8.4f\n", statistics[0]);

printf("Prob greater D one sided = %8.4f\n", statistics[1]);

printf("Prob greater D two sided = %8.4f\n", statistics[2]);

printf("N missing = %d\n", nmiss);

}

float cdf(float x)

{

float mean = .5, std = .2886751, z;

z = (x-mean)/std;

return(imsls_f_normal_cdf(z));

}

Output

D = 0.1471
D+ = 0.0810
D- = 0.1471

Chapter 7: Tests of Goodness of Fit kolmogorov_two •••• 351

Z = 1.4708
Prob greater D one-sided = 0.0132
Prob greater D two-sided = 0.0264
N missing = 0

kolmogorov_two
Performs a Kolmogorov-Smirnov two-sample test.

Synopsis
#include <imsls.h>

float *imsls_f_kolmogorov_two (int n_observations_x, float x[], int
n_observations_y, float y[], ..., 0)

The type double function is imsls_d_kolmogorov_two.

Required Arguments

int n_observations_x (Input)
Number of observations in sample one.

float x[] (Input)
Array of size n_observations_x containing the observations from
sample one.

int n_observations_y (Input)
Number of observations in sample two.

float y[] (Input)
Array of size n_observations_y containing the observations from
sample two.

Return Value
Pointer to an array of length 3 containing Z, p 1 , and p 2 .

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_kolmogorov_two (int n_observations_x, float x[], int
n_observations_y, float y[], ...
IMSLS_DIFFERENCES, int **differences,
IMSLS_DIFFERENCES_USER, int differences[],

IMSLS_N_MISSING_X, int *xmissing,
IMSLS_N_MISSING_Y, int *ymissing,
IMSLS_RETURN_USER, float test_statistic[],

0)

352 •••• kolmogorov_two IMSL C/Stat/Library

Optional Arguments
IMSLS_DIFFERENCES, int **differences (Output)

Address of a pointer to the internally allocated array containing
Dn , Dn

+, Dn
-.

IMSLS_DIFFERENCES_USER, int differences[] (Output)
Storage for array differences is provided by the user.
See IMSLS_DIFFERENCES.

IMSLS_N_MISSING_X, int *xmissing (Ouput)
Number of missing values in the x sample is returned in *xmissing.

IMSLS_N_MISSING_Y, int *ymissing (Ouput)
Number of missing values in the y sample is returned in *ymissing.

IMSLS_RETURN_USER, float test_statistics[] (Output)
If specified, the Z-score and the p-values for hypothesis test against both
one-sided and two-sided alternatives is stored in array
test_statistics provided by the user.

Description

Function imsls_f_kolmogorov_two computes Kolmogorov-Smirnov two-
sample test statistics for testing that two continuous cumulative distribution
functions (CDF�s) are identical based upon two random samples. One- or two-
sided alternatives are allowed. Exact p-values are computed for the two-sided test
when n_observations_x * n_observations_y is less than 104.

Let Fn(x) denote the empirical CDF in the X sample, let Gm(y) denote the
empirical CDF in the Y sample, where n = n_observations_x −
n_missing_x and m = n_observations_y − n_missing_y, and let the
corresponding population distribution functions be denoted by F(x) and G(y),
respectively. Then, the hypotheses tested by imsls_f_kolmogorov_two are as
follows:

• = ≠
• ≤ >
• ≥ <

H F x G x H F x G x
H F x G x H F x G x
H F x G x H F x G x

0 1

0 1

0 1

: () () : () ()
: () () : () ()
: () () : () ()

The test statistics are given as follows:

D D D

D F x G x
D x F x

mn mn mn

mn x n m

mn x m n

=

= −
= −

+ −

+

−

max diffs[0]

max (diffs[1]
max (G diffs[2]

, ()

() ()) ()
() ()) ()

e j

Asymptotically, the distribution of the statistic

Z D m n m nmn� �() / (*)

Chapter 7: Tests of Goodness of Fit kolmogorov_two •••• 353

(returned in test_statistics[0]) converges to a distribution given by
Smirnov (1939).

Exact probabilities for the two-sided test are computed when n*m is less than or
equal to 10�, according to an algorithm given by Kim and Jennrich (1973). When
n*m is greater than 10�, the very good approximations given by Kim and Jennrich
are used to obtain the two-sided p-values. The one-sided probability is taken as
one half the two-sided probability. This is a very good approximation when the
p-value is small (say, less than 0.10) and not very good for large p-values.

Example
The following example illustrates the imsls_f_kolmogorov_two routine with
two randomly generated samples from a uniform(0,1) distribution. Since the two
theoretical distributions are identical, we would not expect to reject the null
hypothesis.

#include <imsls.h>

#include <stdio.h>

void main()

{

float *statistics=NULL, *diffs = NULL, *x=NULL, *y=NULL;

int nobsx = 100, nobsy = 60, nmissx, nmissy;

imsls_random_seed_set(123457);

x = imsls_f_random_uniform(nobsx, 0);

y = imsls_f_random_uniform(nobsy, 0);

statistics = imsls_f_kolmogorov_two(nobsx, x, nobsy, y,

IMSLS_N_MISSING_X, &nmissx,

IMSLS_N_MISSING_Y, &nmissy,

IMSLS_DIFFERENCES, &diffs,

0);

printf("D = %8.4f\n", diffs[0]);

printf("D+ = %8.4f\n", diffs[1]);

printf("D- = %8.4f\n", diffs[2]);

printf("Z = %8.4f\n", statistics[0]);

printf("Prob greater D one sided = %8.4f\n", statistics[1]);

printf("Prob greater D two sided = %8.4f\n", statistics[2]);

printf("Missing X = %d\n", nmissx);

printf("Missing Y = %d\n", nmissy);

}

354 •••• multivar_normality_test IMSL C/Stat/Library

Output
D = 0.1800

D+ = 0.1800

D- = 0.0100

Z = 1.1023

Prob greater D one sided = 0.0720

Prob greater D two sided = 0.1440

Missing X = 0

Missing Y = 0

multivar_normality_test
Computes Mardia�s multivariate measures of skewness and kurtosis and tests for
multivariate normality.

Synopsis
#include <imsls.h>

float *imsls_f_multivar_normality_test (int n_observations,
int n_variables, float x[], ..., 0)

The type double function is imsls_d_multivar_normality_test.

Required Arguments

int n_observations (Input)
Number of observations (number of rows of data) x.

int n_variables (Input)
Dimenionality of the multivariate space for which the skewness and
kurtosis are to be computed. Number of variables in x.

float x[] (Input)
Array of size n_observations by n_variables containing the data.

Return Value
A pointer to an array of dimension 13 containing output statistics

I stat[I]

0 estimated skewness

1 expected skewness assuming a multivariate normal distribution

2 asymptotic chi-squared statistic assuming a multivariate normal
distribution

3 probability of a greater chi-squared

Chapter 7: Tests of Goodness of Fit multivar_normality_test •••• 355

4 Mardia and Foster's standard normal score for skewness

5 estimated kurtosis

6 expected kurtosis assuming a multivariate normal distribution

7 asymptotic standard error of the estimated kurtosis

8 standard normal score obtained from stat[5] through stat[7]

9 p-value corresponding to stat[8]

10 Mardia and Foster's standard normal score for kurtosis

11 Mardia's SW statistic based upon stat[4] and stat[10]

12 p-value for stat[11]

Synopsis with Optional Arguments
#include <imsls.h>

float imsls_f_multivar_normality_test (int n_observations_x, int
n_variables, float x[], ...
IMSLS_FREQUENCIES, float frequencies[],

IMSLS_WEIGHTS, float weights[],

IMSLS_SUM_FREQ, int *sum_frequencies,

IMSLS_SUM_WEIGHTS, float *sum_weights,

IMSLS_N_ROWS_MISSING, int *nrmiss,

IMSLS_MEANS, float **means,

IMSLS_MEANS_USER, float means[],

IMSLS_R, float **R_matrix,

IMSLS_R_USER, float R_matrix[],

IMSLS_RETURN_USER, float test_statistics[],

0)

Optional Arguments
IMSLS_FREQUENCIES, float frequencies[] (Input)

Array of size n_rows containing the frequencies. Frequencies must be
integer valued. Default assumes all frequencies equal one.

IMSLS_WEIGHTS, float weights[] (Input)
Array of size n_rows containing the weights. Weights must be greater
than non-negative. Default assumes all weights equal one.

IMSLS_SUM_FREQ, int *sum_frequencies (Output)
The sum of the frequencies of all observations used in the computations.

356 •••• multivar_normality_test IMSL C/Stat/Library

IMSLS_SUM_WEIGHTS, float *weights[] (Output)
The sum of the weights times the frequencies for all observations used in
the computations.

IMSLS_N_ROWS_MISSING, int **nrmiss (Output)
Number of rows of data in x[] containing any missing values (NaN).

IMSLS_MEANS, float **means (Output)
The address of a pointer to an array of length n_variables

containing the sample means.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by user. See IMSLS_MEANS.

IMSLS_R, float **R_matrix (Output)
The address of a pointer to an n_variables by n_variables upper
triangular matrix containing the Cholesky RTR factorization of the
covariance matrix.

IMSLS_R_USER, float R_matrix[] (Output)
Storage for array R_matrix is provided by user. See IMSLS_R.

IMSLS_RETURN_USER, float stat[] (Output)
User supplied array of dimension 13 containing the estimates and their
associated test statistics.

Description
Function imsls_f_multivar_normality_test computes Mardia�s (1970)
measures b��p and b��p of multivariate skewness and kurtosis, respectfully, for
p = n_variables. These measures are then used in computing tests for
multivariate normality. Three test statistics, one based upon b��p alone, one based
upon b��p alone, and an omnibus test statistic formed by combining normal scores
obtained from b��p and b��p are computed. On the order of np�, operations are
required in computing b��p when the method of Isogai (1983) is used, where
n = n_observations. On the order of np�, operations are required in computing
b��p.

Let

d w w x x S x xij i j i
T

j= − −−() ()1

where

S w f x x x x
f

x
w f

w f x

i
n

i i i i
T

i
n

i

i
n

i i
i i i

i

n

=
� − −

�

=
�

=

=

= =
�

1

1

1 1

1

()()

Chapter 7: Tests of Goodness of Fit multivar_normality_test •••• 357

fi is the frequency of the i-th observation, and wi is the weight for this
observation. (Weights wi are defined such that xi is distributed according to a
multivariate normal, N(µ, Σ/wi) distribution, where Σ is the covariance matrix.)
Mardia�s multivariate skewness statistic is defined as:

b
n

f f dp i j ij
j

n

i

n

1 2
3

11

1
, =

==
��

while Mardia�s kurtosis is given as:

b
n

f dp i ii
i

n

2
2

1

1
, =

=
�

Both measures are invariant under the affine (matrix) transformation AX + D,
and reduce to the univariate measures when p = n_variables = 1. Using
formulas given in Mardia and Foster (1983), the approximate expected value,
asymptotic standard error, and asymptotic p-value for b��p, and the approximate
expected value, an asymptotic chi-squared statistic, and p-value for the b��p
statistic are computed. These statistics are all computed under the null hypothesis
of a multivariate normal distribution. In addition, standard normal scores W�(b��p)
and W�(b��p) (different from but similar to the asymptotic normal and chi-squared
statistics above) are computed. These scores are combined into an asymptotic chi-
squared statistic with two degrees of freedom:

S W b W bW p p= +1
2

1 2
2

2, ,d i d i
This chi-squared statistic may be used to test for multivariate normality.
A p-value for the chi-squared statistic is also computed.

Example
In the following example, 150 observations from a 5 dimensional standard normal
distribution are generated via routine imsls_f_random_normal (Chapter 12).
The skewness and kurtosis statistics are then computed for these observations.

#include <imsls.h>

#include <stdio.h>

void main()

{

float *x, swt, *xmean, *r, *stats;

int nobs = 150, ncol = 5, nvar = 5, izero = 0, ni, nrmiss;

imsls_random_seed_set(123457);

x = imsls_f_random_normal(nobs*nvar, 0);

stats = imsls_f_multivar_normality_test(nobs, nvar, x,

IMSLS_SUM_FREQ, &ni,

358 •••• randomness_test IMSL C/Stat/Library

IMSLS_SUM_WEIGHTS, &swt,

IMSLS_N_ROWS_MISSING, &nrmiss,

IMSLS_R, &r,IMSLS_MEANS, &xmean,
0);

printf("Sum of frequencies = %d\nSum of the weights =%8.3f\nNumber
rows missing = %3d\n", ni, swt, nrmiss);

imsls_f_write_matrix("stat", 13, 1, stats,

IMSLS_ROW_NUMBER_ZERO,

0)

}

Output
Sum of frequencies = 150
Sum of the weights = 150.000
Number rows missing = 0

stat
0 0.73
1 1.36
2 18.62
3 0.99
4 -2.37
5 32.67
6 34.54
7 1.27
8 -1.48
9 0.14
10 1.62
11 8.24
12 0.02

means
1 2 3 4 5

0.02623 0.09238 0.06536 0.09819 0.05639

R
1 2 3 4 5

1 1.033 -0.084 -0.065 0.108 -0.067
2 0.000 1.049 -0.097 -0.042 -0.021
3 0.000 0.000 1.063 0.006 -0.145
4 0.000 0.000 0.000 0.942 -0.084
5 0.000 0.000 0.000 0.000 0.949

randomness_test
Performs a test for randomness.

Synopsis
#include <imsls.h>

Chapter 7: Tests of Goodness of Fit randomness_test •••• 359

float imsls_f_randomness_test (int n_observations, float x[],
int n_run..., 0)

The type double function is imsls_d_randomness_test.

Required Arguments

int n_observations (Input)
Number of observations in x.

float x[] (Input)
Array of size n_observations containing the data.

int n_run (Input)
Length of longest run for which tabulation is desired. For optional
arguments IMSLS_PAIRS, IMSLS_DSQUARE, and IMSLS_DCUBE,
n_run stands for the number of equiprobable cells into which the
statistics are to be tabulated.

Return Value

The probability of a larger chi-squared statistic for testing the null hypothesis of a
uniform distribution.

Synopsis with Optional Arguments

#include <imsls.h>

float imsls_f_randomness_test (int n_observations_x, float x[], int
n_run, ...
IMSLS_RUNS, float **runs_count, float **covariances,
IMSLS_RUNS_USER, float runs_count[], float covariances[],

IMSLS_PAIRS, int pairs_lag, float **pairs_count,
IMSLS_PAIRS_USER, int pairs_lag, float pairs_count[],

IMSLS_DSQUARE, float **dsquare_count,
IMSLS_DSQUARE_USER, float dsquare_count[],

IMSLS_DCUBE, float **dcube_count,
IMSLS_DCUBE_USER, float dcube_count[],
IMSLS_RUNS_EXPECT, float **runs_expect,
IMSLS_RUNS_EXPECT_USER, float runs_expect[],

IMSLS_EXPECT, float *expect,
IMSLS_CHI_SQUARED, float *chi_squared,
IMSLS_DF, float *df,
IMSLS_RETURN USER, float *pvalue,
 0)

360 •••• randomness_test IMSL C/Stat/Library

Optional Arguments
IMSLS_RUNS, float **runs_count, float **covariances, (Output) or
IMSLS_PAIRS, int pairs_lag (Input), float **pairs_count,(Output) or
IMSLS_DSQUARE, float **dsquare_count, (Output) or
IMSLS_DCUBE, float **dcube_count, (Output)

IMSLS_RUNS indicates the runs test is to be performed. Array of
length n_run containing the counts of the number of runs up of each
length is returned in *runs_counts. n_run by n_observations
matrix containing the variances and covariances of the counts is returned
in *covariances. IMSLS_RUNS is the default test, however, to return
the counts and covariances IMSLS_RUNS argument must be used.
IMSLS_PAIRS indicates the pairs test is to be performed. The lag to be
used in computing the pairs statistic is stored in pairs_lag. Pairs
(X[i], X[i + pairs_lag]) for i = 0,� , N – pairs_lag -1

are tabulated, where N is the total sample size. n_run by n_run matrix
containing the count of the number of pairs in each cell is returned in
pairs_user.
IMSLS_DSQUARE indicates the d2 test is to be performed.
**dsquare_counts is an address of a pointer to an internally allocated
array of length n_run containing the tabulations for the d2 test.
IMSLS_DCUBE indicates the triplets test is to be performed.
**dcube_counts is an address of a pointer to an internally allocated
array of length n_run by n_run by n_run containing the tabulations for
the triplets test.

IMSLS_RUNS_USER, float runs_counts[], float covariances[] (Output)
Storage for runs_counts and covariances is provided by the user.
See IMSLS_RUNS.

IMSLS_PAIRS_USER, int pairs_lag, float pairs_counts[] (Output)
Storage for pairs_lag and pairs_counts is provided by the user.
See IMSLS_PAIRS.

IMSLS_DSQUARE_USER, float dsquare_count[] (Output)
Storage for dsquare_count is provided by the user.
See IMSLS_DSQUARE.

IMSLS_DCUBE_USER, float dcube_count[] (Output)
Storage for dcube_count is provided by the user. See IMSLS_DCUBE.

IMSLS_CHI_SQUARED, float *chi_squared (Output)
Chi-squared statistic for testing the null hypothesis of a uniform
distribution.

IMSLS_DF, float *df (Output)
Degrees of freedom for chi-squared.

Chapter 7: Tests of Goodness of Fit randomness_test •••• 361

IMSLS_RETURN_USER, float *pvalue (Output)
If specified, pvalue returns the probability of a larger chi-squared
statistic for testing the null hypothesis of a uniform distribution.

If IMSLS_RUNS is specified:
IMSLS_RUNS_EXPECT, float **runs_expect (Output)

The address of a pointer to an internally allocated array of length
n_run containing the expected number of runs of each length.

IMSLS_RUNS_EXPECT_USER, float runs_expect[] (Output)
Storage for runs_expect is provided by the user.
See IMSLS_RUNS_EXPECT.

If IMSLS_PAIRS, IMSLS_DSQUARE, or IMSLS_DCUBE is specified:
IMSLS_EXPECT, float **expect (Output)

Expected number of counts for each cell. This argument is optional only
if one of IMSLS_PAIRS, IMSLS_DSQUARE, or IMSLS_DCUBE is used.

Description

Runs Up Test

Function imsls_f_randomness_test performs one of four different tests for
randomness. Optional argument IMSLS_RUNS computes statistics for the runs up
test. Runs tests are used to test for cyclical trend in sequences of random
numbers. If the runs down test is desired, each observation should first be
multiplied by −1 to change its sign, and IMSLS_RUNS called with the modified
vector of observations.

IMSLS_RUNS first tallies the number of runs up (increasing sequences) of each
desired length. For i = 1, �, r − 1, where r = n_run, runs_count[i] contains the
number of runs of length i. runs_count[n_run] contains the number of runs of
length n_run or greater. As an example of how runs are counted, the sequence
(1, 2, 3, 1) contains 1 run up of length 3, and one run up of length 1.

After tallying the number of runs up of each length, IMSLS_RUNS computes the
expected values and the covariances of the counts according to methods given by
Knuth (1981, pages 65−67). Let R denote a vector of length n_run containing
the number of runs of each length so that the i-th element of R, ri, contains the
count of the runs of length i. Let ΣR denote the covariance matrix of R under the
null hypothesis of randomness, and let µR denote the vector of expected values
for R under this null hypothesis, then an approximate chi-squared statistic with
n_run degrees of freedom is given as

χ µ µ2 1= − � −−() ()R RR
T

R R

In general, the larger the value of each element of µR, the better the chi-squared
approximation.

362 •••• randomness_test IMSL C/Stat/Library

Pairs Test
IMSLS_PAIRS computes the pairs test (or the Good�s serial test) on a
hypothesized sequence of uniform (0,1) pseudorandom numbers. The test
proceeds as follows. Subsequent pairs (X(i), X(i + pairs_lag)) are tallied into a
k × k matrix, where k = n_run. In this tally, element (j, m) of the matrix is
incremented, where

j kX i

m kX i l

= +

= + +

()

()

1

1

where l = pairs_lag, and the notation � � represents the greatest integer
function, �Y� is the greatest integer less than or equal to Y, where Y is a real
number. If l = 1, then i = 1, 3, 5, �, n − 1. If l > 1, then i = 1, 2, 3, …, n − l,
where n is the total number of pseudorandom numbers input on the current
invocation of IMSLS_PAIRS (i.e., n = n_observations).

Given the tally matrix in pairs_count, chi-squared is computed as

χ2
2

0

1

=
−

=

−

�
()

,

o e
e

ij

i j

k

where e = �oij/k�, and oij is the observed count in cell (i, j)
(oij = pairs_count(i, j)).

Because pair statistics for the trailing observations are not tallied on any call, the
user should call IMSLS_PAIRS with n_observations as large as possible. For
pairs_lag < 20 and n_observations = 2000, little power is lost.

d 2 Test
IMSLS_DSQAR computes the d � test for succeeding quadruples of hypothesized
pseudorandom uniform (0, 1) deviates. The d � test is performed as follows. Let
X�, X�, X�, and X� denote four pseudorandom uniform deviates, and consider

D� = (X� −X�)� + (X� − X�)�

The probability distribution of D� is given as

Pr(D d d d d2 2 2
3 48

3 2
≤ = − +) π

when D� ≤ 1, where π denotes the value of pi. If D� > 1, this probability is given
as

Chapter 7: Tests of Goodness of Fit randomness_test •••• 363

Pr(D d d d

d d d d

d

2 2 2 2

2
32 4

2
2

1
3

2 4 1

8 1
3 2

4
1 1

1

≤ = + − + −

+ − − −
−

F

H

GGGG

I

K

JJJJ

) ()

() arctan

π

See Gruenberger and Mark (1951) for a derivation of this distribution.

For each succeeding set of 4 pseudorandom uniform numbers input in X, d � and
the cumulative probability of d � (Pr(D� ≤ d �)) are computed. The resulting
probability is tallied into one of k = n_run equally spaced intervals.

Let n denote the number of sets of four random numbers input (n = the total
number of observations/4). Then, under the null hypothesis that the numbers input
are random uniform (0, 1) numbers, the expected value for each element in
dsquare_count is e = n/k. An approximate chi-squared statistic is computed as

χ2
2

0

1

=
−

=

−

�
()o e

e
i

i

k

where oi = dsquare_count(i) is the observed count. Thus, χ� has k − 1 degrees
of freedom, and the null hypothesis of pseudorandom uniform (0, 1) deviates is
rejected if χ� is too large. As n increases, the chi-squared approximation becomes
better. A useful generalization is that e > 5 yields a good chi-squared
approximation.

Triplets Test
IMSLS_DCUBE computes the triplets test on a sequence of hypothesized
pseudorandom uniform(0, 1) deviates. The triplets test is computed as follows:

Each set of three successive deviates, X
�
, X

�
, and X

�
, is tallied into one of m� equal

sized cubes, where m = n_run. Let i = [mX�] + 1, j = [mX�] + 1, and k = [mX
�
] + 1.

For the triplet (X
�
, X

�
, X

�
), dcube_count(i, j, k) is incremented.

Under the null hypothesis of pseudorandom uniform(0, 1) deviates, the m� cells
are equally probable and each has expected value e = n/m�, where n is the number
of triplets tallied. An approximate chi-squared statistic is computed as

χ2
2

0

1

=
−

=

−

�
()

, ,

o e
e

ijk

i j k

k

where oijk = dcube_count(i, j, k).

The computed chi-squared has m� − 1 degrees of freedom, and the null hypothesis
of pseudorandom uniform (0, 1) deviates is rejected if χ� is too large.

364 •••• randomness_test IMSL C/Stat/Library

Example 1
The following example illustrates the use of the runs test on 10� pseudo-random
uniform deviates. In the example, 2000 deviates are generated for each call to
IMSLS_RUNS. Since the probability of a larger chi-squared statistic is 0.1872,
there is no strong evidence to support rejection of this null hypothesis of
randomness.

#include <imsls.h>

#include <stdio.h>

void main()

{

int nran = 10000, n_run = 6;

char *fmt = "%8.1f";

float *x, pvalue, *runs_counts, *runs_expect, chisq, df;

imsls_random_seed_set(123457);

x = imsls_f_random_uniform(nran, 0);

pvalue = imsls_f_randomness_test(nran, x, n_run,

IMSLS_CHI_SQUARED, &chisq,

IMSLS_DF, &df,

IMSLS_RUNS_EXPECT, &runs_expect,

IMSLS_RUNS, &runs_counts, &covariances,

0);

imsls_f_write_matrix("runs_counts", 1, n_run, runs_counts, 0);

imsls_f_write_matrix("runs_expect", 1, n_run, runs_expect,

IMSLS_WRITE_FORMAT, fmt,

0);

imsls_f_write_matrix("covariances", n_run, n_run, covariances,

IMSLS_WRITE_FORMAT, fmt,

0);

printf("chisq = %f\n", chisq);

printf("df = %f\n", df);

printf("pvalue = %f\n", pvalue);

}

Output
runs_count

1 2 3 4 5 6
1709.0 2046.0 953.0 260.0 55.0 4.0

runs_expect
1 2 3 4 5 6

1667.3 2083.4 916.5 263.8 57.5 11.9

Chapter 7: Tests of Goodness of Fit randomness_test •••• 365

covariances
1 2 3 4 5 6

1 1278.2 -194.6 -148.9 -71.6 -22.9 -6.7
2 -194.6 1410.1 -490.6 -197.2 -55.2 -14.4
3 -148.9 -490.6 601.4 -117.4 -31.2 -7.8
4 -71.6 -197.2 -117.4 222.1 -10.8 -2.6
5 -22.9 -55.2 -31.2 -10.8 54.8 -0.6
6 -6.7 -14.4 -7.8 -2.6 -0.6 11.7
chisq = 8.76514
df = 6.00000
pvalue = 0.187225

Example 2
The following example illustrates the calculations of the IMSLS_PAIRS statistics
when a random sample of size 10� is used and the pairs_lag is 1. The results
are not significant. IMSL routine imsls_f_random_uniform (Chapter 12) is
used in obtaining the pseudorandom deviates.

#include <imsls.h>

#include <stdio.h>

void main()

{

int nran = 10000, n_run = 10;

float *x, pvalue, *pairs_counts, expect, chisq, df;

imsls_random_seed_set(123467);

x = imsls_f_random_uniform(nran, 0);

pvalue = imsls_f_randomness_test(nran, x, n_run,

IMSLS_CHI_SQUARED, &chisq,

IMSLS_DF, &df,

IMSLS_EXPECT, &expect,

IMSLS_PAIRS, 5, &pairs_counts,

0);

imsls_f_write_matrix("pairs_counts", n_run, n_run, pairs_counts, 0);

printf("expect = %8.2f\n", expect);

printf("chisq = %8.2f\n", chisq);

printf("df = %8.2f\n", df);

printf("pvalue = %10.4f\n", pvalue);

}

Output
pairs_counts

1 2 3 4 5 6 7 8 9 10
1 112 82 95 118 103 103 113 84 90 74
2 104 106 109 108 101 98 102 92 109 88
3 88 111 86 106 112 79 103 105 106 101
4 91 110 108 92 88 108 113 93 105 114

366 •••• randomness_test IMSL C/Stat/Library

5 104 105 103 104 101 94 96 87 93 104
6 98 104 103 104 79 89 92 104 92 100
7 103 91 97 101 116 83 118 118 106 99
8 105 105 111 91 93 82 100 104 110 89
9 92 102 82 101 94 128 102 110 125 98

10 79 99 103 98 104 101 93 93 98 105

expect = 99.95
chisq = 104.86
df = 99.00
pvalue = 0.3242

Example 3
In the following example, 2000 observations generated via IMSL routine
imsls_f_random_uniform (Chapter 12) are input to IMSLS_DSQAR in one
call. In the example, the null hypothesis of a uniform distribution is not rejected.

#include <imsls.h>

#include <stdio.h>

void main()

{

int nran = 2000, n_run = 6;

float *x, pvalue, *dsquare_counts, *covariances, expect, chisq, df;

imsls_random_seed_set(123457);

x = imsls_f_random_uniform(nran, 0);

pvalue = imsls_f_randomness_test(nran, x, n_run,

IMSLS_CHI_SQUARED, &chisq,

IMSLS_DF, &df,

IMSLS_EXPECT, &expect,

IMSLS_DSQUARE, &dsquare_counts,

0);

imsls_f_write_matrix("dsquare_counts", 1, n_run, dsquare_counts, 0);

printf("expect = %10.4f\n", expect);

printf("chisq = %10.4f\n", chisq);

printf("df = %8.2f\n", df);

printf("pvalue = %10.4f\n", pvalue);

}

Output
dsquare_counts

1 2 3 4 5 6
87 84 78 76 92 83

expect = 83.3333
chisq = 2.0560
df = 5.00
pvalue = 0.8413

Chapter 7: Tests of Goodness of Fit randomness_test •••• 367

Example 4
In the following example, 2001 deviates generated by IMSL routine
imsls_f_random_uniform (Chapter 12) are input to IMSLS_DCUBE, and
tabulated in 27 equally sized cubes. In the example, the null hypothesis is not
rejected.

#include <imsls.h>

#include <stdio.h>

void main()

{

int nran = 2001, n_run = 3;

float *x, pvalue, *dcube_counts, expect, chisq, df;

imsls_random_seed_set(123457);

x = imsls_f_random_uniform(nran, 0);

pvalue = imsls_f_randomness_test(nran, x, n_run,

IMSLS_CHI_SQUARED, &chisq,

IMSLS_DF, &df,

IMSLS_EXPECT, &expect,

IMSLS_DCUBE, &dcube_counts,

0);

imsls_f_write_matrix("dcube_counts", n_run, n_run, dcube_counts, 0);

imsls_f_write_matrix("dcube_counts", n_run, n_run,
&dcube_counts[n_run*n_run], 0);

imsls_f_write_matrix("dcube_counts", n_run, n_run,
&dcube_counts[2*n_run*n_run], 0);

printf("expect = %10.4f\n", expect);

printf("chisq = %10.4f\n", chisq);

printf("df = %8.2f\n", df);

printf("pvalue = %10.4f\n", pvalue);

}

Output
dcube_counts

1 2 3

1 26 27 24

2 20 17 32

3 30 18 21

dcube_counts

1 2 3

1 20 16 26

2 22 22 27

368 •••• randomness_test IMSL C/Stat/Library

3 30 24 26

dcube_counts

1 2 3

1 28 30 22

2 23 24 22

3 33 30 27

expect = 24.7037

chisq = 21.7631

df = 26.0000

pvalue = 0.701586

Chapter 8: Time Series and Forecasting Routines •••• 369

Chapter 8: Time Series and
Forecasting

Routines
ARIMA Models
Computes least-squares or method of moments estimates
of parameters .. arma 371
Computes forecasts and
their associated probability limits.............................. arma_forecast 381
Performs differencing on a time seriesdifference 386
Performs a Box-Cox transformation..................box_cox_transform 390
Sample autocorrelation function...............................autocorrelation 395
Sample partial autocorrelation function........ partial_autocorrelation 399
Lack-of-fit test based on the
corrleation function .. lack_of_fit 402
Computes estimates of the parameters of
a GARCH(p,q) model ..garch 405
Performs Kalman filtering and evaluates the likelihood
function for the state-space modelkalman 410

Usage Notes
The routines in this chapter assume the time series does not contain any missing
observations. If missing values are present, they should be set to NaN
(see the routine imsls_f_machine, Chapter 14), and the routine will return an
appropriate error message. To enable fitting of the model, the missing values
must be replaced by appropriate estimates.

General Methodology
A major component of the model identification step concerns determining
if a given time series is stationary. The sample correlation functions
computed by routines imsls_f_autocorrelation (page 395), and
imsls_f_partial_autocorrelation (page 399) may be used to diagnose
the presence of nonstationarity in the data, as well as to indicate the type of

370 •••• Usage Notes IMSL C/Stat/Library

transformation required to induce stationarity. The family of power
transformations provided by routine imsls_f_box_cox_transform (page
390) coupled with the ability to difference the transformed data using routine
imsls_f_difference (page 386) affords a convenient method of transforming
a wide class of nonstationary time series to stationarity.

The �raw� data, transformed data, and sample correlation functions also provide
insight into the nature of the underlying model. Typically, this information is
displayed in graphical form via time series plots, plots of the lagged data, and
various correlation function plots.

The observed time series may also be compared with time series generated from
various theoretical models to help identify possible candidates for model fitting.
The routine imsls_f_random_arma (Chapter 12) may be used to generate a
time series according to a specified autoregressive moving average model.

Time Domain Methodology
Once the data are transformed to stationarity, a tentative model in the time
domain is often proposed and parameter estimation, diagnostic checking and
forecasting are performed.

ARIMA Model (Autoregressive Integrated Moving Average)
A small, yet comprehensive, class of stationary time-series models consists of the
nonseasonal ARMA processes defined by

φ(B) (Wt − µ) = θ(B)At, t ∈ Z

where Z = {..., −2, −1, 0, 1, 2, ...} denotes the set of integers, B is the backward
shift operator defined by BkWt = Wt-k, µ is the mean of Wt, and the following
equations are true:

φ(B) = 1 − φ1B − φ2B2 − ... − φpBp, p ≥ 0

θ(B) = 1 − θ1B − θ2B2 − ... − θqBq, q ≥ 0

The model is of order (p, q) and is referred to as an ARMA (p, q) model.

An equivalent version of the ARMA (p, q) model is given by

φ(B) Wt = θ0 + θ(B)At, t ∈ Z

where θ0 is an overall constant defined by the following:

θ µ φ0
1

1= −
F
HG

I
KJ=

� i
i

p

See Box and Jenkins (1976, pp. 92−93) for a discussion of the meaning and
usefulness of the overall constant.

Chapter 8: Time Series and Forecasting arma •••• 371

If the �raw� data, {Zt}, are homogeneous and nonstationary, then differencing
using imsls_f_difference (page 386) induces stationarity, and the model is
called ARIMA (AutoRegressive Integrated Moving Average). Parameter
estimation is performed on the stationary time series Wt, = ∇ dZt , where
∇ d = (1 − B)d is the backward difference operator with period 1 and order d,
d > 0.

Typically, the method of moments includes argument IMSLS_METHOD_OF_MOMENTS
in a call to function imsls_f_arma (page 371) for preliminary parameter estimates.
These estimates can be used as initial values into the least-squares procedure by
including argument IMSLS_LEAST_SQUARES in a call to function imsls_f_arma.
Other initial estimates provided by the user can be used. The least-squares procedure
can be used to compute conditional or unconditional least-squares estimates of the
parameters, depending on the choice of the backcasting length. The parameter
estimates from either the method of moments or least-squares procedures can be
input to function imsls_f_arma_forecast (page 381) through the arma_info
structure. The functions for preliminary parameter estimation, least-squares
parameter estimation, and forecasting follow the approach of Box and Jenkins
(1976, Programs 2−4, pp. 498−509).

arma
Computes least-square estimates of parameters for an ARMA model.

Synopsis
#include <imsls.h>

float *imsls_f_arma (int n_observations, float z[], int p, int q, ...,
0)

The type double function is imsls_d_arma.

Required Arguments

int n_observations (Input)
Number of observations.

float z[] (Input)
Array of length n_observations containing the observations.

int p (Input)
Number of autoregressive parameters.

int q (Input)
Number of moving average parameters.

372 •••• arma IMSL C/Stat/Library

Return Value
Pointer to an array of length 1 + p + q with the estimated constant, AR, and MA
parameters. If IMSLS_NO_CONSTANT is specified, the 0-th element of this array is
0.0.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_arma (int n_observations, float z[], int p, int q,
IMSLS_NO_CONSTANT, or
IMSLS_CONSTANT,
IMSLS_AR_LAGS, int ar_lags[],
IMSLS_MA_LAGS, int ma_lags[],
IMSLS_METHOD_OF_MOMENTS, or
IMSLS_LEAST_SQUARES,
IMSLS_BACKCASTING, int length, float tolerance,
IMSLS_CONVERGENCE_TOLERANCE,

float convergence_tolerance,
IMSLS_RELATIVE_ERROR, float relative_error,
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_MEAN_ESTIMATE, float *z_mean,
IMSLS_INITIAL_ESTIMATES, float ar[], float ma[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_PARAM_EST_COV, float **param_est_cov,
IMSLS_PARAM_EST_COV_USER, float param_est_cov[],
IMSLS_AUTOCOV, float **autocov,
IMSLS_AUTOCOV_USER, float autocov[],
IMSLS_SS_RESIDUAL, float *ss_residual,
IMSLS_RETURN_USER, float *constant, float ar[], float ma[],
IMSLS_ARMA_INFO, Imsls_f_arma **arma_info,
0)

Optional Arguments
IMSLS_NO_CONSTANT, or
IMSLS_CONSTANT

If IMSLS_NO_CONSTANT is specified, the time series is not centered
about its mean, w_mean. If IMSLS_CONSTANT, the default, is specified,
the time series is centered about its mean.

IMSLS_AR_LAGS, int ar_lags[] (Input)
Array of length p containing the order of the autoregressive parameters.
The elements of ar_lags must be greater than or equal to 1.
Default: ar_lags = [1, 2, ..., p]

IMSLS_MA_LAGS, int ma_lags[] (Input)
Array of length q containing the order of the moving average

Chapter 8: Time Series and Forecasting arma •••• 373

parameters. The ma_lags elements must be greater than or equal to 1.
Default: ma_lags = [1, 2, ..., q]

IMSLS_METHOD_OF_MOMENTS, or
IMSLS_LEAST_SQUARES

If IMSLS_METHOD_OF_MOMENTS is specified, the autoregressive and
moving average parameters are estimated by a method of moments
procedure. If IMSLS_LEAST_SQUARES is specified, the autoregressive
and moving average parameters are estimated by a least-squares
procedure.

IMSLS_BACKCASTING, int length, float tolerance (Input)
If IMSLS_BACKCASTING is specified, length is the maximum length of
backcasting and must be greater than or equal to 0. Argument
tolerance is the tolerance level used to determine convergence of the
backcast algorithm. Typically, tolerance is set to a fraction of an
estimate of the standard deviation of the time series.
Default: length = 10; tolerance = 0.01 × standard deviation of z

IMSLS_CONVERGENCE_TOLERANCE, float convergence_tolerance (Input)
Tolerance level used to determine convergence of the nonlinear least-
squares algorithm. Argument convergence_tolerance represents the
minimum relative decrease in sum of squares between two iterations
required to determine convergence. Hence, convergence_tolerance
must be greater than or equal to 0. The default value is max
{10-10, eps2/3} for single precision and max {10-20, eps2/3} for double
precision, where eps = imsls_f_machine(4) for single precision and
eps = imsls_d_machine(4) for double precision.

IMSLS_RELATIVE_ERROR, float relative_error (Input)
Stopping criterion for use in the nonlinear equation solver used in both
the method of moments and least-squares algorithms.
Default: relative_error = 100 × imsls_f_machine(4)
See documentation for function imsls_f_machine (Chapter 14).

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations allowed in the nonlinear equation solver
used in both the method of moments and least-squares algorithms.
Default: max_iterations = 200

IMSLS_MEAN_ESTIMATE, float *z_mean (Input or Input/Output)
On input, z_mean is an initial estimate of the mean of the time series z.
On return, z_mean contains an update of the mean.
If IMSLS_NO_CONSTANT and IMSLS_LEAST_SQUARES are specified,
w_mean is not used in parameter estimation.

IMSLS_INITIAL_ESTIMATES, float ar[], float ma[] (Input)
If specified, ar is an array of length p containing preliminary estimates
of the autoregressive parameters, and ma is an array of length q
containing preliminary estimates of the moving average parameters;

374 •••• arma IMSL C/Stat/Library

otherwise, these are computed internally. IMSLS_INITIAL_ESTIMATES
is only applicable if IMSLS_LEAST_SQUARES is also specified.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to an internally allocated array of length
n_observations − max (ar_lags [i]) + length containing the
residuals (including backcasts) at the final parameter estimate point in
the first n_observations − max (ar_lags [i]) + nb, where nb is
the number of values backcast.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See
IMSLS_RESIDUAL.

IMSLS_PARAM_EST_COV, float **param_est_cov (Output)
Address of a pointer to an internally allocated array of size np × np ,
where np = p + q + 1 if z is centered about w_mean, and np = p + q
if z is not centered. The ordering of variables in param_est_cov is
z_mean, ar, and ma. Argument np must be 1 or larger.

IMSLS_PARAM_EST_COV_USER, float param_est_cov[] (Output)
Storage for array param_est_cov is provided by the user. See
IMSLS_PARAM_EST_COV.

IMSLS_AUTOCOV, float **autocov (Output)
Address of a pointer to an array of length p + q + 1 containing the
variance and autocovariances of the time series z. Argument
autocov [0] contains the variance of the series z. Argument
autocov [k] contains the autocovariance of lag k, where
k = 1, ..., p + q + 1.

IMSLS_AUTOCOV_USER, float autocov[] (Output)
Storage for array autocov is provided by the user. See
IMSLS_AUTOCOV.

IMSLS_SS_RESIDUAL, float *ss_residual (Output)
If specified, ss_residual contains the sum of squares of the random
shock, ss_residual = residual [1]2 + ... + residual [na]2.

IMSLS_RETURN_USER, float *constant, float ar[], float ma[] (Output)
If specified, constant is the constant parameter estimate, ar is an array
of length p containing the final autoregressive parameter estimates, and
ma is an array of length q containing the final moving average parameter
estimates.

IMSLS_ARMA_INFO, Imsls_f_arma **arma_info (Output)
Address of a pointer to an internally allocated structure of type
Imsls_f_arma that contains information necessary in the call to
imsls_forecast.

Chapter 8: Time Series and Forecasting arma •••• 375

Description
Function imsls_f_arma computes estimates of parameters for a nonseasonal
ARMA model given a sample of observations, {Wt}, for t = 1, 2, ..., n, where
n = n_observations. There are two methods, method of moments and least
squares, from which to choose. The default is method of moments.

Two methods of parameter estimation, method of moments and least squares, are
provided. The user can choose the method of moments algorithm with the
optional argument IMSLS_METHOD_OF_MOMENTS. The least-squares algorithm is
used if the user specifies IMSLS_LEAST_SQUARES. If the user wishes to use the
least-squares algorithm, the preliminary estimates are the method of moments
estimates by default. Otherwise, the user can input initial estimates by specifying
optional argument IMSLS_INITIAL_ESTIMATES. The following table lists the
appropriate optional arguments for both the method of moments and least-squares
algorithm:

Method of Moments only Least Squares only Both Method of Moments
and Least Squares

IMSLS_METHOD_OF_MOMENTS IMSLS_LEAST_SQUARES IMSLS_RELATIVE_ERROR

IMSLS_CONSTANT

(or IMSLS_NO_CONSTANT)
IMSLS_MAX_ITERATIONS

IMSLS_AR_LAGS IMSLS_MEAN_ESTIMATE

IMSLS_MA_LAGS IMSLS_AUTOCOV(_USER)

IMSLS_BACKCASTING IMSLS_RETURN_USER

IMSLS_CONVERGENCE_TOLERANCE IMSLS_ARMA_INFO

IMSLS_INITIAL_ESTIMATES

IMSLS_RESIDUAL (_USER)
IMSLS_PARAM_EST_COV (_USER)
IMSLS_SS_RESIDUAL

Method of Moments Estimation

Suppose the time series {Zt} is generated by an ARMA (p, q) model of the form

φ(B)Zt = θ0 + θ(B)At

for t ∈ {0, ±1, ±2, ...}

Let �µ = w_mean be the estimate of the mean µ of the time series{Zt}, where
�µ equals the following:

�µ

µ µ

µ=

R
S
||

T
|| =
�

for known

for knownZt
t
n

n

1

376 •••• arma IMSL C/Stat/Library

The autocovariance function is estimated by

� � �σ µ µk
n

Z Zt
t

n k

t kb g c hc h= − −
=

−

+�
1

1

for k = 0, 1, ..., K, where K = p + q. Note that �σ (0) is an estimate of the sample
variance.

Given the sample autocovariances, the function computes the method of moments
estimates of the autoregressive parameters using the extended Yule-Walker
equations as follows:

� � �� =φ σ

where

� � , , �

� � | | , , , ,
� � , , ,

φ φ φ

σ

σ σ

=

� = + − =

= + =

1

1

1

�

�

�

p
T

ij

i

q i j i j p

q i i p

e j
b g
b g

The overall constant θ0 is estimated by the following:

�

�

� �
θ

µ

µ φ0

1

0

1 0
=

=

−
F
HG

I
KJ

>

R
S
||

T
|| =

�

for

for

p

pi
i

p

The moving average parameters are estimated based on a system of nonlinear
equations given K = p + q + 1 autocovariances, σ(k) for k = 1, ..., K, and p
autoregressive parameters φi for i = 1, ..., p.

Let Z′t = φ(B)Zt. The autocovariances of the derived moving average process
Z′t = θ(B)At are estimated by the following relation:

�

�

� � � , �
′ =

=

+ − ≥ ≡ −

R
S
||

T
|| ==

��
σ

σ

φ φ σ φ
k

k p

k i j pi j
j

p

i

pb g
b g

c he j

for

for

0

1 1
0

0
0

The iterative procedure for determining the moving average parameters is based
on the relation

()
()
()

2 2 2
1

2
1 1

1 ... for 0

... for 1

q A

k k q k q A

k
k

k+ −

� + θ + + θ σ =�σ = �
−θ + θ θ + + θ θ σ ≥��

where σ(k) denotes the autocovariance function of the original Zt process.

Let τ = (τ0, τ1, ..., τq)T and f = (f0, f1, ..., fq)T, where

Chapter 8: Time Series and Forecasting arma •••• 377

0

for 0

θ / for 1, ...,
A

j
j

j
j q

σ =
τ =

− τ =
�
�
�

and

()
0

� for 0,1, ...,
q j

j i i j
i

f j j q
−

+
=

′= τ τ − σ =�

Then, the value of τ at the (i + 1)-th iteration is determined by the following:

τ τi i i iT f+ −
= −1 1e j

The estimation procedure begins with the initial value

τ σ0 0 0 0= ′(� , , ,)b g �
T

and terminates at iteration i when either ||f i|| is less than relative_error or
i equals max_iterations. The moving average parameter estimates are
obtained from the final estimate of τ by setting

� / , ,θ τ τj j j q= − =0 1 for �

The random shock variance is estimated by the following:

2
1

2
0

�� �σ(0) () for 0
�σ

for 0

p

i
iA

i q

q
=

− φ σ =
=

τ ≥

�
�
�
�
�

�

See Box and Jenkins (1976, pp. 498−500) for a description of a function that
performs similar computations.

Least-squares Estimation

Suppose the time series {Zt} is generated by a nonseasonal ARMA model of the
form,

φ(B) (Zt − µ) = θ(B)At for t ∈ {0, ±1, ±2, �}

where B is the backward shift operator, µ is the mean of Zt, and

() () () ()

() () () ()

1 2
1 2

1 2
1 2

1 ... for 0

θ 1 θ θ ... θ for 0

l pl l
p

l l l q
q

B B B B p

B B B B q

φ φ

θ θ θ

φφ = − φ − φ − − φ ≥

= − − − − ≥

with p autoregressive and q moving average parameters. Without loss of
generality, the following is assumed:

1 ≤ lf (1) ≤ lf (2) ≤ � ≤ lf (p)

1 ≤ lq (1) ≤ lq (2) ≤ � ≤ lq (q)

378 •••• arma IMSL C/Stat/Library

so that the nonseasonal ARMA model is of order (p′, q′), where p′ = lq (p) and
q′ = lq (q). Note that the usual hierarchical model assumes the following:

lf (i) = i, 1 ≤ i ≤ p

lq (j) = j, 1 ≤ j ≤ q

Consider the sum-of-squares function

S AT t
T

n

µ φ θ, ,b g =
− +
�

2

1

where

A E A Zt t= µ φ θ, , ,b g
and T is the backward origin. The random shocks {At} are assumed to be
independent and identically distributed

N A0 2,σe j
random variables. Hence, the log-likelihood function is given by

l f n
S

A A
T

A
µ φ θ σ µ φ θ σ

µ φ θ
σ

, , , , , ln
, ,b g b g b g b g

= − −
2 2

where f (µ, φ, θ) is a function of µ, φ, and θ.

For T = 0, the log-likelihood function is conditional on the past values of both
Zt and At required to initialize the model. The method of selecting these initial
values usually introduces transient bias into the model (Box and Jenkins 1976,
pp. 210−211). For T = ∞, this dependency vanishes, and estimation problem
concerns maximization of the unconditional log-likelihood function. Box and
Jenkins (1976, p. 213) argue that

S A∞ µ φ θ σ, , /b g e j2 2

dominates

l Aµ φ θ σ, , , 2e j
The parameter estimates that minimize the sum-of-squares function are called
least-squares estimates. For large n, the unconditional least-squares estimates are
approximately equal to the maximum likelihood-estimates.

In practice, a finite value of T will enable sufficient approximation of the
unconditional sum-of-squares function. The values of [AT] needed to compute
the unconditional sum of squares are computed iteratively with initial values of
Zt obtained by back forecasting. The residuals (including backcasts), estimate of
random shock variance, and covariance matrix of the final parameter estimates
also are computed. ARIMA parameters can be computed by using
imsls_f_difference (page 386), with imsls_f_arma.

Chapter 8: Time Series and Forecasting arma •••• 379

Examples

Example 1
Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. The method of moments estimates

� , � , � , �θ φ φ θ0 1 2 1 and

for the ARMA(2, 1) model

zt = θ0 + φ1zt-1 + φ2zt-2 − θ1At-1 + At

where the errors At are independently normally distributed with mean zero and
variance

σ A
2

#include <imsls.h>

void main()
{

int p = 2;
int q = 1;
int i;
int n_observations = 100;
int max_iterations = 0;
float w[176][2];
float z[100];
float *parameters;
float relative_error = 0.0;

imsls_f_data_sets(2, IMSLS_X_COL_DIM,
2, IMSLS_RETURN_USER, w,
0);

for (i=0; i<n_observations; i++) z[i] = w[21+i][1];

parameters = imsls_f_arma(n_observations, &z[0], p, q,
IMSLS_RELATIVE_ERROR, relative_error,
IMSLS_MAX_ITERATIONS, max_iterations,
0);

printf("AR estimates are %11.4f and %11.4f.\n",
parameters[1], parameters[2]);

printf("MA estimate is %11.4f.\n", parameters[3]);
}

Output
AR estimates are 1.2443 and -0.5751.
MA estimate is -0.1241.

Example 2
The data for this example are the same as that for the initial example. Preliminary
method of moments estimates are computed by default, and the method of least

380 •••• arma IMSL C/Stat/Library

squares is used to find the final estimates. Note that at the end of the output, a
warning error appears. In most cases, this error message can be ignored. There
are three general reasons this error can occur:

1. Convergence is declared using the criterion based on tolerance, but the
gradient of the residual sum-of-squares function is nonzero. This occurs
in this example. Either the message can be ignored or tolerance can
be reduced to allow more iterations and a slightly more accurate
solution.

2. Convergence is declared based on the fact that a very small step was
taken, but the gradient of the residual sum-of-squares function was
nonzero. This message can usually be ignored. Sometimes, however, the
algorithm is making very slow progress and is not near a minimum.

3. Convergence is not declared after 100 iterations.

Trying a smaller value for tolerance can help determine what caused the error
message.

#include <imsls.h>

void main()
{

int p = 2;
int q = 1;
int i;
int n_observations = 100;
float w[176][2];
float z[100];
float *parameters;
float tolerance = 0.125;

imsls_f_data_sets(2, IMSLS_X_COL_DIM,
2, IMSLS_RETURN_USER, w,
0);

for (i=0; i<n_observations; i++) z[i] = w[21+i][1];

parameters = imsls_f_arma(n_observations, &z[0], p, q,
IMSLS_LEAST_SQUARES,
IMSLS_CONVERGENCE_TOLERANCE,

tolerance,
0);

printf("AR estimates are %11.4f and %11.4f.\n",
parameters[1], parameters[2]);

printf("MA estimate is %11.4f.\n", parameters[3]);

}

Output
*** WARNING Error IMSLS_LEAST_SQUARES_FAILED from imsls_f_arma. Least
*** squares estimation of the parameters has failed to converge.
*** Increase "length" and/or "tolerance" and/or
*** "convergence_tolerance". The estimates of the parameters at

the
*** last iteration may be used as new starting values.

Chapter 8: Time Series and Forecasting arma_forecast •••• 381

AR estimates are 1.3926 and -0.7329.
MA estimate is -0.1375.

Warning Errors
IMSLS_LEAST_SQUARES_FAILED Least-squares estimation of the

parameters has failed to converge.
Increase �length� and/or
�tolerance� and/or
�convergence_tolerance.� The
estimates of the parameters at the
last iteration may be used as new
starting values.

arma_forecast
Computes forecasts and their associated probability limits for an ARMA model.

Synopsis
#include <imsls.h>

float *imsls_f_arma_forecast (Imsls_f_arma *arma_info,
int n_predict, ..., 0)

The type double function is imsls_d_arma_forecast.

Required Arguments

Imsls_f_arma *arma_info (Input)
Pointer to a structure of type Imsls_f_arma that is passed from the
imsls_f_arma function.

int n_predict (Input)
Maximum lead time for forecasts. Argument n_predict must be
greater than 0.

Return Value
Pointer to an array of length n_predict × (backward_origin + 3) containing
the forecasts up to n_predict steps ahead and the information necessary to
obtain pairwise confidence intervals. More information is given in the description
of argument IMSLS_RETURN_USER.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_arma_forecast (Imsls_f_arma *arma_info,
int n_predict,
IMSLS_CONFIDENCE, float confidence,

382 •••• arma_forecast IMSL C/Stat/Library

IMSLS_BACKWARD_ORIGIN, int backward_origin,
IMSLS_RETURN_USER, float forecasts[],
0)

Optional Arguments
IMSLS_CONFIDENCE, float confidence (Input)

Value in the exclusive interval (0, 100) used to specify the confidence
percent probability limits of the forecasts. Typical choices for
confidence are 90.0, 95.0, and 99.0.
Default: confidence = 95.0

IMSLS_BACKWARD_ORIGIN, int backward_origin (Input)
If specified, the maximum backward origin. Argument
backward_origin must be greater than or equal to 0 and less than or
equal to n_observations − max (maxar, maxma), where maxar = max
(ar_lags [i]), maxma = max (ma_lags [j]), and
n_observations = the number of observations in the series, as input in
function imsls_arma. Forecasts at origins n_observations −
 backward_origin through n_observations are generated.
Default: backward_origin = 0

IMSLS_RETURN_USER, float forecasts[] (Output)
If specified, a user-specified array of length
n_predict × (backward_origin + 3) as defined below.

Column Content
j forecasts for lead times l = 1, ..., n_predict at origins

n_observations − backward_origin − 1 + j, where j = 0,
..., backward_origin

backward_origin + 2 deviations from each forecast that give the confidence
percent probability limits

backward_origin + 3 psi weights of the infinite order moving average form of the
model

If specified, the forecasts for lead times l = 1, ..., n_predict at origins
n_observations − backward_origin − 1 + j, where
j = 1, ..., backward_origin + 1.

Description
The Box-Jenkins forecasts and their associated probability limits for a
nonseasonal ARMA model are computed given a sample of
n = n_observations {Zt} for t = 1, 2, ..., n.

Suppose the time series {Zt} is generated by a nonseasonal ARMA model of the
form

φ(B)Zt = θ0 + θ(B)At

Chapter 8: Time Series and Forecasting arma_forecast •••• 383

for t ∈ {0, ±1, ±2, ...}, where B is the backward shift operator, θ0 is the constant,
and

() () () ()

() () () ()

1

2

2
2

2
1

1

1

1

1

...

...

l l p
p

l l q

l

l
q

B B B B

B B B B

φ φ

θ θ

φ

θ

φ = − φ − φ − − φ

θ = − θ − θ − − θ

with p autoregressive and q moving average parameters. Without loss of
generality, the following is assumed:

1 ≤ lf (1) ≤ lf (2) ≤ � ≤ lf (p)

1 ≤ lq (1) ≤ lq (2) ≤ � ≤ lq (q)

so that the nonseasonal ARMA model is of order (p′, q′), where p′ = lq(p) and
q′ = lq(q). Note that the usual hierarchical model assumes the following:

lf (i) = i, 1 ≤ i ≤ p

lq (j) = j, 1 ≤ j ≤ q

The Box-Jenkins forecast at origin t for lead time l of Zt+1 is defined in terms of
the difference equation

() () ()

[] () [] () ()

0 1 1

1 11 1

� ...

... ...

t pt l l t l l p

t l t l t l l qt l l t l l q

Z l Z Z

A A A A A

φ φ

θ θ

+ − + −

+ + + −+ − + −θ

= θ + φ + + φ

+ − θ − − − θ − − θ

� � � �
� � � �

� �� � � �
� � � �� �

where the following is true:

[] ()
for 0, 1, 2, ...

� for 1, 2, ...
t k

t k
t

Z k
Z

Z k k
+

+

= − −��= � =��

[] ()1
� 1 for 0, 1, 2, ...

0 for 1, 2, ...
t k t k

t k
Z Z k

A
k

+ + −
+

� − = − −�= �
=��

The 100(1 − α) percent probability limits for Zt+l are given by

�
/

/

Z l zt j
j

l

Ab g± +
R
S|
T|

U
V|
W|=

−

�1 2
2

1

1
1 2

1 ψ σ

where z(1-a/2) is the 100(1 − α/2) percentile of the standard normal distribution

σ A
2

(returned from imsls_f_arma) and

ψ j
2o t

are the parameters of the random shock form of the difference equation. Note that
the forecasts are computed for lead times l = 1, 2, ..., L at origins
t = (n − b), (n − b + 1), ..., n, where L = n_predict and b = backward_origin.

384 •••• arma_forecast IMSL C/Stat/Library

The Box-Jenkins forecasts minimize the mean-square error

E Z Z lt l t+ − � b g 2

Also, the forecasts can be easily updated according to the following equation:
� �Z l Z l At t l t+ += + +1 11b g b g ψ

This approach and others are discussed in Chapter 5 of Box and Jenkins (1976).

Example
Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. Function imsls_f_arma_forecast computes forecasts and 95-percent
probability limits for the forecasts for an ARMA(2, 1) model fit using function
imsls_f_arma with the method of moments option. With
backward_origin = 3, columns zero through three of forecasts provide
forecasts given the data through 1866, 1867, 1868, and 1869, respectively.
Column four gives the deviations from the forecast for computing probability
limits, and column six gives the psi weights, which can be used to update
forecasts when more data is available. For example, the forecast for the 102-nd
observation (year 1871) given the data through the 100-th observation (year
1869) is 77.21; and 95-percent probability limits are given by 77.21� 56.30.
After observation 101 (Z101 for year 1870) is available, the forecast can be
updated by using

�
/

/

Z l zt j
j

l

Ab g± +
R
S|
T|

U
V|
W|=

−

�α ψ σ2
2

1

1
1 2

1

with the psi weight (ψ1 = 1.37) and the one-step-ahead forecast error for
observation 101 (Z101 − 83.72) to give the following:

77.21 + 1.37 × (Z101 − 83.72)

Since this updated forecast is one step ahead, the 95-percent probability limits are
now given by the forecast � 33.22.

#include <imsls.h>

void main()
{

int p = 2;
int q = 1;
int i;
int n_observations = 100;
int max_iterations = 0;
int n_predict = 12;
int backward_origin = 3;
float w[176][2];
float z[100];

Chapter 8: Time Series and Forecasting arma_forecast •••• 385

float *parameters;
float rel_error = 0.0;
float *forecasts;
Imsls_f_arma *arma_info;

char *col_labels[] = {
"Lead Time",
"Forecast From 1866",
"Forecast From 1867",
"Forecast From 1868",
"Forecast From 1869",
"Dev. for Prob. Limits",
"Psi"};

imsls_f_data_sets(2, IMSLS_X_COL_DIM,
2, IMSLS_RETURN_USER, w,
0);

for (i=0; i<n_observations; i++) z[i] = w[21+i][1];

parameters = imsls_f_arma(n_observations, &z[0], p, q,
IMSLS_RELATIVE_ERROR,

rel_error,
IMSLS_MAX_ITERATIONS,

max_iterations,
IMSLS_ARMA_INFO,

&arma_info,
0);

printf("Method of Moments initial estimates:\n");
printf("AR estimates are %11.4f and %11.4f.\n",

parameters[1], parameters[2]);
printf("MA estimate is %11.4f.\n", parameters[3]);

forecasts = imsls_f_arma_forecast(arma_info, n_predict,
IMSLS_BACKWARD_ORIGIN,

backward_origin,
0);

imsls_f_write_matrix("* * * Forecast Table * * *\n",
n_predict, backward_origin+3,
forecasts,
IMSLS_COL_LABELS, col_labels,
IMSLS_WRITE_FORMAT, "%11.4f",
0);

}

Output
Method of Moments initial estimates:
AR estimates are 1.2443 and -0.5751.
MA estimate is -0.1241.

* * * Forecast Table * * *

Lead Time Forecast From Forecast From Forecast From Forecast From
1866 1867 1868 1869

1 18.2833 16.6151 55.1893 83.7196
2 28.9182 32.0189 62.7606 77.2092
3 41.0101 45.8275 61.8922 63.4608
4 49.9387 54.1496 56.4571 50.0987

386 •••• difference IMSL C/Stat/Library

5 54.0937 56.5623 50.1939 41.3803
6 54.1282 54.7780 45.5268 38.2174
7 51.7815 51.1701 43.3221 39.2965
8 48.8417 47.7072 43.2631 42.4582
9 46.5335 45.4736 44.4577 45.7715

10 45.3524 44.6861 45.9781 48.0758
11 45.2103 44.9909 47.1827 49.0371
12 45.7128 45.8230 47.8072 48.9080

Lead Time Dev. for Prob. Psi
Limits

1 33.2179 1.3684
2 56.2980 1.1274
3 67.6168 0.6158
4 70.6432 0.1178
5 70.7515 -0.2076
6 71.0869 -0.3261
7 71.9074 -0.2863
8 72.5337 -0.1687
9 72.7498 -0.0452

10 72.7653 0.0407
11 72.7779 0.0767
12 72.8225 0.0720

difference
Differences a seasonal or nonseasonal time series.

Synopsis

#include <imsls.h>

float *imsls_f_difference (int n_observations, float z[],
int n_differences, int periods[], ..., 0)

The type double function is imsls_d_difference.

Required Arguments

int n_observations (Input)
Number of observations.

float z[] (Input)
Array of length n_observations containing the time series.

int n_differences (Input)
Number of differences to perform. Argument n_differences must be
greater than or equal to 1.

int periods[] (Input)
Array of length n_differences containing the periods at which z is to
be differenced.

Chapter 8: Time Series and Forecasting difference •••• 387

Return Value
Pointer to an array of length n_observations containing the differenced series.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_difference (int n_observations, float z[],
int n_differences, int periods[],
IMSLS_ORDERS, int orders[],
IMSLS_LOST, int *n_lost,
IMSLS_EXCLUDE_FIRST, or
IMSLS_SET_FIRST_TO_NAN,
IMSLS_RETURN_USER, float w[],
0)

Optional Arguments
IMSLS_ORDERS, int orders[] (Input)

Array of length n_differences containing the order of each difference
given in periods. The elements of orders must be greater than or equal to
0.

IMSLS_LOST, int *n_lost (Output)
Number of observations lost because of differencing the time series z.

IMSLS_EXCLUDE_FIRST, or
IMSLS_SET_FIRST_TO_NAN

If IMSLS_EXCLUDE_FIRST is specified, the first n_lost are excluded
from w due to differencing. The differenced series w is of length
n_observations − n_lost. If IMSLS_SET_FIRST_TO_NAN is
specified, the first n_lost observations are set to NaN (Not a Number).
This is the default if neither IMSLS_EXCLUDE_FIRST nor
IMSLS_SET_FIRST_TO_NAN is specified.

IMSLS_RETURN_USER, float w[] (Output)
If specified, w contains the differenced series. If
IMSLS_EXCLUDE_FIRST also is specified, w is of length
n_observations. If IMSLS_SET_FIRST_TO_NAN is specified or
neither IMSLS_EXCLUDE_FIRST nor IMSLS_SET_FIRST_TO_NAN is
specified, w is of length n_observations − n_lost.

Description
Function imsls_f_difference performs m = n_differences successive
backward differences of period si = periods [i − 1] and order
di = orders [i − 1] for i = 1, ..., m on the n = n_observations observations
{Zt} for t = 1, 2, ..., n.

Consider the backward shift operator B given by

BkZt = Zt-k

388 •••• difference IMSL C/Stat/Library

for all k. Then, the backward difference operator with period s is defined by the
following:

∆sZt = (1 − Bs) Zt = Zt − Zt-s for s ≥ 0

Note that BsZt and ∆sZt are defined only for t = (s + 1), ..., n. Repeated
differencing with period s is simply

∆ s
d

t
s d

t
j

d
j sj

tZ B Z d
j d j

B Z= − =
−

−
=
�1 1

0
e j b g b g

!
! !

where d ≥ 0 is the order of differencing. Note that

∆ s
d

tZ

is defined only for t = (sd + 1), ..., n.

The general difference formula used in the function imsls_f_difference is
given by

1 2

1 2

NaN for 1, ...,
for 1, ...,m

m

L
t dd d

s s s t L

t n
W

Z t n n
=��= �∆ ∆ ∆ = +�� �

where nL represents the number of observations �lost� because of differencing
and NaN represents the missing value code. See the functions
imsls_f_machine and imsls_d_machine (Chapter 14) to retrieve missing
values. Note that

n s dL j j
j

=�

A homogeneous, stationary time series can be arrived at by appropriately
differencing a homogeneous, nonstationary time series (Box and Jenkins 1976,
p. 85). Preliminary application of an appropriate transformation followed by
differencing of a series can enable model identification and parameter estimation
in the class of homogeneous stationary autoregressive moving average models.

Examples

Example 1
Consider the Airline Data (Box and Jenkins 1976, p. 531) consisting of the
monthly total number of international airline passengers from January 1949
through December 1960. Function imsls_f_difference is used to compute

Wt = ∆1∆12Zt = (Zt − Zt-12) − (Zt-1 − Zt-13)

for t = 14, 15, ..., 24.
#include <imsls.h>

void main()

Chapter 8: Time Series and Forecasting difference •••• 389

{
int i;
int n_observations = 24;
int n_differences = 2;
int periods[2] = {1, 12};
float *z;
float *difference;

z = imsls_f_data_sets (4, 0);
difference = imsls_f_difference (n_observations, z,

n_differences, periods,
0);

printf ("i\tz[i]\tdifference[i]\n");
for (i = 0; i < n_observations; i++)

printf ("%d\t%f\t%f\n", i, z[i], difference[i]);

}

Output
i z[i] difference[i]
0 112.000000 NaN
1 118.000000 NaN
2 132.000000 NaN
3 129.000000 NaN
4 121.000000 NaN
5 135.000000 NaN
6 148.000000 NaN
7 148.000000 NaN
8 136.000000 NaN
9 119.000000 NaN

10 104.000000 NaN
11 118.000000 NaN
12 115.000000 NaN
13 126.000000 5.000000
14 141.000000 1.000000
15 135.000000 -3.000000
16 125.000000 -2.000000
17 149.000000 10.000000
18 170.000000 8.000000
19 170.000000 0.000000
20 158.000000 0.000000
21 133.000000 -8.000000
22 114.000000 -4.000000
23 140.000000 12.000000

Example 2
The data for this example is the same as that for the initial example. The first
n_lost observations are excluded from W due to differencing, and n_lost is
also output.

#include <imsls.h>

void main()
{

int i;
int n_observations = 24;

390 •••• box_cox_transform IMSL C/Stat/Library

int n_differences = 2;
int periods[2] = {1, 12};
int n_lost;
float *z;
float *difference;

/* Get airline data */
z = imsls_f_data_sets (4, 0);

/* Compute differenced time series when observations
lost are excluded from the differencing */

difference = imsls_f_difference (n_observations, z,
n_differences, periods,
IMSLS_EXCLUDE_FIRST,
IMSLS_LOST, &n_lost,
0);

/* Print the number of lost observations */
printf ("n_lost equals %d\n", n_lost);
printf ("\n\ni\tz[i]\t difference[i]\n");

/* Print the original time series and the differenced
time series */

for (i = 0; i < n_observations - n_lost; i++)
printf ("%d\t%f\t%f\n", i, z[i], difference[i]);

}

Output
n_lost equals 13

i z[i] difference[i]
0 112.000000 5.000000
1 118.000000 1.000000
2 132.000000 -3.000000
3 129.000000 -2.000000
4 121.000000 10.000000
5 135.000000 8.000000
6 148.000000 0.000000
7 148.000000 0.000000
8 136.000000 -8.000000
9 119.000000 -4.000000

10 104.000000 12.000000

Fatal Errors
IMSLS_PERIODS_LT_ZERO �period[#]� = #. All elements of �period�

must be greater than 0.

IMSLS_ORDER_NEGATIVE �order[#]� = #. All elements of �order�
must be nonnegative.

IMSLS_Z_CONTAINS_NAN �z[#]� = NaN; �z� can not contain missing
values. There may be other elements of �z�
that are equal to NaN.

box_cox_transform
Performs a forward or an inverse Box-Cox (power) transformation.

Chapter 8: Time Series and Forecasting box_cox_transform •••• 391

Synopsis
#include <imsls.h>

float *imsls_f_box_cox_transform (int n_observations, float z[],
float power, ..., 0)

The type double function is imsls_d_box_cox_transform.

Required Arguments

int n_observations (Input)
Number of observations in z.

float z[] (Input)
Array of length n_observations containing the observations.

float power (Input)
Exponent parameter in the Box-Cox (power) transformation.

Return Value
Pointer to an internally allocated array of length n_observations containing
the transformed data. To release this space, use free. If no value can be
computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_box_cox_transform (int n_observations, float z[],
float power,
IMSLS_SHIFT, float shift,
IMSLS_INVERSE_TRANSFORM,
IMSLS_RETURN_USER, float x[]

0)

Optional Arguments
IMSLS_SHIFT, float shift (Input)

Shift parameter in the Box-Cox (power) transformation. Parameter shift
must satisfy the relation min (z(i)) + shift > 0.
Default: shift = 0.0.

IMSLS_INVERSE_TRANSFORM

If IMSLS_INVERSE_TRANSFORM is specified, the inverse transform is
performed.

IMSLS_RETURN_USER, float x[] (Output)
User-allocated array of length n_observations containing the
transformed data.

392 •••• box_cox_transform IMSL C/Stat/Library

Description
Function imsls_f_box_cox_transform performs a forward or an inverse
Box-Cox (power) transformation of n = n_observations observations {Zt} for
t = 1, 2, ..., n.

The forward transformation is useful in the analysis of linear models or models
with nonnormal errors or nonconstant variance (Draper and Smith 1981, p. 222).
In the time series setting, application of the appropriate transformation and
subsequent differencing of a series can enable model identification and parameter
estimation in the class of homogeneous stationary autoregressive-moving average
models. The inverse transformation can later be applied to certain results of the
analysis, such as forecasts and prediction limits of forecasts, in order to express
the results in the scale of the original data. A brief note concerning the choice of
transformations in the time series models is given in Box and Jenkins (1976,
p. 328).

The class of power transformations discussed by Box and Cox (1964) is defined
by

X
Z

Z
t

t

t

=
+ −

≠

+ =

R
S|

T|
ξ
λ

λ

ξ λ

λb g

b g

1
0

0ln

where Zt + ξ > 0 for all t. Since

lim ln
λ

λξ
λ

ξ
→

+ −
= +

0

1Z
Zt

t
b g b g

the family of power transformations is continuous.

Let λ = power and ξ = shift; then, the computational formula used by
imsls_f_box_cox_transform is given by

X
Z

Z
t

t

t

=
+ ≠

+ =

R
S|
T|

ξ λ

ξ λ

λb g
b g

0

0ln

where Zt + ξ > 0 for all t. The computational and Box-Cox formulas differ only in
the scale and origin of the transformed data. Consequently, the general analysis of
the data is unaffected (Draper and Smith 1981, p. 225).

The inverse transformation is computed by

X
Zt

t

t

Z

exp
�

RS|T|
� �

� �

1 0

0

/� � �

� �b g
where {Zt} now represents the result computed by
imsls_f_box_cox_transform for a forward transformation of the original
data using parameters λ and ξ.

Chapter 8: Time Series and Forecasting box_cox_transform •••• 393

Examples

Example 1
The following example performs a Box-Cox transformation with power = 2.0 on
10 data points.

#include <imsls.h>

void main() {
int n_observations = 10;
float power = 2.0;
float *x;
static float z[10] ={

1.0, 2.0, 3.0, 4.0, 5.0, 5.5, 6.5, 7.5, 8.0, 10.0};

/* Transform Data using Box Cox Transform */
x = imsls_f_box_cox_transform(n_observations, z, power, 0);

imsls_f_write_matrix("Transformed Data", 1, n_observations, x, 0);

free(x);
}

Output
Transformed Data

1 2 3 4 5 6
1.0 4.0 9.0 16.0 25.0 30.2

7 8 9 10
42.2 56.2 64.0 100.0

Example 2
This example extends the first example�an inverse transformation is applied to
the transformed data to return to the orignal data values.

#include <imsls.h>

void main() {
int n_observations = 10;
float power = 2.0;
float *x, *y;
static float z[10] ={

1.0, 2.0, 3.0, 4.0, 5.0, 5.5, 6.5, 7.5, 8.0, 10.0};

/* Transform Data using Box Cox Transform */
x = imsls_f_box_cox_transform(n_observations, z, power, 0);

imsls_f_write_matrix("Transformed Data", 1, n_observations, x, 0);

/* Perform an Inverse Transform on the Transformed Data */
y = imsls_f_box_cox_transform(n_observations, x, power,

IMSLS_INVERSE_TRANSFORM, 0);

imsls_f_write_matrix("Inverse Transformed Data", 1, n_observations, y,
0);

394 •••• box_cox_transform IMSL C/Stat/Library

free(x);
free(y);

}

Output
Transformed Data

1 2 3 4 5 6
1.0 4.0 9.0 16.0 25.0 30.2

7 8 9 10
42.2 56.2 64.0 100.0

Inverse Transformed Data
1 2 3 4 5 6

1.0 2.0 3.0 4.0 5.0 5.5

7 8 9 10
6.5 7.5 8.0 10.0

Fatal Errors
IMSLS_ILLEGAL_SHIFT �shift� = # and the smallest element of �z�

is �z[#]� = #. �shift� plus �z[#]� = #. �shift�
+ �z[i]� must be greater than 0 for i = 1, ...,
�n_observations�. �n_observations� = #.

IMSLS_BCTR_CONTAINS_NAN One or more elements of �z� is equal to
NaN (Not a number). No missing values are
allowed. The smallest index of an element
of �z� that is equal to NaN is #.

IMSLS_BCTR_F_UNDERFLOW Forward transform. �power� = #. �shift� =
#. The minimum element of �z� is �z[#]� =
#. (�z[#]�+ �shift�) ^ �power� will
underflow.

IMSLS_BCTR_F_OVERFLOW Forward transformation. �power� = #.
�shift� = #. The maximum element of �z� is
�z[#]� = #. (�z[#]� + �shift�) ^ �power� will
overflow.

IMSLS_BCTR_I_UNDERFLOW Inverse transformation. �power� = #. The
minimum element of �z� is �z[#]� = #.
exp(�z[#]�) will underflow.

IMSLS_BCTR_I_OVERFLOW Inverse transformation. �power� = #. The
maximum element of �z[#]� = #.
exp(�z[#]�) will overflow.

IMSLS_BCTR_I_ABS_UNDERFLOW Inverse transformation. �power� = #. The
element of �z� with the smallest absolute
value is �z[#]� = #. �z[#]� ^ (1/ �power�)
will underflow.

Chapter 8: Time Series and Forecasting autocorrelation •••• 395

IMSLS_BCTR_I_ABS_OVERFLOW Inverse transformation. �power� = #. The
element of �z� with the largest absolute
value is �z[#]� = #. �z[#]� ^ (1/ �power�)
will overflow.

autocorrelation
Computes the sample autocorrelation function of a stationary time series.

Synopsis
#include <imsls.h>

float *imsls_f_autocorrelation (int n_observations, float x[],

int lagmax, ...
0)

Required Arguments
int n_observations (Input)

Number of observations in the time series x. n_observations must
be greater than or equal to 2.

float x[] (Input)
Array of length n_observations containing the time series.

int lagmax (Input)
Maximum lag of autocovariance, autocorrelations, and standard errors of
autocorrelations to be computed. lagmax must be greater than or equal
to 1 and less than n_observations.

Return Value
Pointer to an array of length lagmax + 1 containing the autocorrelations of the
time series x. The 0-th element of this array is 1. The k-th element of this array
contains the autocorrelation of lag k where k = 1, ..., lagmax.

Synopsis with Optional Arguments

#include <imsls.h>

float imsls_f_autocorrelation (int n_observations, float x[], int
lagmax,

IMSLS_RETURN_USER, float autocorrelations[],
IMSLS_ACV, float **autocovariances,

IMSLS_ACV_USER, float autocovariances[],

IMSLS_SEAC, float **standard_errors, int
se_option,

IMSLS_SEAC_USER, float standard_errors[],

int se_option,

IMSLS_X_MEAN_IN, float x_mean_in,

396 •••• autocorrelation IMSL C/Stat/Library

IMSLS_X_MEAN_OUT, float *x_mean_out,

0)

Optional Arguments
IMSLS_RETURN_USER, float autocorrelations[] (Output)

If specified, autocorrelations is an array of length lagmax + 1

containing the autocorrelations of the time series x. The

0-th element of this array is 1. The k-th element of this array
contains the autocorrelation of lag k where k = 1, ...,

lagmax.

IMSLS_ACV, float **autocovariances (Output)
Address of a pointer to an array of length lagmax + 1 containing the
variance and autocovariances of the time series x. The 0-th element of
this array is the variance of the time series x. The k-th element contains
the autocovariance of lag k where k = 1, ..., lagmax.

IMSLS_ACV_USER, float autocovariances[] (Output)
If specified, autocovariances is an array of length lagmax + 1
containing the variance and autocovariances of the time series x.
See IMSLS_ACV.

IMSLS_SEAC, float **standard_errors, int se_option (Output)
Address of a pointer to an array of length lagmax containing the
standard errors of the autocorrelations of the time series x.
Method of computation for standard errors of the autocorrelations is
chosen by se_option.

se_option Action
1 Compute the standard errors of autocorrelations using

Barlett�s formula.
2 Compute the standard errors of autocorrelations

using Moran�s formula.

IMSLS_SEAC_USER, float standard_errors[], int se_option (Output)
If specified, autocovariances is an array of length lagmax containing
the standard errors of the autocorrelations of the time series x.
See IMSLS_SEAC.

IMSLS_X_MEAN_IN, float x_mean_in (Input)
User input the estimate of the time series x.

IMSLS_X_MEAN_OUT, float *x_mean_out (Output)
If specified, x_mean_out is the estimate of the mean of the time
series x.

Chapter 8: Time Series and Forecasting autocorrelation •••• 397

Description
Function imsls_f_autocorrelation estimates the autocorrelation function
of a stationary time series given a sample of n = n_observations
observations {Xt} for t = 1, 2, �, n.

Let

�µ = x_ mean

be the estimate of the mean µ of the time series {Xt} where

�

,
µ

µ µ

µ=
R
S|
T| =
�

known

unknown1

1n
Xt

t

n

The autocovariance function σ(k) is estimated by

� () (�)(�), , , ,σ µ µk
n

X X k Kt t k
t

n k

= − − =+
=

−

�
1 0 1

1

�

where K = lagmax. Note that

�σ 0b g
is an estimate of the sample variance. The autocorrelation function ρ(k) is
estimated by

�()
� ()
� ()

, , , ,ρ σ
σ

k k k K= =
0

01 �

Note that

�ρ 0 1b g ≡
by definition.

The standard errors of the sample autocorrelations may be optionally computed
according to argument se_option for the optional argument IMSLS_SEAC.
One method (Bartlett 1946) is based on a general asymptotic expression for the
variance of the sample autocorrelation coefficient of a stationary time series with
independent, identically distributed normal errors. The theoretical formula is

var (k)� () () () () () () () ()ρ ρ ρ ρ ρ ρ ρ ρ ρm r = + − + − − +
=−∞

∞

�
1 4 22 2 2

n
i i k i k i k i k i k

i

where

�ρ()k

assumes µ is unknown. For computational purposes, the autocorrelations r(k) are
replaced by their estimates

�ρ()k

398 •••• autocorrelation IMSL C/Stat/Library

for |k| ≤ K, and the limits of summation are bounded because of the assumption
that r(k) = 0 for all k such that |k| > K.

A second method (Moran 1947) utilizes an exact formula for the variance of the
sample autocorrelation coefficient of a random process with independent,
identically distributed normal errors. The theoretical formula is

var �ρ k n k
n n

b gm r b g= −
+2

where µ is assumed to be equal to zero. Note that this formula does not depend on
the autocorrelation function.

Example
Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. Function imsls_f_autocorrelation with optional arguments computes
the estimated autocovariances, estimated autocorrelations, and estimated standard
errors of the autocorrelations.

#include <imsls.h>
#include <stdio.h>

void main()
{

float *result=NULL, data[176][2], x[100], xmean;
int i, nobs = 100, lagmax = 20;
float *acv=NULL, *seac=NULL;

imsls_f_data_sets(2, IMSLS_RETURN_USER, data, 0);
for (i=0;i<nobs;i++) x[i] = data[21+i][1];

result = imsls_f_autocorrelation(nobs, x, lagmax,
IMSLS_X_MEAN_OUT, &xmean,
IMSLS_ACV, &acv,
IMSLS_SEAC, &seac, 1,
printf("Mean = %8.3f\n", xmean);

printf("Variance = %8.1f\n", acv[0]);
printf("\nLag\t ACV\t\t AC\t\t SEAC\n");
printf("%2d\t%8.1f\t%8.5f\n", 0, acv[0], result[0]);
for(i=0; i<21; i++)

printf("%2d\t%8.1f\t%8.5f\t%8.5f\n", i, acv[i], result[i],
seac[i-1]);

}

Output
Mean = 46.976
Variance = 1382.9

Lag ACV AC SEAC

0 1382.9 1.00000

Chapter 8: Time Series and Forecasting partial_autocorrelation •••• 399

1 1115.0 0.80629 0.03478
2 592.0 0.42809 0.09624
3 95.3 0.06891 0.15678
4 -236.0 -0.17062 0.20577
5 -370.0 -0.26756 0.23096
6 -294.3 -0.21278 0.22899
7 -60.4 -0.04371 0.20862
8 227.6 0.16460 0.17848
9 458.4 0.33146 0.14573

10 567.8 0.41061 0.13441
11 546.1 0.39491 0.15068
12 398.9 0.28848 0.17435
13 197.8 0.14300 0.19062
14 26.9 0.01945 0.19549
15 -77.3 -0.05588 0.19589
16 -143.7 -0.10394 0.19629
17 -202.0 -0.14610 0.19602
18 -245.4 -0.17743 0.19872
19 -230.8 -0.16691 0.20536
20 -142.9 -0.10332 0.20939

Figure 8-1 Sample Autocorrelation Function

partial_autocorrelation
Computes the sample partial autocorrelation function of a stationary time series.

Synopsis
#include <imsls.h>

400 •••• partial_autocorrelation IMSL C/Stat/Library

float *imsls_f_partial_autocorrelation (int lagmax, int cf[], �,
0)

The type double function is imsls_d_partial_autocorrelation.

Required Arguments

int lagmax (Input)
Maximum lag of partial autocorrelations to be computed.

float cf[] (Input)
Array of length lagmax + 1 containing the autocorrelations of the time
series x.

Return Value
Pointer to an array of length lagmax containing the partial autocorrelations of
the time series x.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_partial_autocorrelation (int lagmax, float cf[],
IMSLS_RETURN_USER, float partial_autocorrelations[],
0)

Optional Arguments
IMSLS_RETURN_USER, float partial_autocorrelations[] (Output)

If specified, the partial autocorrelations are stored in an array of length
lagmax provided by the user.

Description

Function imsls_f_partial_autocorrelation estimates the partial
autocorrelations of a stationary time series given the K = lagmax sample
autocorrelations

�ρ kb g
for k = 0, 1, �, K. Consider the AR(k) process defined by

1 1 2 2 ...t k t k t kk t k tX X X X A− − −= φ + φ + + φ +

where φkj denotes the j-th coefficient in the process. The set of estimates

�φkko t
for k = 1, �, K is the sample partial autocorrelation function. The autoregressive
parameters

�φkjo t

Chapter 8: Time Series and Forecasting partial_autocorrelation •••• 401

for j = 1, �, k are approximated by Yule-Walker estimates for successive AR(k)
models where k = 1, �, K. Based on the sample Yule-Walker equations

�() � �() � �() � �(), , , ,ρ φ ρ φ ρ φ ρj j j j k j kk k kk= − + − + + − =1 21 2 12� �

a recursive relationship for k = 1, �, K was developed by Durbin (1960). The
equations are given by

�

�()
�() � �()

� �()
, ,,

,

φ
ρ
ρ φ ρ

φ ρ
kk j

k
k j

j
k

k j

k
k k j

j
k K=
=

−� −

−�
=

R
S|
T|

=
−

−

=
−

−

1 1

1
21

1
1

1
1

1
�

and

�
� � � , , ,
�

, ,φ
φ φ φ
φkj

k j kk k k j

kk

j k
j k

=
− = −

=

RS|T|
− − −1 1 1 2 1�

This procedure is sensitive to rounding error and should not be used if the
parameters are near the nonstationarity boundary. A possible alternative would be
to estimate {φkk} for successive AR(k) models using least or maximum
likelihood. Based on the hypothesis that the true process is AR(p), Box and
Jenkins (1976, page 65) note

var{ � } ~φkk n
k p− ≥ +1 1

See Box and Jenkins (1976, pages 82�84) for more information concerning the
partial autocorrelation function.

Example
Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. Routine imsls_f_partial_autocorrelation is used to compute the
estimated partial autocorrelations.

#include <imsls.h>
#include <stdio.h>

void main()
{

float *partial=NULL, data[176][2], x[100];
int i, nobs = 100, lagmax = 20;
float *ac;

imsls_f_data_sets(2, IMSLS_RETURN_USER, data, 0);
for (i=0;i<nobs;i++) x[i] = data[21+i][1];

ac = imsls_f_autocorrelation(100, x, lagmax, 0);
partial = imsls_f_partial_autocorrelation(lagmax, ac, 0);
imsls_f_write_matrix("Lag PACF", 20, 1, partial, 0);

}

402 •••• lack_of_fit IMSL C/Stat/Library

Output
Lag PACF
1 0.806
2 -0.635
3 0.078
4 -0.059
5 -0.001
6 0.172
7 0.109
8 0.110
9 0.079

10 0.079
11 0.069
12 -0.038
13 0.081
14 0.033
15 -0.035
16 -0.131
17 -0.155
18 -0.119
19 -0.016
20 -0.004

lack_of_fit
Performs lack-of-fit test for a univariate time series or transfer function given the
appropriate correlation function.

Synopsis
#include <imsls.h>

float imsls_lack_of_fit (int n_observations, float cf[],
int lagmax, int npfree,..., 0)

Required Arguments
int n_observations (Input)

Number of observations of the stationary time series.

float cf[] (Input)
Array of length lagmax+1 containing the correlation function.

int lagmax (Input)
Maximum lag of the correlation function.

int npfree (Input)
Number of free parameters in the formulation of the time series model.
npfree must be greater than or equal to zero and less than lagmax.
Woodfield (1990) recommends npfree = p + q.

Chapter 8: Time Series and Forecasting lack_of_fit •••• 403

Return Value

Pointer to an array of length 2 with the test statistic, Q, and its p-value, p. Under
the null hypothesis, Q has an approximate chi-squared distribution with
lagmax-lagmin+1-npfree degrees of freedom.

Synopsis with Optional Arguments

 #include <imsls.h>

 float *imsls_f_lack_of_fit (int n_observations, float cf[], int
lagmax, int npfree,
IMSLS_RETURN_USER, float stat[],
IMSLS_LAGMIN, int lagmin,
0)

Optional Arguments
 IMSLS_RETURN_USER, float stat[] (Input)

User defined array for storage of lack-of-fit statistics.

 IMSLS_LAGMIN, int lagmin (Input)
Minimum lag of the correlation function. lagmin corresponds to the
lower bound of summation in the lack of fit test statistic. Default value
is 1.

Description
Routine imsls_f_lack_of_fit may be used to diagnose lack of fit in both
ARMA and transfer function models. Typical arguments for these situations are

Model LAGMIN LAGMAX NPFREE

ARMA (p, q) 1 NOBS p + q
Transfer function 0 NOBS r + s

Function imsls_f_lack_of_fit performs a portmanteau lack of fit test for a
time series or transfer function containing n observations given the appropriate
sample correlation function

�()ρ k

for k = L, L + 1, …, K where L = lagmin and K = lagmax.

The basic form of the test statistic Q is

Q n n n k k
k L

K

= + − −

=
�() () �()2 1ρ

with L = 1 if

404 •••• lack_of_fit IMSL C/Stat/Library

�ρ kb g
is an autocorrelation function. Given that the model is adequate, Q has a chi-
squared distribution with K − L + 1 − m degrees of freedom where m = npfree
is the number of parameters estimated in the model. If the mean of the time series
is estimated, Woodfield (1990) recommends not including this in the count of the
parameters estimated in the model. Thus, for an ARMA(p, q) model set npfree=
p + q regardless of whether the mean is estimated or not. The original derivation
for time series models is due to Box and Pierce (1970) with the above modified
version discussed by Ljung and Box (1978). The extension of the test to transfer
function models is discussed by Box and Jenkins (1976, pages 394�395).

Example
Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set
for this example consists of the number of sunspots observed from 1770 through
1869. An ARMA(2,1) with nonzero mean is fitted using routine imsls_f_arma
(page 371). The autocorrelations of the residuals are estimated using routine
imsls_f_autocorrelation (page 395). A portmanteau lack of fit test is
computed using 10 lags with imsls_f_lack_of_fit.

The warning message from imsls_f_arma in the output can be ignored.
(See the example for routine imsls_f_arma for a full explanation of the warning
message.)

#include <imsls.h>
#include <stdio.h>

void main()
{

int p = 2;
int q = 1;
int i;
int n_observations = 100;
int max_itereations = 0;
int lagmin = 1;
int lagmax = 10;
int npfree = 4;
float data[176][2], x[100];
float *parameters;
float *correlations;
float *residuals;
float tolerance = 0.125;
float *result;

/* Get sunspot data for 1770 through 1869, store it in x[]. */
imsls_f_data_sets(2, IMSLS_RETURN_USER, data, 0);
for (i=0;i<n_observations;i++) x[i] = data[21+i][1];

/* Get residuals from ARMA(2,1) for autocorrelation/lack of fit */
parameters = imsls_f_arma(n_observations, x, p, q,

IMSLS_LEAST_SQUARES,
IMSLS_CONVERGENCE_TOLERANCE, tolerance,

Chapter 8: Time Series and Forecasting garch •••• 405

IMSLS_RESIDUAL, &residuals,
0);

/* Get autocorrelations from residuals for lack of fit test */
/* NOTE: number of OBS is equal to number of residuals */

correlations = imsls_f_autocorrelation(n_observations-p+lagmax,
residuals, lagmax,

0);

/* Get lack of fit test statistic and p-value */
/* NOTE: number of OBS is equal to original number of data */

result = imsls_f_lack_of_fit(n_observations, correlations, lagmax,
npfree, 0);

/* Print parameter estimates, test statistic, and p-value */
/* NOTE: Test Statistic Q follows a Chi-squared dist. */

printf("Lack of Fit Statistic, Q = \t%3.5f\n P-value of Q
= \t %1.5f\n\n",result[0], result[1]);

}

Output

***WARNING ERROR IMSLS_LEAST_SQUARES_FAILED from imsls_f_arma. Least
*** squares estimation of the parameters has failed to converge.
*** Increase “length” and/or “tolerence” and/or
*** “convergence_tolerence”. The estimates of the parameters at
*** the last iteration may be used as new starting values.

Lack of Fit statistic (Q) = 14.572

P-value (PVALUE) = 0.9761

garch
Computes estimates of the parameters of a GARCH(p,q) model.

Synopsis
#include <imsls.h>

float *imsls_f_garch (int p, int q, int m, float y[], float xguess[],
�, 0)

The type double function is imsls_d_garch.

Required Arguments

int p (Input)
Number of autoregressive (AR) parameters

int q (Input)
Number of moving average (MA) parameters

406 •••• garch IMSL C/Stat/Library

int m (Input)
Length of the observed time series.

 float y[] (Input)
Array of length m containing the observed time series data.

float xguess[] (Input)
Array of length p + q + 1 containing the initial values for the
parameter array x[].

Return Value
Pointer to the parameter array x[] of length p + q + 1 containing the estimated
values of sigma squared, the AR parameters, and the MA parameters.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_garch (int p, int q, int m, float y[], float xguess[],
IMSLS_MAX_SIGMA, float max_sigma,

IMSLS_A, float *a,

IMSLS_AIC, float *aic,

IMSLS_VAR, float *var,

IMSLS_VAR_USER, float var[],

IMSLS_VAR_COL_DIM, int var_col_dim,

IMSLS_RETURN_USER, float x[],

0)

Optional Arguments
IMSLS_MAX_SIGMA, float max_sigma, (Input)

Value of the upperbound on the first element (sigma) of the array of returned
estimated coefficients. Default = 10.

IMSLS_A, float *a, (Output)
Value of Log-likelihood function evaluated at the estimated parameter
array x.

IMSLS_AIC, float *aic, (Output)
Value of Akaike Information Criterion evaluated at the estimated
parameter array x.

IMSLS_VAR, float *var, (Output)
Array of size (p+q+1)x(p+q+1) containing the variance-covariance
matrix.

IMSLS_VAR_USER, float var[], (Output)
Storage for array var is provided by the user.
See IMSLS_VAR.

Chapter 8: Time Series and Forecasting garch •••• 407

IMSLS_VAR_COL_DIM, int var_col_dim, (Input)
Column dimension (p+q+1)of the variance-covariance matrix.

IMSLS_RETURN_USER, float x[], (Output)
If specified, x returns an array of length p + q + 1 containing the
estimated values of sigma squared, the AR parameters, and the MA
parameters. Storage for estimated parameter array x is provided by the
user.

Description

The Generalized Autoregressive Conditional Heteroskedastic (GARCH) model is
defined as

y z

y

t t t

t i t i
i

p

i t i
i

q

=

= + +−
=

−
=

� �

σ

σ σ β σ α2 2 2

1 1

,

where zt�s are independent and identically distributed standard normal random
variables,

σ β α

β α

> ≥ ≥

+ <
= =
� �

0 0 0

1
1 1

, ,

.

i i

i
i

p

i
i

q

 and

The above model is denoted as GARCH(p,q). The p is the autoregressive lag and
the q is the moving average lag. When βi = 0, i = 1,2,�,p, the above model
reduces to ARCH(q) which was proposed by Engle (1982). The nonnegativity
conditions on the parameters implied a nonnegative variance and the condition on
the sum of the βi�s and α i�s is required for wide sense stationarity.

In the empirical analysis of observed data, GARCH(1,1) or GARCH(1,2) models
have often found to appropriately account for conditional heteroskedasticity
(Palm 1996). This finding is similar to linear time series analysis based on
ARMA models.

It is important to notice that for the above models positive and negative past
values have a symmetric impact on the conditional variance. In practice, many
series may have strong asymmetric influence on the conditional variance. To take
into account this phenomena, Nelson (1991) put forward Exponential GARCH
(EGARCH). Lai (1998) proposed and studied some properties of a general class
of models that extended linear relationship of the conditional variance in ARCH
and GARCH into nonlinear fashion.

The maximal likelihood method is used in estimating the parameters in
GARCH(p,q). The log-likelihood of the model for the observed series {Yt} with
length m is

408 •••• garch IMSL C/Stat/Library

log() log() / log ,

.

L m y

y

t t t
t

m

t

m

t i t i
i

p

i t i
i

q

= − −

= + +

==

−
=

−
=

��

� �

2
2 1

2
1
2

2 2 2

11

2 2 2

1

2

1

π σ σ

σ σ β σ αwhere

In the model, if q = 0, the model GARCH is singular such that the estimated
Hessian matrix H is singular.

The initial values of the parameter array x[] entered in array xguess[]must
satisfy certain constraints. The first element of xguess refers to sigma and must
be greater than zero and less than max_sigma. The remaining p+q initial values
must each be greater than or equal to zero but less than one.

To guarantee stationarity in model fitting,

x i
i

p q

() ,
=

+

� <
1

1

is checked internally. The initial values should selected from the values between
zero and one. The aic is computed by

 2 * log (L) + 2 * (p+q+1),

where log(L) is the value of the log-likelihood function at the estimated
parameters.

In fitting the optimal model, the subroutine imsls_min_con_gen_lin as well
as its associated subroutines are modified to find the maximal likelihood
estimates of the parameters in the model. Statistical inferences can be performed
outside the subroutine imsls_f_garch based on the output of the log-likelihood
function (a), the Akaike Information Criterion (aic), and the variance-
covariance matrix (var).

Example
The data for this example are generated to follow a GARCH(p,q) process by
using a random number generation function sgarch . The data set is analyzed
and estimates of sigma, the AR parameters, and the MA parameters are returned.
The values of the Log-likelihood function and the Akaike Information Criterion
are returned from the optional arguments IMSLS_A and IMSLS_AIC.

#include <imsls.h>
#include <math.h>

static void sgarch (int p, int q, int m, float x[],
float y[], float z[], float y0[], float sigma[]);

#define M 1000
#define N (P + Q + 1)
#define P 2
#define Q 1

Chapter 8: Time Series and Forecasting garch •••• 409

void main ()
{

int n, p, q, m;
float a, aic, wk1[M + 1000], wk2[M + 1000],

wk3[M + 1000], x[N], xguess[N], y[M];
float *result;

imsls_random_seed_set (182198625);
m = M;
p = P;
q = Q;
n = p+q+1;
x[0] = 1.3;
x[1] = .2;
x[2] = .3;
x[3] = .4;
xguess[0] = 1.0;
xguess[1] = .1;
xguess[2] = .2;
xguess[3] = .3;
sgarch (p, q, m, x, y, wk1, wk2, wk3);
result = imsls_f_garch(p, q, m, y, xguess,

IMSLS_A, &a,
IMSLS_AIC, &aic,
0);

printf("Sigma estimate is\t%11.4f\n", result[0]);
printf("AR(1) estimate is\t%11.4f\n", result[1]);
printf("AR(2) estimate is\t%11.4f\n", result[2]);
printf("MA(1) estimate is\t%11.4f\n", result[3]);
printf("\nLog-likelihood function value is\t%11.4f\n", a);
printf("Akaike Information Criterion value is\t%11.4f\n", aic);
return;

}

static void sgarch (int p, int q, int m, float x[],
float y[], float z[], float y0[], float sigma[])

{
int i, j, l;
float s1, s2, s3;

imsls_f_random_normal (m + 1000, IMSLS_RETURN_USER, z, 0);

l = imsls_i_max (p, q);
l = imsls_i_max (l, 1);
for (i = 0; i < l; i++) y0[i] = z[i] * x[0];

/* COMPUTE THE INITIAL VALUE OF SIGMA */
s3 = 0.0;
if (imsls_i_max (p, q) >= 1) {

for (i = 1; i < (p + q + 1); i++) s3 += x[i];
}
for (i = 0; i < l; i++) sigma[i] = x[0] / (1.0 - s3);

for (i = l; i < (m + 1000); i++) {
s1 = 0.0;
s2 = 0.0;
if (q >= 1) {

for (j = 0; j < q; j++)
s1 += x[j + 1] * y0[i - j - 1] * y0[i - j - 1];

410 •••• kalman IMSL C/Stat/Library

}
if (p >= 1) {

for (j = 0; j < p; j++)
s2 += x[q + 1 + j] * sigma[i - j - 1];

}
sigma[i] = x[0] + s1 + s2;
y0[i] = z[i] * sqrt (sigma[i]);

}
/*
* DISCARD THE FIRST 1000 SIMULATED OBSERVATIONS
*/

for (i = 0; i < m; i++) y[i] = y0[1000 + i];
return;

} /* end of function */

Output
Sigma estimate is 1.6480
AR(1) estimate is 0.2427
AR(2) estimate is 0.3175
MA(1) estimate is 0.3335

Log-likelihood function value is -2707.0903
Akaike Information Criterion value is 5422.1807

kalman
Performs Kalman filtering and evaluates the likelihood function for the state-
space model.

Synopsis
#include <imsls.h>

void imsls_f_kalman (int nb, float nb[], float covb[], int *n,
float *ss, float *alndet, ..., 0)

The type double function is imsls_d_kalman.

Required Arguments

int nb (Input)
Number of elements in the state vector.

float b[] (Input/Output)
Array of length nb containing the estimated state vector. The input is the
estimated state vector at time k given the observations through time
k − 1. The output is the estimated state vector at time k + 1 given the
observations through time k. On the first call to imsls_f_kalman, the
input b must be the prior mean of the state vector at time 1.

float covb[] (Input/Output)
Array of size nb by nb such that covb* σ� is the mean squared error
matrix for b.

Chapter 8: Time Series and Forecasting kalman •••• 411

Before the first call to imsls_f_kalman, covb * σ� must equal the
variance-covariance matrix of the state vector.

int *n (Input/Output)
Pointer to the rank of the variance-covariance matrix for all the
observations. n must be initialized to zero before the first call to
imsls_f_kalman. In the usual case when the variance-covariance
matrix is nonsingular, n equals the sum of the ny�s from the invocations
to imsls_f_kalman. See optional argument IMSLS_UPDATE below for
the definition of ny.

float *ss (Input/Output)
Pointer to the generalized sum of squares.
ss must be initialized to zero before the first call to imsls_f_kalman.

The estimate of σ� is given by ss
n

.

float *alndet (Input/Output)
Pointer to the natural log of the product of the nonzero eigenvalues of
P where P * σ� is the variance-covariance matrix of the observations.
Although alndet is computed, imsls_f_kalman avoids the explicit
computation of P. alndet must be initialized to zero before the first
call to imsls_f_kalman. In the usual case when P is nonsingular,
alndet is the natural log of the determinant of P.

Synopsis with Optional Arguments
#include <imsls.h>

voidt *imsls_f_random_sample (int nb, float nb[], float covb[],
 int *n, float *ss, float *alndet,
IMSLS_UPDATE, int ny, float *y, float *z, float *r,
IMSLS_Z_COL_DIM, int z_col_dim,
IMSLS_R_COL_DIM, int r_col_dim,
IMSLS_T, float *t,
IMSLS_T_COL_DIM, int t_col_dim,
IMSLS_Q, float *q,
IMSLS_Q_COL_DIM, int t_col_dim,
IMSLS_TOLERANCE, float tolerance,
IMSLS_V, float **v,
IMSLS_V_USER, float v[],
IMSLS_COVV, float **v,
IMSLS_COVV_USER, float v[],
 0)

Optional Arguments
IMSLS_UPDATE, int ny, float *y, float *z, float *r (Input)

Perform computation of the update equations.
ny: Number of observations for current update.

412 •••• kalman IMSL C/Stat/Library

y: Array of length ny containing the observations.

z: ny by nb array containing the matrix relating the observations to the
state vector in the observation equation.

r: ny by ny array containing the matrix such that r * σ� is the variance-
covariance matrix of errors in the observation equation.
σ� is a positive unknown scalar. Only elements in the upper triangle of r
are referenced.

IMSLS_Z_COL_DIM, int z_col_dim (Input)
Column dimension of the matrix z.
Default: z_col_dim = nb

IMSLS_R_COL_DIM, int r_col_dim (Input)
Column dimension of the matrix r.
Default: r_col_dim = ny

IMSLS_T, float *t (Input)
nb by nb transition matrix in the state equation
Default: t = identity matrix

IMSLS_T_COL_DIM, int r_col_dim (Input)
Column dimension of the matrix t.
Default: t_col_dim = nb

IMSLS_Q, float *q (Input)
nb by nb matrix such that q * σ� is the variance-covariance matrix of the
error vector in the state equation.
Default: There is no error term in the state equation.

IMSLS_Q_COL_DIM, int q_col_dim (Input)
Column dimension of the matrix q.
Default: q_col_dim = nb

IMSLS_TOLERANCE, float tolerance (Input)
Tolerance used in determining linear dependence.
Default: tolerance = 100.0*imsls_f_machine(4)

IMSLS_V, float **v (Output)
Address to a pointer v to an array of length ny containing the one-step-
ahead prediction error.

IMSLS_V_USER, float v[] (Output)
Storage for v is provided by the user. See IMSLS_V.

IMSLS_COVV, float **covv (Output)
The address to a pointer of size ny by ny containing a matrix such that
covv * σ� is the variance-covariance matrix of v.

IMSLS_COVV_USER, float covv[] (Output)
Storage for covv is provided by the user. See IMSLS_COVV.

Chapter 8: Time Series and Forecasting kalman •••• 413

Description
Routine imsls_f_kalman is based on a recursive algorithm given by Kalman
(1960), which has come to be known as the Kalman filter. The underlying model
is known as the state-space model. The model is specified stage by stage where
the stages generally correspond to time points at which the observations become
available. The routine imsls_f_kalman avoids many of the computations and
storage requirements that would be necessary if one were to process all the data at
the end of each stage in order to estimate the state vector. This is accomplished
by using previous computations and retaining in storage only those items essential
for processing of future observations.

The notation used here follows that of Sallas and Harville (1981). Let yk (input in
y using optional argument IMSLS_UPDATE) be the nk × 1 vector of observations
that become available at time k. The subscript k is used here rather than t, which
is more customary in time series, to emphasize that the model is expressed in
stages k = 1, 2, … and that these stages need not correspond to equally spaced
time points. In fact, they need not correspond to time points of any kind. The
observation equation for the state-space model is

yk = Zkbk + ek k = 1, 2, …

Here, Zk (input in z using optional argument IMSLS_UPDATE) is an nk × q known
matrix and bk is the q × 1 state vector. The state vector bk is allowed to change
with time in accordance with the state equation

bk�� = Tk��bk + wk�� k = 1, 2, …

starting with b� = µ� + w�.

The change in the state vector from time k to k + 1 is explained in part by the
transition matrix Tk�1 (the identity matrix by default, or optionally input using
IMSLS_T), which is assumed known. It is assumed that the q-dimensional wks
(k = 1, 2,�) are independently distributed multivariate normal with mean vector
0 and variance-covariance matrix σ2Qk, that the nk-dimensional eks (k = 1, 2,�)
are independently distributed multivariate normal with mean vector 0 and
variance-covariance matrix σ2Rk, and that the wks and eks are independent of
each other. Here, µ�is the mean of b� and is assumed known, σ2 is an unknown
positive scalar. Qk+1(input in Q) and Rk (input in R) are assumed known.

Denote the estimator of the realization of the state vector bk given the
observations y�, y�, �, yj by

�
|βk j

By definition, the mean squared error matrix for
�
|βk j

is

σ β β2C E b bk j k j k k j k
T= − −(�)(�)

414 •••• kalman IMSL C/Stat/Library

At the time of the k-th invocation, we have
�βk k−1

and

Ck|k��, which were computed from the (k−1)-st invocation, input in b and covb,
respectively. During the k-th invocation, routine imsls_f_kalman computes the
filtered estimate

�
|βk k

along with Ck|k. These quantities are given by the update equations:
� �β βk k k k k k k

T
k k

k k k k k k k
T

k k k k

C Z H v

C C C Z H Z C

= +

= −

− −
−

− −
−

−

1 1
1

1 1
1

1

where

v y Zk k k k k= − −
�β 1

and where

H R Z C Zk k k k k k
T= + −1

Here, vk (stored in v) is the one-step-ahead prediction error, and σ2Hk is the
variance-covariance matrix for vk. Hk is stored in covv. The �start-up values�
needed on the first invocation of imsls_f_kalman are

�β µ10 1=

and C��� = Q� input via b and covb, respectively. Computations for the k-th
invocation are completed by imsls_f_kalman computing the one-step-ahead
estimate

�βk k+1

along with Ck��|k given by the prediction equations:
� �β βk k k k k

k k k k k k
T

k

T

C T C T Q

+ +

+ + + +

=

= +

1 1

1 1 1 1

If both the filtered estimates and one-step-ahead estimates are needed by the user
at each time point, imsls_f_kalman can be invoked twice for each time point�
first without IMSLS_T and IMSLS_Q to produce

�βk k

and Ck|k, and second without IMSLS_UPDATE to produce

414 •••• kalman IMSL C/Stat/Library

At the time of the k-th invocation, we have
�βk k−1

and

Ck|k��, which were computed from the (k−1)-st invocation, input in b and covb,
respectively. During the k-th invocation, routine imsls_f_kalman computes the
filtered estimate

�
|βk k

along with Ck|k. These quantities are given by the update equations:
� �β βk k k k k k k

T
k k

k k k k k k k
T

k k k k

C Z H v

C C C Z H Z C

= +

= −

− −
−

− −
−

−

1 1
1

1 1
1

1

where

v y Zk k k k k= − −
�β 1

and where

H R Z C Zk k k k k k
T= + −1

Here, vk (stored in v) is the one-step-ahead prediction error, and σ�Hk is the
variance-covariance matrix for vk. Hk is stored in covv. The �start-up values�
needed on the first invocation of imsls_f_kalman are

�β µ10 1=

and C��� = Q� input via b and covb, respectively. Computations for the k-th
invocation are completed by imsls_f_kalman computing the one-step-ahead
estimate

�βk k+1

along with Ck��|k given by the prediction equations:
� �β βk k k k k

k k k k k k
T

k

T

C T C T Q

+ +

+ + + +

=

= +

1 1

1 1 1 1

If both the filtered estimates and one-step-ahead estimates are needed by the user
at each time point, imsls_f_kalman can be invoked twice for each time point�
first without IMSLS_T and IMSLS_Q to produce

�βk k

and Ck|k, and second without IMSLS_UPDATE to produce

Chapter 8: Time Series and Forecasting kalman •••• 415

�βk k+1

and Ck��|k (Without IMSLS_T and IMSLS_Q, the prediction equations are
skipped. Without IMSLS_UPDATE, the update equations are skipped.).

Often, one desires the estimate of the state vector more than one-step-ahead, i.e.,
an estimate of

�βk j

is needed where k > j + 1. At time j, imsls_f_kalman is invoked with
IMSLS_UPDATE to compute

�β j j+1

Subsequent invocations of imsls_f_kalman without IMSLS_UPDATE can
compute

2 3
� � �, , ...,j j j j k j+ +β β β

Computations for
�βk j

and Ck�j assume the variance-covariance matrices of the errors in the observation
equation and state equation are known up to an unknown positive scalar
multiplier, σ2. The maximum likelihood estimate of σ2 based on the observations
y�, y�, �, ym, is given by

� /σ2 = SS N

where
N n SS v H vk

m
k k

m
k
T

k k= � = �= =
−

1 1
1and

N and SS are the input/output arguments n and ss.

If σ2 is known, the Rks and Qks can be input as the variance-covariance matrices
exactly. The earlier discussion is then simplified by letting σ2 = 1.

In practice, the matrices Tk, Qk, and Rk are generally not completely known. They
may be known functions of an unknown parameter vector θ. In this case,
imsls_f_kalman can be used in conjunction with an optimization program (see
routine imsl_f_min_uncon_multivar, IMSL C/Math/Library, Chapter 8,
�Optimization�) to obtain a maximum likelihood estimate of θ. The natural
logarithm of the likelihood function for y�, y�, �, ym differs by no more than an
additive constant from

2 2
1 2

2 1

1 1

1
(, ; , , ...,) ln

2
1 1

ln[det()]
2 2

m

m m
T

k k k k
k k

L y y y N

H v H v− −

= =

θ σ = − σ

− − σ� �

416 •••• kalman IMSL C/Stat/Library

(Harvey 1981, page 14, equation 2.21).

Here,

� k
m

kH=1 ln det[()]

(stored in alndet) is the natural logarithm of the determinant of V where σ2V is
the variance-covariance matrix of the observations.

Minimization of −2L(θ, σ2; y�, y�, …, ym) over all θ and σ2 produces maximum
likelihood estimates. Equivalently, minimization of −2Lc(θ; y�, y�, �, ym) where

()1 2

1

1 1
; ,

2 2
,..., [()]c

m

m k
k

SS
L y y N ln

N
y ln det H

=
θ − −� �= � �

� �
�

produces maximum likelihood estimates
� � /θ σ and 2 = SS N

The minimization of −2Lc(θ; y�, y�, …, ym) instead of −2L(θ, σ2; y�, y�, …, ym),
reduces the dimension of the minimization problem by one. The two optimization
problems are equivalent since

� () () /� � �
2

� SS N

minimizes −2L(θ, σ2; y�, y�, …, ym) for all θ, consequently,

� ()� �
2

can be substituted for σ2 in L(θ, σ2; y�, y�, …, ym) to give a function that differs
by no more than an additive constant from Lc(θ; y�, y�, �, ym).

The earlier discussion assumed Hk to be nonsingular. If Hk is singular, a
modification for singular distributions described by Rao (1973, pages 527�528) is
used. The necessary changes in the preceding discussion are as follows:
1. Replace

Hk
−1

by a generalized inverse.
2. Replace det(Hk) by the product of the nonzero eigenvalues of Hk.
3. Replace N by

rank Hkk

m b g
=� 1

Maximum likelihood estimation of parameters in the Kalman filter is discussed by
Sallas and Harville (1988) and Harvey (1981, pages 111�113).

Example 1
Routine imsls_f_kalman is used to compute the filtered estimates and one-
step-ahead estimates for a scalar problem discussed by Harvey (1981, pages
116�117). The observation equation and state equation are given by

Chapter 8: Time Series and Forecasting kalman •••• 417

y b e
b b w k
k k k

k k k

= +
= + =+ +1 1 1 2 3 4, , ,

where the eks are identically and independently distributed normal with mean 0
and variance σ2, the wks are identically and independently distributed normal
with mean 0 and variance 4σ2, and b�is distributed normal with mean 4 and
variance 16σ2. Two invocations of imsls_f_kalman are needed for each time
point in order to compute the filtered estimate and the one-step-ahead estimate.
The first invocation does not use the optional arguments IMSLS_T and IMSLS_Q
so that the prediction equations are skipped in the computations. The update
equations are skipped in the computations in the second invocation.

This example also computes the one-step-ahead prediction errors. Harvey (1981,
page 117) contains a misprint for the value v� that he gives as 1.197. The correct
value of v� = 1.003 is computed by imsls_f_kalman.

.
#include <stdio.h>
#include <imsls.h>

#define NB 1
#define NOBS 4
#define NY 1

void main()
{

int nb = NB, nobs = NOBS, ny = NY;
int ldcovb, ldcovv, ldq, ldr, ldt, ldz;
int i, iq, it, n, nout;
float alndet, b[NB], covb[NB][NB], covv[NY][NY],

q[NB][NB], r[NY][NY], ss,
t[NB][NB], tol, v[NY], y[NY], z[NY][NB];

float ydata[] = {4.4, 4.0, 3.5, 4.6};

z[0][0] = 1.0;
r[0][0] = 1.0;
q[0][0] = 4.0;
t[0][0] = 1.0;
b[0] = 4.0;
covb[0][0] = 16.0;

/* Initialize arguments for initial call to imsl_f_kalman. */
n = 0;
ss = 0.0;
alndet = 0.0;
printf("k/j b covb n ss alndet v covv\n");

for (i = 0; i < nobs; i++) {
/* Update */
y[0] = ydata[i];
imsls_f_kalman(nb, b, (float*)covb, &n, &ss, &alndet,

IMSLS_UPDATE, ny, y, z, r,
IMSLS_V_USER, v,
IMSLS_COVV_USER, covv,
0);

418 •••• kalman IMSL C/Stat/Library

printf("%d/%d %8.3f %8.3f %d %8.3f %8.3f %8.3f %8.3f\n",
i, i, b[0], covb[0][0], n, ss, alndet, v[0], covv[0][0]);

/* Prediction */
imsls_f_kalman(nb, b, (float*)covb, &n, &ss, &alndet,

IMSLS_T, t,
IMSLS_Q, q,
0);

printf("%d/%d %8.3f %8.3f %d %8.3f %8.3f %8.3f %8.3f\n",
i+1, i, b[0], covb[0][0], n, ss, alndet, v[0], covv[0][0]);

}

}

Output
k/j b covb n ss alndet v covv
0/0 4.376 0.941 1 0.009 2.833 0.400 17.000
1/0 4.376 4.941 1 0.009 2.833 0.400 17.000
1/1 4.063 0.832 2 0.033 4.615 -0.376 5.941
2/1 4.063 4.832 2 0.033 4.615 -0.376 5.941
2/2 3.597 0.829 3 0.088 6.378 -0.563 5.832
3/2 3.597 4.829 3 0.088 6.378 -0.563 5.832
3/3 4.428 0.828 4 0.260 8.141 1.003 5.829
4/3 4.428 4.828 4 0.260 8.141 1.003 5.829

Example 2
Routine imsls_f_kalman is used with routine
imsl_f_min_uncon_multivar, (see IMSL C/Math/Library, Chapter 8,
�Optimization�) to find a maximum likelihood estimate of the parameter θ in a
MA(1) time series represented by yk = εk − θεk��. Routine
imsls_f_random_arma (see IMSL C/Stat/Library, Chapter 12, �Random
Number Generation�) is used to generate 200 random observations from an
MA(1) time series with θ = 0.5 and σ2 = 1.

The MA(1) time series is cast as a state-space model of the following form (see
Harvey 1981, pages 103�104, 112):

y b

b b w

k k

k k k

=

=
F
HG
I
KJ +−

1 0

0 1
0 0 1

b g

where the two-dimensional wks are independently distributed bivariate normal
with mean 0 and variance σ2 Qk and

2

1 2

2

1

1
2, 3, ..., 200k

Q

Q k

+ θ −θ
=

−θ θ

−θ
= =

−θ θ

� �
� �
� �

� �
� �
� �

Chapter 8: Time Series and Forecasting kalman •••• 419

The warning error that is printed as part of the output is not serious and indicates
that imsl_f_min_uncon_multivar is generally used for multi-parameter
minimization.

#include <stdio.h>
#include <math.h>
#include <imsls.h>

#define NOBS 200
#define NTHETA 1
#define NB 2
#define NY 1

float fcn(int ntheta, float theta[]);
float *ydata;
void main ()
{

int lagma[1];
float pma[1];
float *theta;

imsls_random_seed_set(123457);
pma[0] = 0.5;
lagma[0] = 1;
ydata = imsls_f_random_arma(200, 0, NULL, 1, pma,

IMSLS_ACCEPT_REJECT_METHOD,
IMSLS_NONZERO_MALAGS, lagma,
0);

theta = imsl_f_min_uncon_multivar(fcn, NTHETA, 0);

printf("* * * Final Estimate for THETA * * *\n");
printf("Maximum likelihood estimate, THETA = %f\n", theta[0]);

}

float fcn(int ntheta, float theta[])
{

int i, n;
float res, ss, alndet;
float t[] = {0.0, 1.0, 0.0, 0.0};
float z[] = {1.0, 0.0};
float q[NB][NB], r[NY][NY], b[NB], covb[NB][NB], y[NY];
if (fabs(theta[0]) > 1.0) {
res = 1.0e10;

} else {
q[0][0] = 1.0;
q[0][1] = -theta[0];
q[1][0] = -theta[0];
q[1][1] = theta[0]*theta[0];

r[0][0] = 0.0;

b[0] = 0.0;
b[1] = 0.0;

covb[0][0] = 1.0 + theta[0]*theta[0];
covb[0][1] = -theta[0];

420 •••• kalman IMSL C/Stat/Library

covb[1][0] = -theta[0];
covb[1][1] = theta[0]*theta[0];

n = 0;
ss = 0.0;
alndet = 0.0;

for (i = 0; i<NOBS; i++) {
y[0] = ydata[i];
imsls_f_kalman(NB, b, (float*)covb, &n, &ss, &alndet,

IMSLS_UPDATE, NY, y, z, r,
IMSLS_Q, q,
IMSLS_T, t,
0);

}
res = n*log(ss/n) + alndet;

}
return(res);

}

Output

*** WARNING_IMMEDIATE Error from imsl_f_min_uncon_multivar. This routine
*** may be inefficient for a problem of size "n" = 1.

*** WARNING_IMMEDIATE Error from imsl_f_min_uncon_multivar. The last global
*** step failed to locate a lower point than the current X value.
*** The current X may be an approximate local minimizer and no more
*** accuracy is possible or the step tolerance may be too large
*** where "step_tol" = 2.422181e-05 is given.

* * * Final Estimate for THETA * * *
Maximum likelihood estimate, THETA = 0.453256

Chapter 9: Multivariate Analysis Routines •••• 421

Chapter 9: Multivariate Analysis

Routines
Perform a K-means (centroid) cluster analysis cluster_k_means 422
Compute principal components.....................principal_components 427
Extract factor-loading estimates...............................factor_analysis 433
Perform discriminant function analysis........... discriminant analysis 444

Usage Notes
Cluster Analysis
Function imsls_f_cluster_k_means performs a K-means cluster analysis.
Basic K-means clustering attempts to find a clustering that minimizes the within-
cluster sums-of-squares. In this method of clustering the data, matrix X is grouped
so that each observation (row in X) is assigned to one of a fixed number, K, of
clusters. The sum of the squared difference of each observation about its assigned
cluster�s mean is used as the criterion for assignment. In the basic algorithm,
observations are transferred from one cluster or another when doing so decreases
the within-cluster sums-of-squared differences. When no transfer occurs in a pass
through the entire data set, the algorithm stops. Function
imsls_f_cluster_k_means is one implementation of the basic algorithm.

The usual course of events in K-means cluster analysis is to use
imsls_f_cluster_k_means to obtain the optimal clustering. The clustering is
then evaluated by functions described in Chapter 1, �Basic Statistics,� and/or
other chapters in this manual. Often, K-means clustering with more than one value
of K is performed, and the value of K that best fits the data is used.

Clustering can be performed either on observations or variables. The discussion
of the function imsls_f_cluster_k_means assumes the clustering is to be
performed on the observations, which correspond to the rows of the input
data matrix. If variables, rather than observations, are to be clustered, the
data matrix should first be transposed. In the documentation for
imsls_f_cluster_k_means, the words �observation� and �variable� are
interchangeable.

422 •••• cluster_k_means IMSL C/Stat/Library

Principal Components
The idea in principal components is to find a small number of linear combinations
of the original variables that maximize the variance accounted for in the original
data. This amounts to an eigensystem analysis of the covariance (or correlation)
matrix. In addition to the eigensystem analysis,
imsls_f_principal_components computes standard errors for the
eigenvalues. Correlations of the original variables with the principal component
scores also are computed.

Factor Analysis
Factor analysis and principal component analysis, while quite different in
assumptions, often serve the same ends. Unlike principal components in which
linear combinations yielding the highest possible variances are obtained, factor
analysis generally obtains linear combinations of the observed variables
according to a model relating the observed variable to hypothesized underlying
factors, plus a random error term called the unique error or uniqueness. In factor
analysis, the unique errors associated with each variable are usually assumed to
be independent of the factors. Additionally, in the common factor model, the
unique errors are assumed to be mutually independent. The factor analysis model
is expressed in the following equation:

x − µ = Λf + e

where x is the p vector of observed values, µ is the p vector of variable means,
Λ is the p × k matrix of factor loadings, f is the k vector of hypothesized
underlying random factors, e is the p vector of hypothesized unique random
errors, p is the number of variables in the observed variables, and k is the number
of factors.

Because much of the computation in factor analysis was originally done by hand
or was expensive on early computers, quick (but dirty) algorithms that made the
calculations possible were developed. One result is the many factor extraction
methods available today. Generally speaking, in the exploratory or model
building phase of a factor analysis, a method of factor extraction that is not
computationally intensive (such as principal components, principal factor, or
image analysis) is used. If desired, a computationally intensive method is then
used to obtain the final factors.

cluster_k_means
Performs a K-means (centroid) cluster analysis.

Synopsis
#include <imsls.h>

Chapter 9: Multivariate Analysis cluster_k_means •••• 423

int *imsls_f_cluster_k_means (int n_observations,
int n_variables, float x[], int n_clusters,
float cluster_seeds, ..., 0)

The type double function is imsls_d_cluster_k_means.

Required Arguments

int n_observations (Input)
Number of observations.

int n_variables (Input)
Number of variables to be used in computing the metric.

float x[] (Input)
Array of length n_observations × n_variables containing the
observations to be clustered.

int n_clusters (Input)
Number of clusters.

float cluster_seeds[] (Input)
Array of length n_clusters × n_variables containing the cluster
seeds, i.e., estimates for the cluster centers.

Return Value
The cluster membership for each observation is returned.

Synopsis with Optional Arguments
#include <imsls.h>

int *imsls_f_cluster_k_means (int n_observations,
int n_variables, float x[], int n_clusters,
float cluster_seeds,
IMSLS_WEIGHTS, float weights[],
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_CLUSTER_MEANS, float **cluster_means,
IMSLS_CLUSTER_MEANS_USER, float cluster_means[],
IMSLS_CLUSTER_SSQ, float **cluster_ssq,
IMSLS_CLUSTER_SSQ_USER, float cluster_ssq[],
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_CLUSTER_MEANS_COL_DIM,

int cluster_means_col_dim,
IMSLS_CLUSTER_SEEDS_COL_DIM,

int cluster_seeds_col_dim,
IMSLS_CLUSTER_COUNTS, int **cluster_counts,
IMSLS_CLUSTER_COUNTS_USER, int cluster_counts[],
IMSLS_CLUSTER_VARIABLE_COLUMNS,

int cluster_variables[],

424 •••• cluster_k_means IMSL C/Stat/Library

IMSLS_RETURN_USER, int cluster_group[],
0)

Optional Arguments
IMSLS_WEIGHTS, float weights[] (Input)

Array of length n_observations containing the weight of each
observation of matrix x.
Default: weights [] = 1

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_observations containing the frequency of each
observation of matrix x.
Default: frequencies [] = 1

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations.
Default: max_iterations = 30

IMSLS_CLUSTER_MEANS, float **cluster_means (Output)
The address of a pointer to an internally allocated array of length
n_clusters × n_variables containing the cluster means.

IMSLS_CLUSTER_MEANS_USER, float cluster_means[] (Output)
Storage for array cluster_means is provided by the user. See
IMSLS_CLUSTER_MEANS.

IMSLS_CLUSTER_SSQ, float **cluster_ssq (Output)
The address of a pointer to internally allocated array of length
n_clusters containing the within sum-of-squares for each cluster.

IMSLS_CLUSTER_SSQ_USER, float cluster_ssq[] (Output)
Storage for array cluster_ssq is provided by the user. See
IMSLS_CLUSTER_SSQ.

IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of x.
Default: x_col_dim = n_variables

IMSLS_CLUSTER_MEANS_COL_DIM, int cluster_means_col_dim (Input)
Column dimension for the vector cluster_means.
Default: cluster_means_col_dim = n_variables

IMSLS_CLUSTER_SEEDS_COL_DIM, int cluster_seeds_col_dim (Input)
Column dimension for the vector cluster_seeds.
Default: cluster_seeds_col_dim = n_variables

IMSLS_CLUSTER_COUNTS, int **cluster_counts (Output)
The address of a pointer to an internally allocated array of length
n_clusters containing the number of observations in each cluster.

Chapter 9: Multivariate Analysis cluster_k_means •••• 425

IMSLS_CLUSTER_COUNTS_USER, int cluster_counts[] (Output)
Storage for array cluster_counts is provided by the user. See
IMSLS_CLUSTER_COUNTS.

IMSLS_CLUSTER_VARIABLE_COLUMNS, int cluster_variables[] (Input)
Vector of length n_variables containing the columns of x to be used
in computing the metric. Columns are numbered 0, 1, 2, ...,
n_variables

Default: cluster_variables [] = 0, 1, 2, …, n_variables

IMSLS_RETURN_USER, int cluster_group[] (Output)
User-allocated array of length n_observations containing the cluster
membership for each observation.

Description
Function imsls_f_cluster_k_means is an implementation of Algorithm
AS 136 by Hartigan and Wong (1979). It computes K-means (centroid) Euclidean
metric clusters for an input matrix starting with initial estimates of the K-cluster
means. The function allows for missing values coded as NaN (Not a Number) and
for weights and frequencies.

Let p = n_variables be the number of variables to be used in computing the
Euclidean distance between observations. The idea in K-means cluster analysis is
to find a clustering (or grouping) of the observations so as to minimize the total
within-cluster sums-of-squares. In this case, the total sums-of-squares within each
cluster is computed as the sum of the centered sum-of-squares over all
nonmissing values of each variable. That is,

()2

, ,
1 1 1

i

im im im im

K

j

np

v v v v j ij
i j m

f w x x
= = =

φ = δ −�� �

where νim denotes the row index of the m-th observation in the i-th cluster in the
matrix X; ni is the number of rows of X assigned to group i; f denotes the
frequency of the observation; w denotes its weight; δ is 0 if the j-th variable on
observation νim is missing, otherwise δ is 1; and

xij

is the average of the nonmissing observations for variable j in group i. This
method sequentially processes each observation and reassigns it to another cluster
if doing so results in a decrease of the total within-cluster sums-of-squares. See
Hartigan and Wong (1979) or Hartigan (1975) for details.

Example
This example performs K-means cluster analysis on Fisher�s iris data, which is
obtained by function imsls_f_data_sets (Chapter 14). The initial cluster seed
for each iris type is an observation known to be in the iris type.

#include <stdio.h>

426 •••• cluster_k_means IMSL C/Stat/Library

#include <imsls.h>

main()
{
#define N_OBSERVATIONS 150
#define N_VARIABLES 4
#define N_CLUSTERS 3

float x[N_OBSERVATIONS][5];
float cluster_seeds[N_CLUSTERS][N_VARIABLES];
float cluster_means[N_CLUSTERS][N_VARIABLES];
float cluster_ssq[N_CLUSTERS];
int cluster_variables[N_VARIABLES] = {1, 2, 3, 4};
int cluster_counts[N_CLUSTERS];
int cluster_group[N_OBSERVATIONS];
int i;

/* Retrieve the data set */
imsls_f_data_sets(3, IMSLS_RETURN_USER, x, 0);

/* Assign initial cluster seeds */
for (i=0; i<N_VARIABLES; i++) {

cluster_seeds[0][i] = x[0][i+1];
cluster_seeds[1][i] = x[50][i+1];
cluster_seeds[2][i] = x[100][i+1];

}

/* Perform the analysis */
imsls_f_cluster_k_means(N_OBSERVATIONS, N_VARIABLES, x,

N_CLUSTERS, cluster_seeds,
IMSLS_X_COL_DIM, 5,
IMSLS_CLUSTER_VARIABLE_COLUMNS, cluster_variables,
IMSLS_CLUSTER_COUNTS_USER, cluster_counts,
IMSLS_CLUSTER_MEANS_USER, cluster_means,
IMSLS_CLUSTER_SSQ_USER, cluster_ssq,
IMSLS_RETURN_USER, cluster_group,
0);

/* Print results */
imsls_i_write_matrix("Cluster Membership", 1, N_OBSERVATIONS,

cluster_group, 0);
imsls_f_write_matrix("Cluster Means", N_CLUSTERS, N_VARIABLES,

cluster_means, 0);
imsls_f_write_matrix("Cluster Sum of Squares", 1, N_CLUSTERS,

cluster_ssq, 0);
imsls_i_write_matrix("# Observations in Each Cluster", 1,

N_CLUSTERS, cluster_counts, 0);
}

Cluster Membership
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1 1 1 1 1 1 1 1 1 1 2 2 3 2 2 2 2 2 2 2

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2

Chapter 9: Multivariate Analysis principal_components •••• 427

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
2 3 2 3 3 3 3 2 3 3 3 3 3 3 2 2

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
3 3 3 3 2 3 2 3 2 3 3 2 2 3 3 3

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
3 3 2 3 3 3 3 2 3 3 3 2 3 3 3 2

148 149 150
3 3 2

Cluster Means
1 2 3 4

1 5.006 3.428 1.462 0.246
2 5.902 2.748 4.394 1.434
3 6.850 3.074 5.742 2.071

Cluster Sum of Squares
1 2 3

15.15 39.82 23.88

Observations in Each Cluster
1 2 3
50 62 38

Warning Errors
IMSLS_NO_CONVERGENCE Convergence did not occur.

principal_components
Computes principal components.

Synopsis

#include <imsls.h>

float *imsls_f_principal_components (int n_variables,
float covariances[], ..., 0)

The type double function is imsls_d_principal_components.

Required Arguments

int n_variables (Input)
Order of the covariance matrix.

float covariances[] (Input)
Array of length n_variables × n_variables containing the
covariance or correlation matrix.

428 •••• principal_components IMSL C/Stat/Library

Return Value
An array of length n_variables containing the eigenvalues of the matrix
covariances ordered from largest to smallest.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_principal_components (int n_variables,
float covariances[],
IMSLS_COVARIANCE_MATRIX, or
IMSLS_CORRELATION_MATRIX,
IMSLS_CUM_PERCENT, float **cum_percent,
IMSLS_CUM_PERCENT_USER, float cum_percent[],
IMSLS_EIGENVECTORS, float **eigenvectors,
IMSLS_EIGENVECTORS_USER, float eigenvectors[],
IMSLS_CORRELATIONS, float **correlations,
IMSLS_CORRELATIONS_USER, float correlations[],
IMSLS_STD_DEV, int n_degrees_freedom, float **std_dev,
IMSLS_STD_DEV_USER, int n_degrees_freedom,

float std_dev[],
IMSLS_COV_COL_DIM, int cov_col_dim,
IMSLS_RETURN_USER, float eigenvalues[],
0)

Optional Arguments
IMSLS_COVARIANCE_MATRIX

Treat the input vector covariances as a covariance matrix. This option
is the default.
or

IMSLS_CORRELATION_MATRIX

Treat the input vector covariances as a correlation matrix.

IMSLS_CUM_PERCENT, float **cum_percent (Output)
The address of a pointer to an internally allocated array of length
n_variables containing the cumulative percent of the total variances
explained by each principal component.

IMSLS_CUM_PERCENT_USER, float cum_percent[] (Output)
Storage for array cum_percent is provided by the user. See
IMSLS_CUM_PERCENT.

IMSLS_EIGENVECTORS, float **eigenvectors (Output)
The address of a pointer to an internally allocated array of length
n_variables × n_variables containing the eigenvectors of
covariances, stored columnwise. Each vector is normalized to have
Euclidean length equal to the value one. Also, the sign of each vector is
set so that the largest component in magnitude (the first of the largest if
there are ties) is made positive.

Chapter 9: Multivariate Analysis principal_components •••• 429

IMSLS_EIGENVECTORS_USER, float eigenvectors[] (Output)
Storage for array eigenvectors is provided by the user. See
IMSLS_EIGENVECTORS.

IMSLS_CORRELATIONS, float **correlations (Output)
The address of a pointer to an internally allocated array of length
n_variables * n_variables containing the correlations of the
principal components (the columns) with the observed/standardized
variables (the rows). If IMSLS_COVARIANCE_MATRIX is specified, then
the correlations are with the observed variables. Otherwise, the
correlations are with the standardized (to a variance of 1.0) variables. In
the principal component model for factor analysis, matrix
correlations is the matrix of unrotated factor loadings.

IMSLS_CORRELATIONS_USER, float correlations[] (Output)
Storage for array correlations is provided by the user. See
IMSLS_CORRELATIONS.

IMSLS_STD_DEV, int n_degrees_freedom, float **std_dev

(Input/Output)
Argument n_degrees_freedom contains the number of degrees of
freedom in covariances. Argument std_dev is the address of a
pointer to an internally allocated array of length n_variables
containing the estimated asymptotic standard errors of the eigenvalues.

IMSLS_STD_DEV_USER, int n_degrees_freedom, float std_dev[]

(Input/Output)
Storage for array std_dev is provided by the user. See
IMSLS_STD_DEV.

IMSLS_COV_COL_DIM int cov_col_dim (Input)
Column dimension of covariances.
Default: cov_col_dim = n_variables

IMSLS_RETURN_USER, float eigenvalues[] (Output)
User-supplied array of length n_variables containing the eigenvalues
of covariances ordered from largest to smallest.

Description
Function imsls_f_principal_components finds the principal components of
a set of variables from a sample covariance or correlation matrix. The
characteristic roots, characteristic vectors, standard errors for the characteristic
roots, and the correlations of the principal component scores with the original
variables are computed. Principal components obtained from correlation matrices
are the same as principal components obtained from standardized (to unit
variance) variables.

The principal component scores are the elements of the vector y = ΓTx, where
Γ is the matrix whose columns are the characteristic vectors (eigenvectors) of the
sample covariance (or correlation) matrix and x is the vector of observed (or

430 •••• principal_components IMSL C/Stat/Library

standardized) random variables. The variances of the principal component scores
are the characteristic roots (eigenvalues) of the covariance (correlation) matrix.

Asymptotic variances for the characteristic roots were first obtained by Girschick
(1939) and are given more recently by Kendall et al. (1983, p. 331). These
variances are computed either for covariance matrices or for correlation matrices.

The correlations of the principal components with the observed (or standardized)
variables are given in the matrix correlations. When the principal
components are obtained from a correlation matrix, correlations is the same
as the matrix of unrotated factor loadings obtained for the principal components
model for factor analysis.

Examples

Example 1
In this example, eigenvalues of the covariance matrix are computed.

#include <stdio.h>
#include <imsls.h>
#include <stdlib.h>

main()
{
#define N_VARIABLES 9

float *values;
static float covariances[N_VARIABLES][N_VARIABLES] = {

1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505,
0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409,
0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,
0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,
0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,
0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0};

/* Perform analysis */
values = imsls_f_principal_components(N_VARIABLES, covariances, 0);

/* Print results. */
imsls_f_write_matrix("Eigenvalues", 1, N_VARIABLES, values, 0);

/* Free allocated memory. */
free(values);

}

Output
Eigenvalues

1 2 3 4 5 6
4.677 1.264 0.844 0.555 0.447 0.429

7 8 9
0.310 0.277 0.196

Chapter 9: Multivariate Analysis principal_components •••• 431

Example 2
In this example, principal components are computed for a nine-variable
correlation matrix.

#include <stdio.h>
#include <imsls.h>
#include <stdlib.h>

main()
{
#define N_VARIABLES 9

float *values, *eigenvectors, *std_dev, *cum_percent, *a;
static float covariances[N_VARIABLES][N_VARIABLES] = {

1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505,
0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409,
0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,
0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,
0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,
0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0};

/* Perform analysis */
values = imsls_f_principal_components(N_VARIABLES, covariances,

IMSLS_CORRELATION_MATRIX,
IMSLS_EIGENVECTORS, &eigenvectors,
IMSLS_STD_DEV, 100, &std_dev,
IMSLS_CUM_PERCENT, &cum_percent,
IMSLS_CORRELATIONS, &a,
0);

/* Print results */
imsls_f_write_matrix("Eigenvalues", 1, N_VARIABLES, values, 0);
imsls_f_write_matrix("Eigenvectors", N_VARIABLES, N_VARIABLES,

eigenvectors, 0);
imsls_f_write_matrix("STD", 1, N_VARIABLES, std_dev, 0);
imsls_f_write_matrix("PCT", 1, N_VARIABLES, cum_percent, 0);
imsls_f_write_matrix("A", N_VARIABLES, N_VARIABLES, a, 0);

/* Free allocated memory */
free(values);
free(eigenvectors);
free (cum_percent);
free (std_dev);
free(a);

}

Output
Eigenvalues

1 2 3 4 5 6
4.677 1.264 0.844 0.555 0.447 0.429

7 8 9
0.310 0.277 0.196

432 •••• principal_components IMSL C/Stat/Library

Eigenvectors
1 2 3 4 5 6

1 0.3462 -0.2354 0.1386 -0.3317 -0.1088 0.7974
2 0.3526 -0.1108 -0.2795 -0.2161 0.7664 -0.2002
3 0.2754 -0.2697 -0.5585 0.6939 -0.1531 0.1511
4 0.3664 0.4031 0.0406 0.1196 0.0017 0.1152
5 0.3144 0.5022 -0.0733 -0.0207 -0.2804 -0.1796
6 0.3455 0.4553 0.1825 0.1114 0.1202 0.0697
7 0.3487 -0.2714 -0.0725 -0.3545 -0.5242 -0.4355
8 0.2407 -0.3159 0.7383 0.4329 0.0861 -0.1969
9 0.3847 -0.2533 -0.0078 -0.1468 0.0459 -0.1498

7 8 9
1 0.1735 -0.1240 -0.0488
2 0.1386 -0.3032 -0.0079
3 0.0099 -0.0406 -0.0997
4 -0.4022 -0.1178 0.7060
5 0.7295 0.0075 0.0046
6 -0.3742 0.0925 -0.6780
7 -0.2854 -0.3408 -0.1089
8 0.1862 -0.1623 0.0505
9 -0.0251 0.8521 0.1225

STD
1 2 3 4 5 6

0.6498 0.1771 0.0986 0.0879 0.0882 0.0890

7 8 9
0.0944 0.0994 0.1113

PCT
1 2 3 4 5 6

0.520 0.660 0.754 0.816 0.865 0.913

7 8 9
0.947 0.978 1.000

A
1 2 3 4 5 6

1 0.7487 -0.2646 0.1274 -0.2471 -0.0728 0.5224
2 0.7625 -0.1245 -0.2568 -0.1610 0.5124 -0.1312
3 0.5956 -0.3032 -0.5133 0.5170 -0.1024 0.0990
4 0.7923 0.4532 0.0373 0.0891 0.0012 0.0755
5 0.6799 0.5646 -0.0674 -0.0154 -0.1875 -0.1177
6 0.7472 0.5119 0.1677 0.0830 0.0804 0.0456
7 0.7542 -0.3051 -0.0666 -0.2641 -0.3505 -0.2853
8 0.5206 -0.3552 0.6784 0.3225 0.0576 -0.1290
9 0.8319 -0.2848 -0.0071 -0.1094 0.0307 -0.0981

7 8 9
1 0.0966 -0.0652 -0.0216
2 0.0772 -0.1596 -0.0035
3 0.0055 -0.0214 -0.0442
4 -0.2240 -0.0620 0.3127
5 0.4063 0.0039 0.0021
6 -0.2084 0.0487 -0.3003

Chapter 9: Multivariate Analysis factor_analysis •••• 433

7 -0.1589 -0.1794 -0.0482
8 0.1037 -0.0854 0.0224
9 -0.0140 0.4485 0.0543

Warning Errors
IMSLS_100_DF Because the number of degrees of freedom

in �covariances� and �n_degrees_freedom�
is less than or equal to 0, 100 degrees of
freedom will be used.

IMSLS_COV_NOT_NONNEG_DEF �eigenvalues[#]� = #. One or more
eigenvalues much less than zero are
computed. The matrix �covariances� is not
nonnegative definite. In order to continue
computations of �eigenvalues� and
�correlations,� these eigenvalues are treated
as 0.

IMSLS_FAILED_TO_CONVERGE The iteration for the eigenvalue failed to
converge in 100 iterations before deflating.

factor_analysis
Extracts initial factor-loading estimates in factor analysis.

Synopsis

#include <imsls.h>

float *imsls_f_factor_analysis (int n_variables,
float covariances[], int n_factors, ..., 0)

The type double function is imsls_d_factor_analysis.

Required Arguments

int n_variables (Input)
Number of variables.

float covariances[] (Input)
Array of length n_variables × n_variables containing the variance-
covariance or correlation matrix.

int n_factors (Input)
Number of factors in the model.

Return Value
An array of length n_variables × n_factors containing the matrix of factor
loadings.

434 •••• factor_analysis IMSL C/Stat/Library

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_factor_analysis (int n_variables,
float covariances[], int n_factors,
IMSLS_MAXIMUM_LIKELIHOOD, int df_covariances, or
IMSLS_PRINCIPAL_COMPONENT, or
IMSLS_PRINCIPAL_FACTOR, or
IMSLS_UNWEIGHTED_LEAST_SQUARES, or
IMSLS_GENERALIZED_LEAST_SQUARES, int df_covariances, or
IMSLS_IMAGE, or
IMSLS_ALPHA, int df_covariances,
IMSLS_UNIQUE_VARIANCES_INPUT, float unique_variances[],
IMSLS_UNIQUE_VARIANCES_OUTPUT,

float unique_variances[],
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_MAX_STEPS_LINE_SEARCH,

int max_steps_line_search,
IMSLS_CONVERGENCE_EPS, float convergence_eps,
IMSLS_SWITCH_EXACT_HESSIAN, float switch_epsilon,
IMSLS_EIGENVALUES, float **eigenvalues,
IMSLS_EIGENVALUES_USER, float eigenvalues[],
IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared,

float *p_value,
IMSLS_TUCKER_RELIABILITY_COEFFICIENT,

float *coefficient,
IMSLS_N_ITERATIONS, int *n_iterations,
IMSLS_FUNCTION_MIN, float *function_min,
IMSLS_LAST_STEP, float **last_step,
IMSLS_LAST_STEP_USER, float last_step[],
IMSLS_COV_COL_DIM, int cov_col_dim,
IMSLS_RETURN_USER, float factor_loadings[],
0)

Optional Arguments
IMSLS_MAXIMUM_LIKELIHOOD, int df_covariances (Input)

Maximum likelihood (common factor) model used to obtain the
estimates. Argument df_covariances is the number of degrees of
freedom in covariances.
or

IMSLS_PRINCIPAL_COMPONENT

Principal component (principal component model) used to obtain the
estimates.
or

Chapter 9: Multivariate Analysis factor_analysis •••• 435

IMSLS_PRINCIPAL_FACTOR

Principal factor (common factor model) used to obtain the estimates.
or

IMSLS_UNWEIGHTED_LEAST_SQUARES

Unweighted least-squares (common factor model) method used to obtain
the estimates. This option is the default.
or

IMSLS_GENERALIZED_LEAST_SQUARES, int df_covariances (Input)
Generalized least-squares (common factor model) method used to obtain
the estimates.
or

IMSLS_IMAGE

Image-factor analysis (common factor model) method used to obtain the
estimates.
or

IMSLS_ALPHA, int df_covariances (Input)
Alpha-factor analysis (common factor model) method used to obtain the
estimates. Argument df_covariances is the number of degrees of
freedom in covariances.

IMSLS_UNIQUE_VARIANCES_INPUT, float unique_variances[] (Input)
Array of length n_variables containing the initial estimates of the
unique variances.
Default: Initial estimates are taken as the constant 1 −
 n_factors/2 * n_variables divided by the diagonal elements of the
inverse of covariances.

IMSLS_UNIQUE_VARIANCES_OUTPUT, float unique_variances[] (Output)
User-allocated array of length n_variables containing the estimated
unique variances.

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations in the iterative procedure.
Default: max_iterations = 60

IMSLS_MAX_STEPS_LINE_SEARCH, int max_steps_line_search (Input)
Maximum number of step halvings allowed during any one iteration.
Default: max_steps_line_search = 10

IMSLS_CONVERGENCE_EPS, float convergence_eps (Input)
Convergence criterion used to terminate the iterations. For the
unweighted least squares, generalized least squares or maximum
likelihood methods, convergence is assumed when the relative change in
the criterion is less than convergence_eps. For alpha-factor analysis,
convergence is assumed when the maximum change (relative to the
variance) of a uniqueness is less than convergence_eps.
Default: convergence_eps = 0.0001

436 •••• factor_analysis IMSL C/Stat/Library

IMSLS_SWITCH_EXACT_HESSIAN, float switch_epsilon (Input)
Convergence criterion used to switch to exact second derivatives. When
the largest relative change in the unique standard deviation vector is less
than switch_epsilon, exact second derivative vectors are used.
Argument switch_epsilon is not used with the principal component,
principal factor, image-factor analysis, or alpha-factor analysis methods.
Default: switch_epsilon = 0.1

IMSLS_EIGENVALUES, float **eigenvalues (Output)
The address of a pointer to an internally allocated array of length
n_variables containing the eigenvalues of the matrix from which the
factors were extracted.

IMSLS_EIGENVALUES_USER, float eigenvalues[] (Output)
Storage for array eigenvalues is provided by the user. See
IMSLS_EIGENVALUES.

IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared,
float *p_value (Output)
Number of degrees of freedom in chi-squared is df; chi_squared is
the chi-squared test statistic for testing that n_factors common factors
are adequate for the data; p_value is the probability of a greater chi-
squared statistic.

IMSLS_TUCKER_RELIABILITY_COEFFICIENT, float *coefficient

(Output)
Tucker reliability coefficient.

IMSLS_N_ITERATIONS, int *n_iterations (Output)
Number of iterations.

IMSLS_FUNCTION_MIN, float *function_min (Output)
Value of the function minimum.

IMSLS_LAST_STEP, float **last_step (Output)
Address of a pointer to an internally allocated array of length
n_variables containing the updates of the unique variance estimates
when convergence was reached (or the iterations terminated).

IMSLS_LAST_STEP_USER, float last_step[] (Output)
Storage for array last_step is provided by the user. See
IMSLS_LAST_STEP.

IMSLS_COV_COL_DIM, int cov_col_dim (Input)
Column dimension of the matrix covariances.
Default: cov_col_dim = n_variables

IMSLS_RETURN_USER, float factor_loadings[] (Output)
User-allocated array of length n_variables*n_factors containing
the unrotated factor loadings.

Chapter 9: Multivariate Analysis factor_analysis •••• 437

Description
Function imsls_f_factor_analysis computes unrotated factor loadings in
exploratory factor analysis models. Models available in
imsls_f_factor_analysis are the principal component model for factor
analysis and the common factor model with additions to the common factor
model in alpha-factor analysis and image analysis. Methods of estimation include
principal components, principal factor, image analysis, unweighted least squares,
generalized least squares, and maximum likelihood.

In the factor analysis model used for factor extraction, the basic model is given as
Σ = ΛΛT + Ψ, where Σ is the p × p population covariance matrix, Λ is the
p × k matrix of factor loadings relating the factors f to the observed variables x,
and Ψ is the p × p matrix of covariances of the unique errors e. Here,
p = n_variables and k = n_factors. The relationship between the factors, the
unique errors, and the observed variables is given as x = Λf + e, where in
addition, the expected values of e, f, and x are assumed to be 0. (The sample
means can be subtracted from x if the expected value of x is not 0.) It also is
assumed that each factor has unit variance, the factors are independent of each
other, and that the factors and the unique errors are mutually independent. In the
common factor model, the elements of unique errors e also are assumed to be
independent of one another so that the matrix Ψ is diagonal. This is not the case
in the principal component model in which the errors may be correlated.

Further differences between the various methods concern the criterion that is
optimized and the amount of computer effort required to obtain estimates.
Generally speaking, the least-squares and maximum likelihood methods, which
use iterative algorithms, require the most computer time with the principal factor,
principal component and the image methods requiring much less time since the
algorithms in these methods are not iterative. The algorithm in alpha-factor
analysis is also iterative, but the estimates in this method generally require
somewhat less computer effort than the least-squares and maximum likelihood
estimates. In all methods, one eigensystem analysis is required on each iteration.

Principal Component and Principal Factor Methods

Both the principal component and principal factor methods compute the factor-
loading estimates as

� � /Γ∆−1 2

where Γ and the diagonal matrix ∆ are the eigenvectors and eigenvalues of a
matrix. In the principal component model, the eigensystem analysis is performed
on the sample covariance (correlation) matrix S, while in the principal factor
model, the matrix (S + Ψ) is used. If the unique error variances Ψ are not known
in the principal factor mode, then imsls_f_factor_analysis obtains
estimates for them.

The basic idea in the principal component method is to find factors that maximize
the variance in the original data that is explained by the factors. Because this

438 •••• factor_analysis IMSL C/Stat/Library

method allows the unique errors to be correlated, some factor analysts insist that
the principal component method is not a factor analytic method. Usually,
however, the estimates obtained by the principal component model and factor
analysis model will be quite similar.

It should be noted that both the principal component and principal factor methods
give different results when the correlation matrix is used in place of the
covariance matrix. Indeed, any rescaling of the sample covariance matrix can lead
to different estimates with either of these methods. A further difficulty with the
principal factor method is the problem of estimating the unique error variances.
Theoretically, these must be known in advance and be passed to
imsls_f_factor_analysis using optional argument
IMSLS_UNIQUE_VARIANCES_INPUT. In practice, the estimates of these
parameters are produced by imsls_f_factor_analysis when
IMSLS_UNIQUE_VARIANCES_INPUT is not specified. In either case, the resulting
adjusted covariance (correlation) matrix

S − �ψ

may not yield the n_factors positive eigenvalues required for n_factors
factors to be obtained. If this occurs, the user must either lower the number of
factors to be estimated or give new unique error variance values.

Least-squares and Maximum Likelihood Methods

Unlike the previous two methods, the algorithm used to compute estimates in this
section is iterative (see Jöreskog 1977). As with the principal factor model, the
user may either initialize the unique error variances or allow
imsls_f_factor_analysis to compute initial estimates. Unlike the principal
factor method, imsls_f_factor_analysis optimizes the criterion function
with respect to both Ψ and Γ. (In the principal factor method, Ψ is assumed to be
known. Given Ψ, estimates for Λ may be obtained.)

The major difference between the methods discussed in this section is in the
criterion function that is optimized. Let S denote the sample covariance
(correlation) matrix, and let Σ denote the covariance matrix that is to be estimated
by the factor model. In the unweighted least-squares method, also called the
iterated principal factor method or the minres method (see Harman 1976, p. 177),
the function minimized is the sum-of-squared differences between S and Σ. This
is written as Φul = 0.5 (trace (S − Σ)2).

Generalized least-squares and maximum likelihood estimates are asymptotically
equivalent methods. Maximum likelihood estimates maximize the (normal theory)
likelihood {Φml = trace (Σ-1S) − log (|Σ-1S|)}, while generalized least squares
optimizes the function Φgs = trace (ΣS-1 − I)2.

In all three methods, a two-stage optimization procedure is used. This proceeds
by first solving the likelihood equations for Λ in terms of Ψ and substituting the
solution into the likelihood. This gives a criterion φ (Ψ, Λ (Ψ)), which is

Chapter 9: Multivariate Analysis factor_analysis •••• 439

optimized with respect to Ψ. In the second stage, the estimates �Λ are obtained
from the estimates for Ψ.

The generalized least-squares and maximum likelihood methods allow for the
computation of a statistic (IMSLS_CHI_SQUARED_TEST) for testing that
n_factors common factors are adequate to fit the model. This is a chi-squared
test that all remaining parameters associated with additional factors are 0. If the
probability of a larger chi-squared is so small that the null hypothesis is rejected,
then additional factors are needed (although these factors may not be of any
practical importance). Failure to reject does not legitimize the model. The statistic
IMSLS_CHI_SQUARED_TEST is a likelihood ratio statistic in maximum likelihood
estimation. As such, it asymptotically follows a chi-squared distribution with
degrees of freedom given by df.

The Tucker and Lewis reliability coefficient, ρ, is returned by
IMSLS_TUCKER_RELIABILITY_COEFFICIENT when the maximum likelihood
or generalized least-squares methods are used. This coefficient is an estimate of
the ratio of explained variation to the total variation in the data. It is computed as
follows:

ρ =
−

−
mM mM

mM
k0

0 1

m d p k= − + −2 5
6

2
6

M
S

p p0 1 2
=

−
−

ln | |
/
b g
b g

M
p k p k

k =
− − −

φ

b ge j2 2/

where |S| is the determinant of covariances, p = n_variables,
k = n_variables, φ is the optimized criterion, and d = df_covariances.

Image Analysis
The term image analysis is used here to denote the noniterative image method of
Kaiser (1963). It is not the image analysis discussed by Harman (1976, p. 226).
The image method (as well as the alpha-factor analysis method) begins with the
notion that only a finite number from an infinite number of possible variables
have been measured. The image factor pattern is calculated under the assumption
that the ratio of the number of factors to the number of observed variables is near
0, so that a very good estimate for the unique error variances (for standardized
variables) is given as 1 minus the squared multiple correlation of the variable
under consideration with all variables in the covariance matrix.

First, the matrix D2 = (diag (S-1))-1 is computed where the operator �diag�
results in a matrix consisting of the diagonal elements of its argument and S is the

440 •••• factor_analysis IMSL C/Stat/Library

sample covariance (correlation) matrix. Then, the eigenvalues Λ and eigenvectors
Γ of the matrix D-1SD-1 are computed. Finally, the unrotated image-factor pattern
is computed as DΓ [(Λ − I)2Λ-1]1/2.

Alpha-factor Analysis

The alpha-factor analysis method of Kaiser and Caffrey (1965) finds factor-
loading estimates to maximize the correlation between the factors and the
complete universe of variables of interest. The basic idea in this method is that
only a finite number of variables out of a much larger set of possible variables is
observed. The population factors are linearly related to this larger set, while the
observed factors are linearly related to the observed variables. Let f denote the
factors obtainable from a finite set of observed random variables, and let ξ denote
the factors obtainable from the universe of observable variables. Then, the alpha
method attempts to find factor-loading estimates so as to maximize the correlation
between f and ξ. In order to obtain these estimates, the iterative algorithm of
Kaiser and Caffrey (1965) is used.

Comments
1. Function imsls_f_factor_analysis makes no attempt to solve for

n_factors. In general, if n_factors is not known in advance, several
different values of n_factors should be used and the most reasonable
value kept in the final solution.

2. Iterative methods are generally thought to be superior from a theoretical
point of view, but in practice, often lead to solutions that differ little
from the noniterative methods. For this reason, it is usually suggested
that a noniterative method be used in the initial stages of the factor
analysis and that the iterative methods be used when issues such as the
number of factors have been resolved.

3. Initial estimates for the unique variances can be input. If the iterative
methods fail for these values, new initial estimates should be tried. These
can be obtained by use of another factoring method. (Use the final
estimates from the new method as the initial estimates in the old
method.)

Examples

Example 1
In this example, factor analysis is performed for a nine-variable matrix using the
default method of unweighted least squares.

#include <stdio.h>
#include <imsls.h>
#include <stdlib.h>

main()
{
#define N_VARIABLES 9

Chapter 9: Multivariate Analysis factor_analysis •••• 441

#define N_FACTORS 3
float *a;

float covariances[N_VARIABLES][N_VARIABLES] = {
1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505,
0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409,
0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,
0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,
0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,
0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0};

/* Perform analysis */
a = imsls_f_factor_analysis (9, covariances, 3, 0);

/* Print results */
imsls_f_write_matrix("Unrotated Loadings", N_VARIABLES, N_FACTORS,

a, 0);

free(a);
}

Output
Unrotated Loadings

1 2 3
1 0.7018 -0.2316 0.0796
2 0.7200 -0.1372 -0.2082
3 0.5351 -0.2144 -0.2271
4 0.7907 0.4050 0.0070
5 0.6532 0.4221 -0.1046
6 0.7539 0.4842 0.1607
7 0.7127 -0.2819 -0.0701
8 0.4835 -0.2627 0.4620
9 0.8192 -0.3137 -0.0199

Example 2
The following data were originally analyzed by Emmett (1949). There are 211
observations on 9 variables. Following Lawley and Maxwell (1971), three factors
are obtained by the method of maximum likelihood.

#include <stdio.h>
#include <imsls.h>
#include <stdlib.h>

main()
{
#define N_VARIABLES 9
#define N_FACTORS 3

float *a;
float *evals;
float chi_squared, p_value, reliability_coef, function_min;
int chi_squared_df, n_iterations;
float uniq[N_VARIABLES];

float covariances[N_VARIABLES][N_VARIABLES] = {

442 •••• factor_analysis IMSL C/Stat/Library

1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505,
0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409,
0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,
0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,
0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,
0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0};

/* Perform analysis */
a = imsls_f_factor_analysis (9, covariances, 3,

IMSLS_MAXIMUM_LIKELIHOOD, 210,
IMSLS_SWITCH_EXACT_HESSIAN, 0.01,
IMSLS_CONVERGENCE_EPS, 0.000001,
IMSLS_MAX_ITERATIONS, 30,
IMSLS_MAX_STEPS_LINE_SEARCH, 10,
IMSLS_EIGENVALUES, &evals,
IMSLS_UNIQUE_VARIANCES_OUTPUT, uniq,
IMSLS_CHI_SQUARED_TEST,

&chi_squared_df,
&chi_squared,
&p_value,

IMSLS_TUCKER_RELIABILITY_COEFFICIENT, &reliability_coef,
IMSLS_N_ITERATIONS, &n_iterations,
IMSLS_FUNCTION_MIN, &function_min,
0);

/* Print results */
imsls_f_write_matrix("Unrotated Loadings", N_VARIABLES, N_FACTORS,

a, 0);
imsls_f_write_matrix("Eigenvalues", 1, N_VARIABLES, evals, 0);
imsls_f_write_matrix("Unique Error Variances", 1, N_VARIABLES,

uniq, 0);
printf("\n\nchi_squared_df = %d\n", chi_squared_df);
printf("chi_squared = %f\n", chi_squared);
printf("p_value = %f\n\n", p_value);
printf("reliability_coef = %f\n", reliability_coef);
printf("function_min = %f\n", function_min);
printf("n_iterations = %d\n", n_iterations);

free(evals);
free(a);

}

Output
Unrotated Loadings

1 2 3
1 0.6642 -0.3209 0.0735
2 0.6888 -0.2471 -0.1933
3 0.4926 -0.3022 -0.2224
4 0.8372 0.2924 -0.0354
5 0.7050 0.3148 -0.1528
6 0.8187 0.3767 0.1045
7 0.6615 -0.3960 -0.0777
8 0.4579 -0.2955 0.4913
9 0.7657 -0.4274 -0.0117

Chapter 9: Multivariate Analysis factor_analysis •••• 443

Eigenvalues
1 2 3 4 5 6

0.063 0.229 0.541 0.865 0.894 0.974

7 8 9
1.080 1.117 1.140

Unique Error Variances
1 2 3 4 5 6

0.4505 0.4271 0.6166 0.2123 0.3805 0.1769

7 8 9
0.3995 0.4615 0.2309

chi_squared_df = 12
chi_squared = 7.149356
p_value = 0.847588

reliability_coef = 1.000000
function_min = 0.035017
n_iterations = 5

Warning Errors
IMSLS_VARIANCES_INPUT_IGNORED When using the

IMSLS_PRINCIPAL_COMPONENT

option, the unique variances are
assumed to be zero. Input for
IMSLS_UNIQUE_VARIANCES_INPUT is
ignored.

IMSLS_TOO_MANY_ITERATIONS Too many iterations. Convergence is
assumed.

IMSLS_NO_DEG_FREEDOM There are no degrees of freedom for the
significance testing.

IMSLS_TOO_MANY_HALVINGS Too many step halvings. Convergence is
assumed.

Fatal Errors
IMSLS_HESSIAN_NOT_POS_DEF The approximate Hessian is not semi-

definite on iteration #. The computations
cannot proceed. Try using different initial
estimates.

IMSLS_FACTOR_EVAL_NOT_POS �eigenvalues[#]� = #. An eigenvalue
corresponding to a factor is negative or
zero. Either use different initial estimates
for �unique_variances� or reduce the
number of factors.

444 •••• discriminant_analysis IMSL C/Stat/Library

IMSLS_COV_NOT_POS_DEF �covariances� is not positive semi-definite.
The computations cannot proceed.

IMSLS_COV_IS_SINGULAR The matrix �covariances� is singular. The
computations cannot continue because
variable # is linearly related to the
remaining variables.

IMSLS_COV_EVAL_ERROR An error occurred in calculating the
eigenvalues of the adjusted (inverse)
covariance matrix. Check �covariances.�

IMSLS_ALPHA_FACTOR_EVAL_NEG In alpha factor analysis on iteration #,
eigenvalue # is #. As all eigenvalues
corresponding to the factors must be
positive, either the number of factors must
be reduced or new initial estimates for
�unique_variances� must be given.

discriminant_analysis
Performs a linear or a quadratic discriminant function analysis among several
known groups.

Synopsis

#include <imsls.h>

void imsls_f_discriminant_analysis (int n_rows, int n_variables,
float *x, int n_groups, ..., 0)

The type double function is imsls_d_discriminant_analysis.

Required Arguments

int n_rows (Input)
Number of rows of x to be processed.

int n_variables (Input)
Number of variables to be used in the discrimination.

float *x (Input)
Array of size n_rows by n_variables + 1 containing the data. The
first n_variables columns correspond to the variables, and the last
column (column n_variables) contains the group numbers. The
groups must be numbered 1, 2, ..., n_groups.

int n_groups (Input)
Number of groups in the data.

Chapter 9: Multivariate Analysis discriminant_analysis •••• 445

Synopsis with Optional Arguments
#include <imsls.h>

void imsls_f_discriminant_analysis (int n_rows, int n_variables,
float *x, int n_groups,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt,
IMSLS_METHOD, int method,
IMSLS_IDO, int ido,
IMSLS_ROWS_ADD,
IMSLS_ROWS_DELETE,
IMSLS_PRIOR_EQUAL,
IMSLS_PRIOR_PROPORTIONAL,
IMSLS_PRIOR_INPUT, float prior_input[],
IMSLS_PRIOR_OUTPUT, float **prior_output

IMSLS_PRIOR_OUTPUT_USER, float prior_output[]

IMSLS_GROUP_COUNTS, int **gcounts,
IMSLS_GROUP_COUNTS_USER, int gcounts[]

IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
IMSLS_COV, float **covariances,
IMSLS_COV_USER, float covariances[],
IMSLS_COEF, float **coefficients

IMSLS_COEF_USER, float coefficients[],
IMSLS_CLASS_MEMBERSHIP, int **class_membership,
IMSLS_CLASS_MEMBERSHIP_USER, int class_membership[],
IMSLS_CLASS_TABLE, float **class_table,
IMSLS_CLASS_TABLE_USER, float class_table[],
IMSLS_PROB, float **prob,
IMSLS_PROB_USER, float prob[],
IMSLS_MAHALANOBIS, float **d2,
IMSLS_MAHALANOBIS_USER, float d2[],
IMSLS_STATS, float **stats,
IMSLS_STATS_USER, float stats[],
IMSLS_N_ROWS_MISSING, int *nrmiss,
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of array x.
Default: x_col_dim = n_variables + 1

IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt (Input)
Each of the four arguments contains indices indicating column numbers
of x in which particular types of data are stored. Columns are numbered
0 … x_col_dim − 1.

446 •••• discriminant_analysis IMSL C/Stat/Library

Parameter igrp contains the index for the column of x in which the
group numbers are stored.

Parameter ind contains the indices of the variables to be used in the
analysis.

Parameters ifrq and iwt contain the column numbers of x in which the
frequencies and weights, respectively, are stored. Set ifrq = −1 if there
will be no column for frequencies. Set iwt = −1 if there will be no
column for weights. Weights are rounded to the nearest integer.
Negative weights are not allowed.

Defaults: igrp = n_variables, ind[] = 0, 1, ..., n_variables − 1,
ifrq = −1, and iwt = −1

IMSLS_METHOD, int method (Input)
Method of discrimination. The method chosen determines whether linear
or quadratic discrimination is used, whether the group covariance
matrices are computed (the pooled covariance matrix is always
computed), and whether the leaving-out-one or the reclassification
method is used to classify each observation.

method discrimination
method

covariances
computed

classification
method

1 linear pooled, group reclassification
2 quadratic pooled, group reclassification
3 linear pooled reclassification
4 linear pooled, group leaving-out-one
5 quadratic pooled, group leaving-out-one
6 linear pooled leaving-out-one

In the leaving-out-one method of classification, the posterior
probabilities are adjusted so as to eliminate the effect of the observation
from the sample statistics prior to its classification. In the classification
method, the effect of the observation is not eliminated from the
classification function.

When optional argument IMSLS_IDO is specified, the following rules
for mixing methods apply; Methods 1, 2, 4, and 5 can be intermixed, as
can methods 3 and 6. Methods 1, 2, 4, and 5 cannot be intermixed with
methods 3 and 6.

Default: method = 1

IMSLS_IDO, int ido (Input)
Processing option. See Comments 3 and 4 for more information.

Chapter 9: Multivariate Analysis discriminant_analysis •••• 447

ido action
0 This is the only invocation; all the data are input at once.

(Default)
1 This is the first invocation with this data; additional calls will

be made. Initialization and updating for the n_rows
observations of x will be performed.

2 This is an intermediate invocation; updating for the n_rows
observations of x will be performed.

3 All statistics are updated for the n_rows observations. The
discriminant functions and other statistics are computed.

4 The discriminant functions are used to classify each of the
n_rows observations of x.

5 The covariance matrices are computed, and workspace is
released. No further call to discriminant_analysis with
ido greater than 1 should be made without first calling
discriminant_analysis with ido = 1.

6 Workspace is released. No further calls to
discriminant_analysis with ido greater than 1 should be
made without first calling discriminant_analysis with
ido = 1. Invocation with this option is not required if a call has
already been made with ido = 5.

Default: ido = 0

IMSLS_ROWS_ADD, or
IMSLS_ROWS_DELETE

By default (or if IMSLS_ROWS_ADD is specified), then the observations
in x are added to the discriminant statistics. If IMSLS_ROWS_DELETE is
specified, then the observations are deleted.

If ido = 0, these optional arguments are ignored (data is always added if
there is only one invocation).

IMSLS_PRIOR_EQUAL, or
IMSLS_PRIOR_PROPORTIONAL, or
IMSLS_PRIOR_INPUT, float prior_input[] (Input)

By default, (or if IMSLS_PRIOR_EQUAL is specified), equal prior
probabilities are calculated as 1.0/n_groups.

If IMSLS_PRIOR_PROPORTIONAL is specified, prior probabilities are
calculated to be proportional to the sample size in each group.

If IMSLS_PRIOR_INPUT is specified, then array prior_input is an
array of length n_groups containing the prior probabilities for each
group, such that the sum of all prior probabilities is equal to 1.0. Prior
probabilities are not used if ido is equal to 1, 2, 5, or 6.

448 •••• discriminant_analysis IMSL C/Stat/Library

IMSLS_PRIOR_OUTPUT, float **prior_output (Output)
Address of a pointer to an array of length n_groups containing the most
recently calculated or input prior probabilities. If
IMSLS_PRIOR_PROPORTIONAL is specified, every element of
prior_output is equal to −1 until a call is made with ido equal to 0 or
3, at which point the priors are calculated. Note that subsequent calls to
discriminant_analysis with IMSLS_PRIOR_PROPORTIONAL
specified, and ido not equal to 0 or 3 will result in the elements of
prior_output being reset to −1.

IMSLS_PRIOR_OUTPUT_USER, float prior_output[] (Output)
Storage for array prior_output is provided by the user. See
IMSLS_PRIOR_OUTPUT.

IMSLS_GROUP_COUNTS, int **gcounts (Output)
Address of a pointer to an integer array of length n_groups containing
the number of observations in each group. Array gcounts is updated
when ido is equal to 0, 1, or 2.

IMSLS_GROUP_COUNTS_USER, int gcounts[] (Output)
Storage for integer array gcounts is provided by the user. See
IMSLS_GROUP_COUNTS.

IMSLS_MEANS, float **means (Output)
Address of a pointer to an array of size n_groups by n_variables.
The i-th row of means contains the group i variable means. Array means
is updated when ido is equal to 0, 1, 2, or 5. The means are unscaled
until a call is made with ido = 5. where the unscaled means are
calculated as Σwifi xi and the scaled means as

w f x

w f
i i i

i i

�
�

where xi is the value of the i-th observation, wi is the weight of the i-th
observation, and fi is the frequency of the i-th observation.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

IMSLS_COV, float **covariances (Output)
Address of a pointer to an array of size g by n variables by containing
the within-group covariance matrices (methods 1, 2, 4, and 5 only) as
the first g-1 matrices, and the pooled covariance matrix as the g-th
matrix (that is, the first n_variables ∗ n_variables elements
comprise the group 1 covariance matrix, the next
n_variables ∗ n_variables elements comprise the group 2
covariance, ..., and the last n_variables ∗ n_variables elements
comprise the pooled covariance matrix). If method is 3 or 6 then g is
equal to 1. Otherwise, g is equal to n_groups + 1. Argument cov is
updated when ido is equal to 0, 1, 2, 3, or 5.

Chapter 9: Multivariate Analysis discriminant_analysis •••• 449

IMSLS_COV_USER, float covariances[] (Output)
Storage for array covariances is provided by the user. See
IMSLS_COVARIANCES.

IMSLS_COEF, float **coefficients (Output)
Address of a pointer to an array of size n_groups by
(n_variables + 1) containing the linear discriminant coefficients. The
first column of coefficients contains the constant term, and the
remaining columns contain the variable coefficients. Row i − 1 of
coefficients corresponds to group i, for
i = 1, 2, ..., n_variables + 1. Array coefficients are always
computed as the linear discriminant function coefficients even when
quadratic discrimination is specified.

Array coefficients is updated when ido is equal to 0 or 3.

IMSLS_COEF_USER, float coefficients[] (Output)
Storage for array coefficients is provided by the user. See
IMSLS_COEFFICIENTS.

IMSLS_CLASS_MEMBERSHIP, int **class_membership (Output)
Address of a pointer to an integer array of length n_rows containing the
group to which the observation was classified. Array
class_membership is updated when ido is equal to 0 or 4.

If an observation has an invalid group number, frequency, or weight
when the leaving-out-one method has been specified, then the
observation is not classified and the corresponding elements of
class_membership (and prob, see IMSLS_PROB) are set to zero.

IMSLS_CLASS_MEMBERSHIP_USER, int class_membership[] (Ouput)
Storage for array class_membership is provided by the user. See
IMSLS_CLASS_MEMBERSHIP.

IMSLS_CLASS_TABLE, float **class_table (Output)
Address of a pointer to an array of size n_groups by n_groups
containing the classification table. Array class_table is updated when
ido is equal to 0, 1, or 4. Each observation that is classified and has a
group number 1.0, 2.0, ..., n_groups is entered into the table. The rows
of the table correspond to the known group membership. The columns
refer to the group to which the observation was classified. Classification
results accumulate with each call to
imsls_f_discriminant_analysis with ido equal to 4. For
example, if two calls with ido equal to 4 are made, the elements in
class_table sum to the total number of valid observations in the two
calls.

IMSLS_CLASS_TABLE_USER, float class_table[] (Output)
Storage for array class_table is provided by the user. See
IMSLS_CLASS_TABLE.

450 •••• discriminant_analysis IMSL C/Stat/Library

IMSLS_PROB, float **prob (Output)
Address of a pointer to an array of size n_rows by n_groups
containing the posterior probabilities for each observation. Argument
prob is updated when ido is equal to 0 or 4.

IMSLS_PROB_USER, float prob[] (Output)
Storage for array prob is provided by the user. See IMSLS_PROB.

IMSLS_MAHALANOBIS, float **d2 (Output)
Address of a pointer to an array of size n_groups by n_groups
containing the Mahalanobis distances

Dij
2

between the group means. Argument d2 is updated when ido is equal to
0 or 3.

For linear discrimination, the Mahalanobis distance is computed using
the pooled covariance matrix. Otherwise, the Mahalanobis distance

Dij
2

between group means i and j is computed using the within covariance
matrix for group i in place of the pooled covariance matrix.

IMSLS_MAHALANOBIS_USER, float d2[] (Output)
Storage for array d2 is provided by the user. See IMSLS_MAHALANOBIS.

IMSLS_STATS, float **stats (Output)
Address of a pointer to an array of length 4 + 2 × (n_groups + 1)
containing various statistics of interest. Array stats is updated when
ido is equal to 0, 1, 3, or 5. The first element of stats is the sum of the
degrees of freedom for the within-covariance matrices. The second,
third, and fourth elements of stats correspond to the chi-squared
statistic, its degrees of freedom, and the probability of a greater
chi-squared, respectively, of a test of the homogeneity of the within-
covariance matrices (not computed if method is equal to 3 or 6). The
fifth through 5 + n_groups elements of stats contain the log of the
determinants of each group�s covariance matrix (not computed if
method is equal to 3 or 6) and of the pooled covariance matrix (element
4 + n_groups). Finally, the last n_groups + 1 elements of stats
contain the sum of the weights within each group, and in the last
position, the sum of the weights in all groups.

IMSLS_STATS_USER, float stats[] (Output)
Storage for array stats is provided by the user. See
IMSLS_STATS_USER.

IMSLS_N_ROWS_MISSING, int *nrmiss (Output)
Number of rows of data encountered in calls to
discriminant_analysis containing missing values (NaN) for the
classification, group, weight, and/or frequency variables. If a row of data

Chapter 9: Multivariate Analysis discriminant_analysis •••• 451

contains a missing value (NaN) for any of these variables, that row is
excluded from the computations.

Array nrmiss is updated when ido is equal to 0, 1, 2, or 3.

Comments
1. Common choices for the Bayesian prior probabilities are given by:

prior_input[i] = 1.0/n_groups (equal priors)
prior_input[i] = gcounts/n_rows (proportional priors)
prior_input[i] = Past history or subjective judgment.
In all cases, the priors should sum to 1.0.

2. Two passes of the data are made. In the first pass, the statistics required
to compute the discriminant functions are obtained (ido equal to 1, 2,
and 3). In the second pass, the discriminant functions are used to classify
the observations. When ido is equal to 0, all of the data are memory
resident, and both passes are made in one call to
imsls_f_discriminant_analysis. When ido > 0 (optional
argument IMSLS_IDO is specified), a third call to
imsls_f_discriminant_analysis involving no data is required
with ido equal to 5 or 6.

3. Here are a few rules and guidelines for the correct value of ido in a
series of calls:

1 Calls with ido = 0 or ido = 1 may be made at any time, subject
to rule 2. These calls indicate that a new analysis is to begin,
and therefore allocate memory and destroy all statistics from
previous calls.

2 Each series of calls to imsls_f_discriminant_analysis
which begins with ido = 1 must end with ido equal to 5 or 6 to
ensure the proper release of workspace, subject to rule 3.

3 ido may not be 4 or 5 before a call with ido = 3 has been
made.

4 ido may not be 2, 3, 4, 5, or 6
a) Immediately after a call with ido = 0.
b) Before a call with ido = 1 has been made.
c) Immediately after a call with ido equal to 5 or 6 has been
made.

The following is a valid sequence of ido�s:

ido Explanation
0 Data Set A: Perform a complete analysis. All data to be used in the

analysis must be present in x. Since cleanup of workspace is automatic
for ido = 0, no further calls are necessary.

452 •••• discriminant_analysis IMSL C/Stat/Library

ido Explanation
1 Data Set B: Begin analysis. The n_rows observations in x are used for

initialization.
2 Data Set B: Continue analysis. New observations placed in x are added

to (or deleted from, see IMSLS_ROWS_DELETE) the analysis.
2 Data Set B: Continue analysis. n_rows new observations placed in x

are added to (or deleted from, see IMSLS_ROWS_DELETE) the analysis.
3 Data Set B: Continue analysis. n_rows new observations are added (or

deleted) and discriminant functions and other statistics are computed.
4 Data Set B: Classification of each of the n_rows observations in the

current x matrix.
5 Data Set B: End analysis. Covariance matrices are computed and

workspace is released. This analysis could also have been ended by
choosing ido = 6

1 Data Set C: Begin analysis. Note that for this call to be valid the
previous call must have been made with ido equal to 5 or 6.

3 Data Set C: Continue analysis.
4 Data Set C: Continue analysis.
3 Data Set C: Continue analysis.
6 Data Set C: End analysis.

4. Because of the internal workspace allocation and saved variables,
function imsls_f_discriminant_analysis must complete the
analysis of a data set before beginning processing of the next data set.

Return Value
The return value is void.

Description
Function imsls_f_discriminant_analysis performs discriminant function
analysis using either linear or quadratic discrimination. The output includes a
measure of distance between the groups, a table summarizing the classification
results, a matrix containing the posterior probabilities of group membership for
each observation, and the within-sample means and covariance matrices. The
linear discriminant function coefficients are also computed.

By default (or if optional argument IMSLS_IDO is specified with ido = 0) all
observations are input during one call, a method of operation that has the
advantage of simplicity. Alternatively, one or more rows of observations can be
input during separate calls. This method does not require that all observations be
memory resident, a significant advantage with large data sets. Note, however, that
the algorithm requires two passes of the data. During the first pass the

Chapter 9: Multivariate Analysis discriminant_analysis •••• 453

discriminant functions are computed while in the second pass, the observations
are classified. Thus, with the second method of operation, the data will usually
need to be input twice.

Because both methods result in the same operations being performed, the
algorithm is discussed as if only a few observations are input during each call.
The operations performed during each call depend upon the ido parameter.

The ido = 1 step is the initialization step. �Private� internally allocated saved
variables corresponding to means, class_table, and covariances are
initialized to zero, and other program parameters are set (copies of these private
variables are written to the corresponding output variables upon return from the
function call, assuming ido values such that the results are to be returned).
Parameters n_rows, x, and method can be changed from one call to the next
within the two sets {1, 2, 4, 5} and {3, 6} but not between these sets when
ido > 1. That is, do not specify method = 1 in one call and method = 3 in
another call without first making a call with ido = 1.

After initialization has been performed in the ido = 1 step, the within-group
means are updated for all valid observations in x. Observations with invalid
group numbers are ignored, as are observation with missing values. The LU
factorization of the covariance matrices are updated by adding (or deleting)
observations via Givens rotations.

The ido = 2 step is used solely for adding or deleting observations from the
model as in the above paragraph.

The ido = 3 step begins by adding all observations in x to the means and the
factorizations of the covariance matrices. It continues by computing some
statistics of interest: the linear discriminant functions, the prior probabilities (by
default, or if IMSLS_PROPORTIONAL_PRIORS is specified), the log of the
determinant of each of the covariance matrices, a test statistic for testing that all
of the within-group covariance matrices are equal, and a matrix of Mahalanobis
distances between the groups. The matrix of Mahalanobis distances is computed
via the pooled covariance matrix when linear discrimination is specified; the row
covariance matrix is used when the discrimination is quadratic.

Covariance matrices are defined as follows: Let Ni denote the sum of the
frequencies of the observations in group i and Mi denote the number of
observations in group i. Then, if Si denotes the within-group i covariance matrix,

S
N

w f x x x xi
i

j
j

M

j j j
Ti

=
−

− −
=
�

1
1 1

d id i

Where wj is the weight of the j-th observation in group i, fj is the frequency, xj is
the j-th observation column vector (in group i), and x denotes the mean vector of
the observations in group i. The mean vectors are computed as

454 •••• discriminant_analysis IMSL C/Stat/Library

x
W

w f x W w f
i

j
j

M

j j i j j
j

Mi i

= =
= =
� �()1

1 1

where

Given the means and the covariance matrices, the linear discriminant function for
group i is computed as:

z p x S x x S xi i i
T

p i
T

p i= − +− −ln .b g 05 1 1

where ln (pi) is the natural log of the prior probability for the i-th group, x is the
observation to be classified, and Sp denoted the pooled covariance matrix.

Let S denote either the pooled covariance matrix of one of the within-group
covariance matrices Si. (S will be the pooled covariance matrix in linear
discrimination, and Si otherwise.) The Mahalanobis distance between group i and
group j is computed as:

D x x S x xij i j
T

i j
2 1= − −−d i d i

Finally, the asymptotic chi-squared test for the equality of covariance matrices is
computed as follows (Morrison 1976, p. 252):

γ = −−

=
�C n S Si
i

k

p i
1

1

ln lne j c h{ }

where ni is the number of degrees of freedom in the i-th sample covariance
matrix, k is the number of groups, and

C p p
p k n ni j

j
i

k
−

=

= − + −
+ −

−
F

H
GG

I

K
JJ�

�
1

2

1

1 2 3 1
6 1 1

1 1
b gb g

where p is the number of variables.

When ido = 4, the estimated posterior probability of each observation x
belonging to group is computed using the prior probabilities and the sample mean
vectors and estimated covariance matrices under a multivariate normal
assumption. Under quadratic discrimination, the within-group covariance
matrices are used to compute the estimated posterior probabilities. The estimated
posterior probability of an observation x belonging to group i is

�

exp .

exp .
q x

D x

D x
i

i

j
j

kb g b ge j
b ge j

=
−

−
=
�

05

05

2

2

1

where

Chapter 9: Multivariate Analysis discriminant_analysis •••• 455

D x
x x S x x S p

x x S x x p
i

i
T

i i i i

i
T

p i i

2
1

1

2

2 3
b g b g b g b g
b g b g b g

�

� � � �

� � �

R
S|
T|

�

�

�

�

ln ln

ln

METHOD 1 or 2

METHOD

For the leaving-out-one method of classification (method equal to 4, 5 or 6), the
sample mean vector and sample covariance matrices in the formula for

Di
2

are adjusted so as to remove the observation x from their computation. For linear
discrimination (method equal to 1, 2, 4, or 6), the linear discriminant function
coefficients are actually used to compute the same posterior probabilities.

Using the posterior probabilities, each observation in x is classified into a group;
the result is tabulated in the matrix class_table and saved in the vector
class_membership. Matrix class_table is not altered at this stage if
x[i][x_group] (by default, x_igrp = 0; see optional argument
IMSLS_INDICES) contains a group number that is out of range. If the reclas-
sification method is specified, then all observations with no missing values in the
n_variables classification variables are classified. When the leaving-out-one
method is used, observations with invalid group numbers, weights, frequencies, or
classification variables are not classified. Regardless of the frequency, a 1 is
added (or subtracted) from class_table for each row of x that is classified and
contains a valid group number.

When method > 3, adjustment is made to the posterior probabilities to remove
the effect of the observation in the classification rule. In this adjustment, each
observation is presumed to have a weight of x[i][iwt] if
iwt > −1 (and a weight of 1.0 if iwt = −1), and a frequency of 1.0. See
Lachenbruch (1975, p. 36) for the required adjustment.

Finally, when ido = 5, the covariance matrices are computed from their LU
factorizations. Internally allocated and saved variables are cleaned up at this step
(ido equal to 5 or 6).

Example 1
The following example uses liner discrimination with equal prior probabilities on
Fisher�s (1936) iris data. This example illustrates the execution of
imsls_f_discriminant_analysis when one call is made (i.e. using the
default of ido = 0).

#include <stdio.h>
#include <stdlib.h>
#include <imsls.h>

main() {
int n_groups = 3;
int nrow, nvar, ncol, nrmiss;
float *x, *xtemp;
float *prior_out, *means, *cov, *coef;

456 •••• discriminant_analysis IMSL C/Stat/Library

float *table, *d2, *stats, *prob;
int *counts, *cm;
static int perm[5] = {1, 2, 3, 4, 0};

/* Retrieve the Fisher Iris Data Set */
xtemp = imsls_f_data_sets(3, IMSLS_N_OBSERVATIONS, &nrow,

IMSLS_N_VARIABLES, &ncol, 0);
nvar = ncol - 1;

/* Move the group column to end of the the matrix */
x = imsls_f_permute_matrix(nrow, ncol, xtemp, perm,

IMSLS_PERMUTE_COLUMNS, 0);
free(xtemp);

imsls_f_discriminant_analysis (nrow, nvar, x, n_groups,
IMSLS_METHOD, 3,
IMSLS_GROUP_COUNTS, &counts,
IMSLS_COEF, &coef,
IMSLS_MEANS, &means,
IMSLS_STATS, &stats,
IMSLS_CLASS_MEMBERSHIP, &cm,
IMSLS_CLASS_TABLE, &table,
IMSLS_PROB, &prob,
IMSLS_MAHALANOBIS, &d2,
IMSLS_COV, &cov,
IMSLS_PRIOR_OUTPUT, &prior_out,
IMSLS_N_ROWS_MISSING, &nrmiss,
IMSLS_PRIOR_EQUAL,
IMSLS_METHOD, 3, 0);

imsls_i_write_matrix("Counts", 1, n_groups, counts, 0);
imsls_f_write_matrix("Coef", n_groups, nvar+1, coef, 0);
imsls_f_write_matrix("Means", n_groups, nvar, means, 0);
imsls_f_write_matrix("Stats", 12, 1, stats, 0);
imsls_i_write_matrix("Membership", 1, nrow, cm, 0);
imsls_f_write_matrix("Table", n_groups, n_groups, table, 0);
imsls_f_write_matrix("Prob", nrow, n_groups, prob, 0);
imsls_f_write_matrix("D2", n_groups, n_groups, d2, 0);
imsls_f_write_matrix("Covariance", nvar, nvar, cov, 0);
imsls_f_write_matrix("Prior OUT", 1, n_groups, prior_out, 0);
printf("\nnrmiss = %3d\n", nrmiss);

free(means);
free(stats);
free(counts);
free(coef);
free(cm);
free(table);
free(prob);
free(d2);
free(prior_out);
free(cov);

}

Output
Counts

1 2 3
50 50 50

Chapter 9: Multivariate Analysis discriminant_analysis •••• 457

Coef
1 2 3 4 5

1 -86.3 23.5 23.6 -16.4 -17.4
2 -72.9 15.7 7.1 5.2 6.4
3 -104.4 12.4 3.7 12.8 21.1

Means
1 2 3 4

1 5.006 3.428 1.462 0.246
2 5.936 2.770 4.260 1.326
3 6.588 2.974 5.552 2.026

Stats
1 147
2
3
4
5
6
7
8 -10
9 50

10 50
11 50
12 150

Membership
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3

148 149 150
3 3 3

Table
1 2 3

1 50 0 0
2 0 48 2
3 0 1 49

458 •••• discriminant_analysis IMSL C/Stat/Library

Prob
1 2 3

1 1.000 0.000 0.000
2 1.000 0.000 0.000
3 1.000 0.000 0.000
4 1.000 0.000 0.000
5 1.000 0.000 0.000
6 1.000 0.000 0.000
7 1.000 0.000 0.000
8 1.000 0.000 0.000
9 1.000 0.000 0.000

10 1.000 0.000 0.000
11 1.000 0.000 0.000
12 1.000 0.000 0.000
13 1.000 0.000 0.000
14 1.000 0.000 0.000
15 1.000 0.000 0.000
16 1.000 0.000 0.000
17 1.000 0.000 0.000
18 1.000 0.000 0.000
19 1.000 0.000 0.000
20 1.000 0.000 0.000
21 1.000 0.000 0.000
22 1.000 0.000 0.000
23 1.000 0.000 0.000
24 1.000 0.000 0.000
25 1.000 0.000 0.000
26 1.000 0.000 0.000
27 1.000 0.000 0.000
28 1.000 0.000 0.000
29 1.000 0.000 0.000
30 1.000 0.000 0.000
31 1.000 0.000 0.000
32 1.000 0.000 0.000
33 1.000 0.000 0.000
34 1.000 0.000 0.000
35 1.000 0.000 0.000
36 1.000 0.000 0.000
37 1.000 0.000 0.000
38 1.000 0.000 0.000
39 1.000 0.000 0.000
40 1.000 0.000 0.000
41 1.000 0.000 0.000
42 1.000 0.000 0.000
43 1.000 0.000 0.000
44 1.000 0.000 0.000
45 1.000 0.000 0.000
46 1.000 0.000 0.000
47 1.000 0.000 0.000
48 1.000 0.000 0.000
49 1.000 0.000 0.000
50 1.000 0.000 0.000
51 0.000 1.000 0.000
52 0.000 0.999 0.001
53 0.000 0.996 0.004
54 0.000 1.000 0.000
55 0.000 0.996 0.004
56 0.000 0.999 0.001

Chapter 9: Multivariate Analysis discriminant_analysis •••• 459

57 0.000 0.986 0.014
58 0.000 1.000 0.000
59 0.000 1.000 0.000
60 0.000 1.000 0.000
61 0.000 1.000 0.000
62 0.000 0.999 0.001
63 0.000 1.000 0.000
64 0.000 0.994 0.006
65 0.000 1.000 0.000
66 0.000 1.000 0.000
67 0.000 0.981 0.019
68 0.000 1.000 0.000
69 0.000 0.960 0.040
70 0.000 1.000 0.000
71 0.000 0.253 0.747
72 0.000 1.000 0.000
73 0.000 0.816 0.184
74 0.000 1.000 0.000
75 0.000 1.000 0.000
76 0.000 1.000 0.000
77 0.000 0.998 0.002
78 0.000 0.689 0.311
79 0.000 0.993 0.007
80 0.000 1.000 0.000
81 0.000 1.000 0.000
82 0.000 1.000 0.000
83 0.000 1.000 0.000
84 0.000 0.143 0.857
85 0.000 0.964 0.036
86 0.000 0.994 0.006
87 0.000 0.998 0.002
88 0.000 0.999 0.001
89 0.000 1.000 0.000
90 0.000 1.000 0.000
91 0.000 0.999 0.001
92 0.000 0.998 0.002
93 0.000 1.000 0.000
94 0.000 1.000 0.000
95 0.000 1.000 0.000
96 0.000 1.000 0.000
97 0.000 1.000 0.000
98 0.000 1.000 0.000
99 0.000 1.000 0.000

100 0.000 1.000 0.000
101 0.000 0.000 1.000
102 0.000 0.001 0.999
103 0.000 0.000 1.000
104 0.000 0.001 0.999
105 0.000 0.000 1.000
106 0.000 0.000 1.000
107 0.000 0.049 0.951
108 0.000 0.000 1.000
109 0.000 0.000 1.000
110 0.000 0.000 1.000
111 0.000 0.013 0.987
112 0.000 0.002 0.998
113 0.000 0.000 1.000
114 0.000 0.000 1.000
115 0.000 0.000 1.000

460 •••• discriminant_analysis IMSL C/Stat/Library

116 0.000 0.000 1.000
117 0.000 0.006 0.994
118 0.000 0.000 1.000
119 0.000 0.000 1.000
120 0.000 0.221 0.779
121 0.000 0.000 1.000
122 0.000 0.001 0.999
123 0.000 0.000 1.000
124 0.000 0.097 0.903
125 0.000 0.000 1.000
126 0.000 0.003 0.997
127 0.000 0.188 0.812
128 0.000 0.134 0.866
129 0.000 0.000 1.000
130 0.000 0.104 0.896
131 0.000 0.000 1.000
132 0.000 0.001 0.999
133 0.000 0.000 1.000
134 0.000 0.729 0.271
135 0.000 0.066 0.934
136 0.000 0.000 1.000
137 0.000 0.000 1.000
138 0.000 0.006 0.994
139 0.000 0.193 0.807
140 0.000 0.001 0.999
141 0.000 0.000 1.000
142 0.000 0.000 1.000
143 0.000 0.001 0.999
144 0.000 0.000 1.000
145 0.000 0.000 1.000
146 0.000 0.000 1.000
147 0.000 0.006 0.994
148 0.000 0.003 0.997
149 0.000 0.000 1.000
150 0.000 0.018 0.982

D2
1 2 3

1 0.0 89.9 179.4
2 89.9 0.0 17.2
3 179.4 17.2 0.0

Covariance
1 2 3 4

1 0.2650 0.0927 0.1675 0.0384
2 0.0927 0.1154 0.0552 0.0327
3 0.1675 0.0552 0.1852 0.0427
4 0.0384 0.0327 0.0427 0.0419

Prior OUT
1 2 3

0.3333 0.3333 0.3333

nrmiss = 0

Chapter 9: Multivariate Analysis discriminant_analysis •••• 461

Example 2
Continuing with Fisher�s iris data, the example below computes the quadratic
discriminant functions using values of IDO greater than 0. In the first loop, all
observations are added to the functions, one at a time. In the second loop, each of
the observations is classified, one by one, using the leaving-out-one method.

#include <stdio.h>
#include <stdlib.h>
#include <imsls.h>

main() {
int n_groups = 3;
int nrow, nvar, ncol, i, nrmiss;
float *x, *xtemp;
float *prior_out, *means, *cov, *coef;
float *table, *d2, *stats, *prob;
int *counts, *cm;
static int perm[5] = {1, 2, 3, 4, 0};

/* Retrieve the Fisher Iris Data Set */
xtemp = imsls_f_data_sets(3, IMSLS_N_OBSERVATIONS, &nrow,

IMSLS_N_VARIABLES, &ncol, 0);
nvar = ncol - 1;

/* Move the group column to end of the the matrix */
x = imsls_f_permute_matrix(nrow, ncol, xtemp, perm,

IMSLS_PERMUTE_COLUMNS, 0);
free(xtemp);

prior_out = (float *) malloc(n_groups*sizeof(float));
counts = (int *) malloc(n_groups*sizeof(int));
means = (float *) malloc(n_groups*nvar*sizeof(float));
cov = (float *) malloc(nvar*nvar*(ngroups+1)*sizeof(float));
coef = (float *) malloc(n_groups*(nvar+1)*sizeof(float));
table = (float *) malloc(n_groups*n_groups*sizeof(float));
d2 = (float *) malloc(n_groups*n_groups*sizeof(float));
stats = (float *) malloc((4+2*(n_groups+1))*sizeof(float));
cm = (int *) malloc(nrow*sizeof(int));
prob = (float *) malloc(nrow*n_groups*sizeof(float));

/*Initialize Analysis*/
imsls_f_discriminant_analysis (0, nvar, x, n_groups,

IMSLS_IDO, 1,
IMSLS_METHOD, 2, 0);

/*Add In Each Observation*/
for (i=0;i<nrow;i=i+1) {

imsls_f_discriminant_analysis (1, nvar, (x+i*ncol), n_groups,
IMSLS_IDO, 2, 0);

}

/*Remove observation 0 from the analysis */
imsls_f_discriminant_analysis (1, nvar, (x+0), n_groups,

IMSLS_ROWS_DELETE,
IMSLS_IDO, 2, 0);

/*Add observation 0 back into the analysis */
imsls_f_discriminant_analysis (1, nvar, (x+0), n_groups,

462 •••• discriminant_analysis IMSL C/Stat/Library

IMSLS_IDO, 2, 0);

/*Compute statistics*/
imsls_f_discriminant_analysis (0, nvar, x, n_groups,

IMSLS_PRIOR_PROPORTIONAL,
IMSLS_PRIOR_OUTPUT_USER, prior_out,
IMSLS_IDO, 3, 0);

imsls_f_write_matrix("Prior OUT", 1, n_groups, prior_out, 0);

/*Classify One observation at a time, using proportional priors*/
for (i=0;i<nrow;i=i+1) {

imsls_f_discriminant_analysis (1, nvar, (x+i*ncol), n_groups,
IMSLS_IDO, 4,
IMSLS_CLASS_MEMBERSHIP_USER, (cm+i),
IMSLS_PROB_USER, (prob+i*n_groups), 0);

}

/*Compute covariance matrices and release internal workspace*/
imsls_f_discriminant_analysis (0, nvar, x, n_groups,

IMSLS_IDO, 5,
IMSLS_COV_USER, cov,
IMSLS_GROUP_COUNTS_USER, counts,
IMSLS_COEF_USER, coef,
IMSLS_MEANS_USER, means,
IMSLS_STATS_USER, stats,
IMSLS_CLASS_TABLE_USER, table,
IMSLS_MAHALANOBIS_USER, d2,
IMSLS_N_ROWS_MISSING, &nrmiss, 0);

imsls_i_write_matrix("Counts", 1, n_groups, counts, 0);
imsls_f_write_matrix("Coef", n_groups, nvar+1, coef, 0);
imsls_f_write_matrix("Means", n_groups, nvar, means, 0);
imsls_f_write_matrix("Stats", 12, 1, stats, 0);
imsls_i_write_matrix("Membership", 1, nrow, cm, 0);
imsls_f_write_matrix("Table", n_groups, n_groups, table, 0);
imsls_f_write_matrix("Prob", nrow, n_groups, prob, 0);
imsls_f_write_matrix("D2", n_groups, n_groups, d2, 0);
imsls_f_write_matrix("Covariance", nvar, nvar, cov, 0);
printf("\nnrmiss = %3d\n", nrmiss);

free(means);
free(stats);
free(counts);
free(coef);
free(cm);
free(table);
free(prob);
free(d2);
free(prior_out);
free(cov);

}

Output
Prior OUT

1 2 3
0.3333 0.3333 0.3333

Chapter 9: Multivariate Analysis discriminant_analysis •••• 463

Counts
1 2 3

50 50 50

Coef
1 2 3 4 5

1 -86.3 23.5 23.6 -16.4 -17.4
2 -72.9 15.7 7.1 5.2 6.4
3 -104.4 12.4 3.7 12.8 21.1

Means
1 2 3 4

1 5.006 3.428 1.462 0.246
2 5.936 2.770 4.260 1.326
3 6.588 2.974 5.552 2.026

Stats
1 147.0
2 143.8
3 20.0
4 0.0
5 -13.1
6 -10.9
7 -8.9
8 -10.0
9 50.0

10 50.0
11 50.0
12 150.0

Membership
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3

148 149 150
3 3 3

464 •••• discriminant_analysis IMSL C/Stat/Library

Table
1 2 3

1 50 0 0
2 0 48 2
3 0 1 49

Prob
1 2 3

1 1.000 0.000 0.000
2 1.000 0.000 0.000
3 1.000 0.000 0.000
4 1.000 0.000 0.000
5 1.000 0.000 0.000
6 1.000 0.000 0.000
7 1.000 0.000 0.000
8 1.000 0.000 0.000
9 1.000 0.000 0.000

10 1.000 0.000 0.000
11 1.000 0.000 0.000
12 1.000 0.000 0.000
13 1.000 0.000 0.000
14 1.000 0.000 0.000
15 1.000 0.000 0.000
16 1.000 0.000 0.000
17 1.000 0.000 0.000
18 1.000 0.000 0.000
19 1.000 0.000 0.000
20 1.000 0.000 0.000
21 1.000 0.000 0.000
22 1.000 0.000 0.000
23 1.000 0.000 0.000
24 1.000 0.000 0.000
25 1.000 0.000 0.000
26 1.000 0.000 0.000
27 1.000 0.000 0.000
28 1.000 0.000 0.000
29 1.000 0.000 0.000
30 1.000 0.000 0.000
31 1.000 0.000 0.000
32 1.000 0.000 0.000
33 1.000 0.000 0.000
34 1.000 0.000 0.000
35 1.000 0.000 0.000
36 1.000 0.000 0.000
37 1.000 0.000 0.000
38 1.000 0.000 0.000
39 1.000 0.000 0.000
40 1.000 0.000 0.000
41 1.000 0.000 0.000
42 1.000 0.000 0.000
43 1.000 0.000 0.000
44 1.000 0.000 0.000
45 1.000 0.000 0.000
46 1.000 0.000 0.000
47 1.000 0.000 0.000
48 1.000 0.000 0.000
49 1.000 0.000 0.000
50 1.000 0.000 0.000
51 0.000 1.000 0.000

Chapter 9: Multivariate Analysis discriminant_analysis •••• 465

52 0.000 1.000 0.000
53 0.000 0.998 0.002
54 0.000 0.997 0.003
55 0.000 0.997 0.003
56 0.000 0.989 0.011
57 0.000 0.995 0.005
58 0.000 1.000 0.000
59 0.000 1.000 0.000
60 0.000 0.994 0.006
61 0.000 1.000 0.000
62 0.000 0.999 0.001
63 0.000 1.000 0.000
64 0.000 0.988 0.012
65 0.000 1.000 0.000
66 0.000 1.000 0.000
67 0.000 0.973 0.027
68 0.000 1.000 0.000
69 0.000 0.813 0.187
70 0.000 1.000 0.000
71 0.000 0.336 0.664
72 0.000 1.000 0.000
73 0.000 0.699 0.301
74 0.000 0.972 0.028
75 0.000 1.000 0.000
76 0.000 1.000 0.000
77 0.000 0.998 0.002
78 0.000 0.861 0.139
79 0.000 0.992 0.008
80 0.000 1.000 0.000
81 0.000 1.000 0.000
82 0.000 1.000 0.000
83 0.000 1.000 0.000
84 0.000 0.154 0.846
85 0.000 0.943 0.057
86 0.000 0.996 0.004
87 0.000 0.999 0.001
88 0.000 0.999 0.001
89 0.000 1.000 0.000
90 0.000 0.999 0.001
91 0.000 0.981 0.019
92 0.000 0.997 0.003
93 0.000 1.000 0.000
94 0.000 1.000 0.000
95 0.000 0.999 0.001
96 0.000 1.000 0.000
97 0.000 1.000 0.000
98 0.000 1.000 0.000
99 0.000 1.000 0.000

100 0.000 1.000 0.000
101 0.000 0.000 1.000
102 0.000 0.000 1.000
103 0.000 0.000 1.000
104 0.000 0.006 0.994
105 0.000 0.000 1.000
106 0.000 0.000 1.000
107 0.000 0.004 0.996
108 0.000 0.000 1.000
109 0.000 0.000 1.000
110 0.000 0.000 1.000

466 •••• discriminant_analysis IMSL C/Stat/Library

111 0.000 0.006 0.994
112 0.000 0.001 0.999
113 0.000 0.000 1.000
114 0.000 0.000 1.000
115 0.000 0.000 1.000
116 0.000 0.000 1.000
117 0.000 0.033 0.967
118 0.000 0.000 1.000
119 0.000 0.000 1.000
120 0.000 0.041 0.959
121 0.000 0.000 1.000
122 0.000 0.000 1.000
123 0.000 0.000 1.000
124 0.000 0.028 0.972
125 0.000 0.001 0.999
126 0.000 0.007 0.993
127 0.000 0.057 0.943
128 0.000 0.151 0.849
129 0.000 0.000 1.000
130 0.000 0.020 0.980
131 0.000 0.000 1.000
132 0.000 0.009 0.991
133 0.000 0.000 1.000
134 0.000 0.605 0.395
135 0.000 0.000 1.000
136 0.000 0.000 1.000
137 0.000 0.000 1.000
138 0.000 0.050 0.950
139 0.000 0.141 0.859
140 0.000 0.000 1.000
141 0.000 0.000 1.000
142 0.000 0.000 1.000
143 0.000 0.000 1.000
144 0.000 0.000 1.000
145 0.000 0.000 1.000
146 0.000 0.000 1.000
147 0.000 0.000 1.000
148 0.000 0.001 0.999
149 0.000 0.000 1.000
150 0.000 0.061 0.939

D2
1 2 3

1 0.0 323.1 706.1
2 103.2 0.0 17.9
3 168.8 13.8 0.0

Covariance
1 2 3 4

1 0.1242 0.0992 0.0164 0.0103
2 0.0992 0.1437 0.0117 0.0093
3 0.0164 0.0117 0.0302 0.0061
4 0.0103 0.0093 0.0061 0.0111

nrmiss = 0

Chapter 9: Multivariate Analysis discriminant_analysis •••• 467

Warning Errors
IMSLS_BAD_OBS_1 In call #, row # of the data matrix, �x�, has group

number = #. The group number must be an
integer between 1.0 and �n_groups� = #,
inclusively. This observation will be ignored.

IMSLS_BAD_OBS_2 The leaving out one method is specified but this
observation does not have a valid group number
(Its group number is #.). This observation (row
#) is ignored.

IMSLS_BAD_OBS_3 The leaving out one method is specified but this
observation does not have a valid weight or it
does not have a valid frequency. This
observation (row #) is ignored.

IMSLS_COV_SINGULAR_3 The group # covariance matrix is singular.
�stats[1]� cannot be computed. �stats[1]� and
�stats[3]� are set to the missing value code
(NaN).

Fatal Errors
IMSLS_BAD_IDO_1 �ido� = #. Initial allocations must be performed

by making a call to discriminant_analysis with
�ido� = 1.

IMSLS_BAD_IDO_2 �ido� = #. A new analysis may not begin until the
previous analysis is terminated with �ido� equal
to 5 or 6.

IMSLS_COV_SINGULAR_1 The variance-covariance matrix for population
number # is singular. The computations cannot
continue.

IMSLS_COV_SINGULAR_2 The pooled variance-covariance matrix is
singular. The computations cannot continue.

IMSLS_COV_SINGULAR_4 A variance-covariance matrix is singular. The
index of the first zero element is equal to #.

Chapter 10: Survival Analysis Routines •••• 469

Chapter 10: Survival Analysis

Routines
Analyzes survival data using a generalized
linear model..survival_glm 469
Estimates using various parametric modes survival_estimates 493

Usage Notes
The routines described in this chapter have primary application in the areas of
reliability and life testing, but they may find application in any situation in which
time is a variable of interest. Kalbfleisch and Prentice (1980), Elandt-Johnson and
Johnson (1980), Lee (1980), Gross and Clark (1975), Lawless (1982), and
Chiang (1968) are references for discussing the models and methods used here.
Routine imsls_f_survival_glm (page 469) fits any of several generalized
linear models, and imsls_f_survival_estimates (page 493) computes
estimates of survival probabilities based on the same models.

survival_glm
Analyzes censored survival data using a generalized linear model.

Synopsis
#include <imsls.h>

int imsls_f_survival_glm (int n_observations, int n_class,
int n_continuous, int model, float x[], ..., 0)

The type double function is imsls_d_survival_glm.

Required Arguments

int n_observations (Input)
Number of observations.

int n_class (Input)
Number of classification variables.

470 •••• survival_glm IMSL C/Stat/Library

int n_continuous (Input)
Number of continuous variables.

int model (Input)
Argument model specifies the model used to analyze the data.

model PDF of the Response Variable
0 Exponential
1 Linear hazard
2 Log-normal
3 Normal
4 Log-logistic
5 Logistic
6 Log least extreme value
7 Least extreme value
8 Log extreme value
9 Extreme value

10 Weibull

See the �Description� section for more information about these models.

float x[] (Input)
Array of size n_observations by (n_class + n_continuous) + m
containing data for the independent variables, dependent variable, and
optional parameters.

The columns must be ordered such that the first n_class columns
contain data for the class variables, the next n_continuous columns
contain data for the continuous variables, and the next column contains
the response variable. The final (and optional) m − 1 columns contain
the optional parameters.

Return Value
An integer value indicating the number of estimated coefficients in the model.

Synopsis with Optional Arguments
#include <imsls.h>

int imsls_f_survival_glm (int n_observations, int n_class,
int n_continuous, int model, float x[],
IMSLS_X_COL_CENSORING, int icen, int ilt, int irt,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_COL_FREQUENCIES, int ifrq,
IMSLS_X_COL_FIXED_PARAMETER, int ifix,
IMSLS_X_COL_VARIABLES, int iclass[], int icontinuous[],

Chapter 10: Survival Analysis survival_glm •••• 471

int iy

IMSLS_EPS, float eps,
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_INTERCEPT,
IMSLS_NO_INTERCEPT,
IMSLS_INFINITY_CHECK, int lp_max
IMSLS_NO_INFINITY_CHECK

IMSLS_EFFECTS, int n_effects, int n_var_effects[],
int indices_effects,

IMSLS_INITIAL_EST_INTERNAL,
IMSLS_INITIAL_EST_INPUT, int n_coef_input,

float estimates[],
IMSLS_MAX_CLASS, int max_class,
IMSLS_CLASS_INFO, int **n_class_values,

float **class_values,
IMSLS_CLASS_INFO_USER, int n_class_values[],

float class_values[],
IMSLS_COEF_STAT, float **coef_statistics,
IMSLS_COEF_STAT_USER, float coef_statistics[],
IMSLS_CRITERION, float *criterion,
IMSLS_COV, float **cov,
IMSLS_COV_USER, float cov[],
IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
IMSLS_CASE_ANALYSIS, float **case_analysis,
IMSLS_CASE_ANALYSIS_USER, float case_analysis[],
IMSLS_LAST_STEP, float **last_step,
IMSLS_LAST_STEP_USER, float last_step[],
IMSLS_OBS_STATUS, int **obs_status,
IMSLS_OBS_STATUS_USER, int obs_status[],
IMSLS_ITERATIONS, int *n, float **iterations,
IMSLS_ITERATIONS_USER, int *n, float iterations[],
IMSLS_SURVIVAL_INFO, Imsls_f_survival **survival_info

IMSLS_N_ROWS_MISSING, int *n_rows_missing,
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of input array x.
Default: x_col_dim = n_class + n_continuous + 1

IMSLS_X_COL_CENSORING, int icen, int ilt, int irt (Input)
Parameter icen is the column in x containing the censoring code for
each observation.

472 •••• survival_glm IMSL C/Stat/Library

x [i] [icen] Censoring type
0 Exact failure at x [i] [irt]

1 Right Censored. The response is greater than
x [i] [irt].

2 Left Censored. The response is less than or
equal to x [i] [irt].

3 Interval Censored. The response is greater
than x [i] [irt], but less than or equal to
x [i] [ilt].

Parameter ilt is the column number of x containing the upper endpoint
of the failure interval for interval- and left-censored observations. If
there are no left-censored or interval-censored observations, ilt should
be set to −1.

Parameter irt is the column number of x containing the lower endpoint
of the failure interval for interval- and right-censored observations. If
there are no left-censored or interval-censored observations, irt should
be set to −1.

Exact failure times are specified in column iy of x. By default, iy is
column n_class + n_continuous of x. The default can be changed if
keyword IMSLS_X_COL_VARIABLES is specified.

Note that it is allowable to set iy = irt, since a row with an iy value
will never have an irt value, and vice versa. This use is illustrated in
Example 2.

IMSLS_FREQUENCIES, int ifrq (Input)
Column number of x containing the frequency of response for each
observation.

IMSLS_FIXED_PARAMETER, int ifix (Input)
Column number in x containing a fixed parameter for each observation
that is added to the linear response prior to computing the model
parameter. The �fixed� parameter allows one to test hypothesis about the
parameters via the log-likelihoods.

IMSLS_X_COL_VARIABLES int iclass[], int icontinuous[], int iy

(Input)
This keyword allows specification of the variables to be used in the
analysis, and overrides the default ordering of variables described for
input argument x. Columns are numbered from 0 to x_col_dim − 1. To
avoid errors, always specify the keyword IMSLS_X_COL_DIM when
using this keyword.

Argument iclass is an index vector of length n_class containing the
column numbers of x that correspond to classification variables.

Chapter 10: Survival Analysis survival_glm •••• 473

Argument icontinuous is an index vector of length n_continuous
containing the column numbers of x that correspond to continuous
variables.

Argument iy corresponds to the column of x which contains the
dependent variable.

IMSLS_EPS, float eps (Input)
Argument eps is the convergence criterion. Convergence is assumed
when the maximum relative change in any coefficient estimate is less
than eps from one iteration to the next or when the relative change in
the log-likelihood, criterion, from one iteration to the next is less than
eps/100.0.
Default: eps = 0.001

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations. Use max_iterations = 0 to compute
the Hessian, stored in cov, and the Newton step, stored in last_step,
at the initial estimates (The initial estimates must be input. Use keyword
IMSLS_INITIAL_EST_INPUT).
Default: max_iterations = 30

IMSLS_INTERCEPT, or
IMSLS_NO_INTERCEPT,

By default, or if IMSLS_INTERCEPT is specified, the intercept is
automatically included in the model. If IMSLS_NO_INTERCEPT is
specified, there is no intercept in the model (unless otherwise provided
for by the user).

IMSLS_INFINITY_CHECK, int lp_max (Input)
Remove a right- or left-censored observation from the log-likelihood
whenever the probability of the observation exceeds 0.995. At
convergence, use linear programming to check that all removed
observations actually have infinite linear response

zi
�β

obs_status [i] is set to 2 if the linear response is infinite (See optional
argument IMSLS_OBS_STATUS). If not all removed observations have
infinite linear response, re-compute the estimates based upon the
observations with finite

zi
�β

Parameter lp_max is the maximum number of observations that can be
handled in the linear programming. Setting
lp_max = n_observations is always sufficient.
Default: No infinity checking; lp_max = 0

474 •••• survival_glm IMSL C/Stat/Library

IMSLS_NO_INFINITY_CHECK

Iterates without checking for infinite estimates. This option is the
default.

IMSLS_EFFECTS, int n_effects, int n_var_effects[],
int indices_effects[] (Input)
Use this keyword to specify the effects in the model.

Variable n_effects is the number of effects (sources of variation) in
the model. Variable n_var_effects is an array of length n_effects
containing the number of variables associated with each effect in the
model.

Argument indices_effects is an index array of length
n_var_effects [0] + n_var_effects [1] + … +
n_var_effects [n_effects − 1]. The first n_var_effects [0]
elements give the column numbers of x for each variable in the first
effect. The next n_var_effects[1] elements give the column numbers
for each variable in the second effect. The last
n_var_effects [n_effects − 1] elements give the column numbers
for each variable in the last effect.

IMSLS_INITIAL_EST_INTERNAL, or
IMSLS_INITIAL_EST_INPUT, int n_coef_input, float estimates[]

(Input)
By default, or if IMSLS_INIT_INTERNAL is specified, then unweighted
linear regression is used to obtain initial estimates. If
IMSLS_INITIAL_EST_INPUT is specified, then the n_coef_input
elements of estimates contain initial estimates of the parameters
(which requires that the user know the number of coefficients in the
model prior to the call to survival_glm). See optional argument
IMSLS_COEF_STAT for a description of the �nuisance� parameter,
which is the first element of array estimates.

IMSLS_MAX_CLASS, int max_class (Input)
An upper bound on the sum of the number of distinct values taken on by
each classification variable. Internal workspace usage can be
significantly reduced with an appropriate choice of max_class.
Default: max_class = n_observations ∗ n_class

IMSLS_CLASS_INFO, int **n_class_values, float **class_values

(Output)
Argument n_class_values is the address of a pointer to the internally
allocated array of length n_class containing the number of values
taken by each classification variable; the i-th classification variable has
n_class_values [i] distinct values. Argument class_values is the
address of a pointer to the internally allocated array of length

Chapter 10: Survival Analysis survival_glm •••• 475

n_class_values

n_class

[]i
i=
�

0

1-

containing the distinct values of the classification variables in ascending
order. The first n_class_values [0] elements of class_values
contain the values for the first classification variables, the next
n_class_values [1] elements contain the values for the second
classification variable, etc.

IMSLS_CLASS_INFO_USER, int n_class_values[],
float class_values[] (Output)
Storage for arrays n_class_values and class_values is provided
by the user. See IMSLS_CLASS_INFO.

IMSLS_COEF_STAT, float **coef_statistics (Output)
Address of a pointer to an internally allocated array of size
n_coefficients ∗ 4 containing the parameter estimates and
associated statistics:

Column Statistic
0 Coefficient estimate.
1 Estimated standard deviation of the estimated

coefficient.
2 Asymptotic normal score for testing that the

coefficient is zero.
3 The p-value associated with the normal score in

Column 2.

When present in the model, the first coefficient in coef_statistics is
the estimate of the �nuisance� parameter, and the remaining coefficients
are estimates of the parameters associated with the �linear� model,
beginning with the intercept, if present. Nuisance parameters are as
follows:

model
0 No nuisance parameter
1 Coefficient of the quadratic term in time, θ

2-9 Scale parameter, σ
10 Shape parameter, θ

IMSLS_COEF_STAT_USER, float coef_statistics[] (Output)
Storage for array coef_statistics is provided by the user. See
IMSLS_COEF_STAT.

476 •••• survival_glm IMSL C/Stat/Library

IMSLS_CRITERION, float *criterion (Output)
Optimized criterion. The criterion to be maximized is a constant plus the
log-likelihood.

IMSLS_COV, float **cov (Output)
Address of a pointer to the internally allocated array of size
n_coefficients by n_coefficients containing the estimated
asymptotic covariance matrix of the coefficients. For
max_iterations = 0, this is the Hessian computed at the initial
parameter estimates.

IMSLS_COV_USER, float cov[] (Ouput)
Storage for array cov is provided by the user. See IMSLS_COV.

IMSLS_MEANS, float **means (Output)
Address of a pointer to the internally allocated array containing the
means of the design variables. The array is of length
n_coefficients − m if IMSLS_NO_INTERCEPT is specified, and of
length n_coefficients − m − 1 otherwise. Here, m is equal to 0 if
model = 0, and equal to 1 otherwise.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

IMSLS_CASE_ANALYSIS, float **case_statistics (Output)
Address of a pointer to the internally allocated array of size
n_observations by 5 containing the case analysis below:

Column Statistic
0 Estimated predicted value.
1 Estimated influence or leverage.
2 Estimated residual.
3 Estimated cumulative hazard.
4 Non-censored observations: Estimated density at the

observation failure time and covariate values.
Censored observations: The corresponding estimated
probability.

If max_iterations = 0, case_statistics is an array of length
n_observations containing the estimated probability (for censored
observations) or the estimated density (for non-censored observations)

IMSLS_CASE_ANALYSIS_USER, float case_statistics[] (Output)
Storage for array case_statistics is provided by the user. See
IMSLS_CASE_ANALYSIS.

IMSLS_LAST_STEP, float **last_step (Output)
Address of a pointer to the internally allocated array of length
n_coefficients containing the last parameter updates (excluding step

Chapter 10: Survival Analysis survival_glm •••• 477

halvings). Parameter last_step is computed as the inverse of the
matrix of second partial derivatives times the vector of first partial
derivatives of the log-likelihood. When max_iterations = 0, the
derivatives are computed at the initial estimates.

IMSLS_LAST_STEP_USER, float last_step[] (Output)
Storage for array last_step is provided by the user. See
IMSLS_LAST_STEP.

IMSLS_OBS_STATUS, int **obs_status (Output)
Address of a pointer to the internally allocated array of length
n_observations indicating which observations are included in the
extended likelihood.

obs_status [i] Status of Observation
0 Observation i is in the likelihood
1 Observation i cannot be in the likelihood because it

contains at least one missing value in x.
2 Observation i is not in the likelihood. Its estimated

parameter is infinite.

IMSLS_OBS_STATUS_USER, int obs_status[] (Output)
Storage for array obs_status is provided by the user. See
IMSLS_OBS_STATUS.

IMSLS_ITERATIONS, int *n, float **iterations (Output)
Address of a pointer to the internally allocated array of size, n by 5
containing information about each iteration of the analysis, where n is
equal to the number of iterations.

column statistic
0 Method of iteration

Q-N Step = 0
N-R Step = 1

1 Iteration number
2 Step size
3 Maximum scaled coefficient update
4 Log-likelihood

IMSLS_ITERATIONS_USER, int *n, float iterations[] (Output)
Storage for array iterations is provided by the user. See
IMSLS_ITERATIONS.

IMSLS_SURVIVAL_INFO, Imsls_f_survival **survival_info (Output)
Address of the pointer to an internally allocated structure of type
Imsls_f_survival containing information about the survival analysis. This

478 •••• survival_glm IMSL C/Stat/Library

structure is required input for function
imsls_f_survival_estimates.

IMSLS_N_ROWS_MISSING, int *n_rows_missing (Output)
Number of rows of data that contain missing values in one or more of the
following vectors or columns of x: iy, icen, ilt, irt, ifrq, ifix,
iclass, icontinuous, or indices_effects.

Comments
1. Dummy variables are generated for the classification variables as

follows: An ascending list of all distinct values of each classification
variable is obtained and stored in class_values. Dummy variables are
then generated for each but the last of these distinct values. Each dummy
variable is zero unless the classification variable equals the list value
corresponding to the dummy variable, in which case the dummy variable
is one. See keyword IMSLS_LEAVE_OUT_LAST for optional argument
IMSLS_DUMMY in imsls_f_regressors_for_glm (Chapter 2).

2. The �product� of a classification variable with a covariate yields dummy
variables equal to the product of the covariate with each of the dummy
variables associated with the classification variable.

3. The �product� of two classification variables yields dummy variables in
the usual manner. Each dummy variable associated with the first
classification variable multiplies each dummy variable associated with
the second classification variable. The resulting dummy variables are
such that the index of the second classification variable varies fastest.

Description
Function imsls_f_survival_glm computes the maximum likelihood estimates
of parameters and associated statistics in generalized linear models commonly
found in survival (reliability) analysis. Although the terminology used will be
from the survival area, the methods discussed have applications in many areas of
data analysis, including reliability analysis and event history analysis. These
methods can be used anywhere a random variable from one of the discussed
distributions is parameterized via one of the models available in
imsls_f_survival_glm. Thus, while it is not advisable to do so, standard
multiple linear regression can be performed by routine
imsls_f_survival_glm. Estimates for any of 10 standard models can be
computed. Exact, left-censored, right-censored, or interval-censored observations
are allowed (note that left censoring is the same as interval censoring with the left
endpoint equal to the left endpoint of the support of the distribution).

Let η = xTβ be the linear parameterization, where x is a design vector obtained by
imsls_f_survival_glm via function imsls_f_regressors_for_glm from
a row of x, and β is a vector of parameters associated with the linear model. Let
T denote the random response variable and S(t) denote the probability that T > t.
All models considered also allow a fixed parameter wi for observation i (input in

Chapter 10: Survival Analysis survival_glm •••• 479

column ifix of x). Use of this parameter is discussed below. There also may be
nuisance parameters θ > 0, or σ > 0 to be estimated (along with β) in the various
models. Let Φ denote the cumulative normal distribution. The survival models
available in imsls_f_survival_glm are:

model Name S (t)
0 Exponential exp [−t exp (wi + η)]

1 Linear hazard
exp exp− +
F
HG

I
KJ +

L
N
MM

O
Q
PPt t wi

θ η
2

2
b g

2 Log-normal
1−

− −F
HG

I
KJΦ

ln t wib g η
σ

3 Normal
1−

− −F
HG

I
KJΦ

t wiη
σ

4 Log-logistic
{ exp

ln
}1 1+

− −F
HG

I
KJ

−t wib g η
σ

5 Logistic
{ exp }1 1+

− −F
HG

I
KJ

−t wiη
σ

6 Log least extreme
value exp{ exp

ln
}−

− −F
HG

I
KJ

t wib g η
σ

7 Least extreme value
exp{ exp }−

− −F
HG

I
KJ

t wiη
σ

8 Log extreme value
1− −

− −F
HG

I
KJexp{ exp

ln
}

t wib g η
σ

9 Extreme value
1− −

− −F
HG

I
KJexp{ exp }

t wiη
σ

10 Weibull
exp{

exp
}−

+
L
NMM

O
QPP

t
wi η

θ

b g
Note that the log-least-extreme-value model is a reparameterization of the
Weibull model. Moreover, models 0, 1, 2, 4, 6, 8, and 10 require that T > 0, while
all of the remaining models allow any value for T, −∞ < T < ∞.

Each row vector in the data matrix can represent a single observation; or, through
the use of vector frequencies, each row can represent several observations. Also
note that classification variables and their products are easily incorporated into
the models via the usual regression-type specifications.

480 •••• survival_glm IMSL C/Stat/Library

The constant parameter Wi is input in x and may be used for a number of
purposes. For example, if the parameter in an exponential model is known to
depend upon the size of the area tested, volume of a radioactive mass, or
population density, etc., then a multiplicative factor of the exponential parameter
λ = exp (xβ) may be known apriori. This factor can be input in
Wi (Wi is the log of the factor).

An alternate use of Wi is as follows: It may be that λ = exp (x1β1 + x2β2), where
β2 is known. Letting Wi = x2β2, estimates for β1 can be obtained via
imsls_f_survival_glm with the known fixed values for β2. Standard methods
can then be used to test hypothesis about β1 via computed log-likelihoods.

Computational Details
The computations proceed as follows:
1. The input parameters are checked for consistency and validity.

• Estimates of the means of the �independent� or design variables are
computed. Means are computed as

x
f x

f
i i

i

= �
�

2. If initial estimates are not provided by the user (see optional argument
IMSLS_INITIAL_EST_INPUT), the initial estimates are calculated as
follows:

• Models 2-10
A. Kaplan-Meier estimates of the survival probability,

�S tb g
at the upper limit of each failure interval are obtained. (Because upper
limits are used, interval- and left-censored data are assumed to be exact
failures at the upper endpoint of the failure interval.) The Kaplan-Meier
estimate is computed under the assumption that all failure distributions
are identical (i.e., all β�s but the intercept, if present, are assumed to be
zero).

B. If there is an intercept in the model, a simple linear regression is
performed predicting

S S t w ti
− − = + ′1 �b ge j α φ

where t′ is computed at the upper endpoint of each failure interval,
t′ = t in models 3, 5, 7, and 9, and t′ = ln (t) in models 2, 4, 6, 8, and 10,
and wi is the fixed constant, if present.

If there is no intercept in the model, then α is fixed at zero, and the
model

Chapter 10: Survival Analysis survival_glm •••• 481

S S t t w xi
T− − ′ − =1 � �b ge j φ β

is fit instead. In this model, the coefficients β are used in place of the
location estimate α above. Here

�φ

is estimated from the simple linear regression with α = 0.
C. If the intercept is in the model, then in log-location-scale models

(models 1-8),

� �σ φ=

and the initial estimate of the intercept is assumed to be �α .

In the Weibull model

� / �θ φ= 1

and the intercept is assumed to be �α .

Initial estimates of all parameters β, other than the intercept, are
assumed to be zero.

If there is no intercept in the model, the scale parameter is estimated as
above, and the estimates

�β

from Step 2 are used as initial estimates for the β�s.

• Models 0 and 1

For the exponential models (model = 0 or 1), the �average total time on�
test statistic is used to obtain an estimate for the intercept. Specifically, let
Tt denote the total number of failures divided by the total time on test. The
initial estimates for the intercept is then ln(Tt). Initial estimates for the
remaining parameters β are assumed to be zero, and if model = 1, the initial
estimate for the linear hazard parameter θ is assumed to be a small positive
number. When the intercept is not in the model, the initial estimate for the
parameter θ is assumed to be a small positive number, and initial estimates
of the parameters β are computed via multiple linear regression as in Part A.

3. A quasi-Newton algorithm is used in the initial iterations based on a Hessian
estimate

�H l
j l j li i

i
κ κ α α= ′�

where l′ iαj is the partial derivative of the i-th term in the log-likelihood with
respect to the parameter αj, and aj denotes one of the parameter to be
estimated.

482 •••• survival_glm IMSL C/Stat/Library

When the relative change in the log-likelihood from one iteration to the next is
0.1 or less, exact second partial derivatives are used for the Hessian so the
Newton-Rapheson iteration is used.

If the initial step size results in an increase in the log-likelihood, the full step is
used. If the log-likelihood decreases for the initial step size, the step size is
halved, and a check for an increase in the log-likelihood performed. Step-halving
is performed (as a simple line search) until an increase in the log-likelihood is
detected, or until the step size becomes very small (the initial step size is 1.0).
4. Convergence is assumed when the maximum relative change in any

coefficient update from one iteration to the next is less than eps or when the
relative change in the log-likelihood from one iteration to the next is less than
eps/100. Convergence is also assumed after maxit iterations or when step
halving leads to a very small step size with no increase in the log-likelihood.

5. If requested (see optional argument IMSLS_INFINITY_CHECK), then the
methods of Clarkson and Jennrich (1988) are used to check for the existence
of infinite estimates in

η βi i
Tx=

As an example of a situation in which infinite estimates can occur, suppose that
observation j is right-censored with tj > 15 in a normal distribution model in
which the mean is

µ β ηj j
T

jx= =

where xj is the observation design vector. If the design vector xj for parameter βm
is such that xjm = 1 and xim = 0 for all i ≠ j, then the optimal estimate of βm occurs
at

�βm = ∞

leading to an infinite estimate of both βm and ηj. In imsls_f_survival_glm,
such estimates can be �computed�.

In all models fit by imsls_f_survival_glm, infinite estimates can only occur
when the optimal estimated probability associated with the left- or right-censored
observation is 1. If infinity checking is on, left- or right-censored observations
that have estimated probability greater than 0.995 at some point during the
iterations are excluded from the log-likelihood, and the iterations proceed with a
log-likelihood based on the remaining observations. This allows convergence of
the algorithm when the maximum relative change in the estimated coefficients is
small and also allows for a more precise determination of observations with
infinite

η βi i
Tx=

At convergence, linear programming is used to ensure that the eliminated
observations have infinite ηi. If some (or all) of the removed observations should

Chapter 10: Survival Analysis survival_glm •••• 483

not have been removed (because their estimated ηi�s must be finite), then the
iterations are restarted with a log-likelihood based upon the finite ηi observations.
See Clarkson and Jennrich (1988) for more details.

When infinity checking is turned off (see optional argument
IMSLS_NO_INFINITY_CHECK), no observations are eliminated during the
iterations. In this case, the infinite estimates occur, some (or all) of the coefficient
estimates

�β

will become large, and it is likely that the Hessian will become (numerically)
singular prior to convergence.
6. The case statistics are computed as follows: Let Ii (θi)denote the log-

likelihood
of the i-th observation evaluated at θi, let I′ i denote the vector of derivatives
of
Ii with respect to all parameters, I′h,i denote the derivative of Ii with respect to
η = xTβ, H denote the Hessian, and E denote expectation. Then the columns
of case_statistics are:

A. Predicted values are computed as E (T/x) according to standard
formulas. If model is 4 or 8, and if s ≥ 1, then the expected values cannot
be computed because they are infinite.

B. Following Cook and Weisberg (1982), the influence (or leverage) of the
i-th observation is assumed to be

′ ′−I H Ii
T

ib g 1

This quantity is a one-step approximation of the change in the estimates
when the i-th observation is deleted (ignoring the nuisance parameters).

C. The �residual� is computed as I′h,i.

D. The cumulative hazard is computed at the observation covariate values
and, for interval observations, the upper endpoint of the failure interval.
The cumulative hazard also can be used as a �residual� estimate. If the
model is correct, the cumulative hazards should follow a standard
exponential distribution. See Cox and Oakes (1984).

Programming Notes
Indicator (dummy) variables are created for the classification variables using
function imsls_f_regressors_for_glm (Chapter 2) using keyword
IMSLS_LEAVE_OUT_LAST as the argument to the IMSLS_DUMMY optional
argument.

484 •••• survival_glm IMSL C/Stat/Library

Examples

Example 1
This example is taken from Lawless (1982, p. 287) and involves the mortality of
patients suffering from lung cancer. An exponential distribution is fit for the
model

η = µ + αi + γk + β6x3 + β7x4 + β8x5

where αi is associated with a classification variable with four levels, and γk is
associated with a classification variable with two levels. Note that because the
computations are performed in single precision, there will be some small
variation in the estimated coefficients across different machine environments.

#include <imsls.h>

main() {
static float x[40][7] = {

1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0,
1.0, 0.0, 6.0, 63.0, 9.0, 126.0, 0.0,
1.0, 0.0, 7.0, 65.0, 11.0, 118.0, 0.0,
1.0, 0.0, 4.0, 69.0, 10.0, 92.0, 0.0,
1.0, 0.0, 4.0, 63.0, 58.0, 8.0, 0.0,
1.0, 0.0, 7.0, 48.0, 9.0, 25.0, 1.0,
1.0, 0.0, 7.0, 48.0, 11.0, 11.0, 0.0,
2.0, 0.0, 8.0, 63.0, 4.0, 54.0, 0.0,
2.0, 0.0, 6.0, 63.0, 14.0, 153.0, 0.0,
2.0, 0.0, 3.0, 53.0, 4.0, 16.0, 0.0,
2.0, 0.0, 8.0, 43.0, 12.0, 56.0, 0.0,
2.0, 0.0, 4.0, 55.0, 2.0, 21.0, 0.0,
2.0, 0.0, 6.0, 66.0, 25.0, 287.0, 0.0,
2.0, 0.0, 4.0, 67.0, 23.0, 10.0, 0.0,
3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0,
3.0, 0.0, 5.0, 63.0, 4.0, 12.0, 0.0,
4.0, 0.0, 5.0, 66.0, 16.0, 177.0, 0.0,
4.0, 0.0, 4.0, 68.0, 12.0, 12.0, 0.0,
4.0, 0.0, 8.0, 41.0, 12.0, 200.0, 0.0,
4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0,
4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0,
1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0,
1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0,
1.0, 1.0, 7.0, 50.0, 7.0, 991.0, 0.0,
1.0, 1.0, 2.0, 65.0, 21.0, 1.0, 0.0,
1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0,
1.0, 1.0, 6.0, 70.0, 13.0, 44.0, 0.0,
1.0, 1.0, 5.0, 40.0, 13.0, 15.0, 0.0,
2.0, 1.0, 7.0, 36.0, 22.0, 103.0, 1.0,
2.0, 1.0, 4.0, 44.0, 36.0, 2.0, 0.0,
2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0,
2.0, 1.0, 3.0, 59.0, 87.0, 51.0, 0.0,
3.0, 1.0, 4.0, 69.0, 5.0, 18.0, 0.0,
3.0, 1.0, 6.0, 50.0, 22.0, 90.0, 0.0,
3.0, 1.0, 8.0, 62.0, 4.0, 84.0, 0.0,
4.0, 1.0, 7.0, 68.0, 15.0, 164.0, 0.0,
4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0,
4.0, 1.0, 6.0, 49.0, 11.0, 43.0, 0.0,

Chapter 10: Survival Analysis survival_glm •••• 485

4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0,
4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0.0};

int n_observations = 40;
int n_class = 2;
int n_continuous = 3;
int model = 0;
int n_coef;
int icen = 6, ilt = -1, irt = 5;
int lp_max = 40;
float *coef_stat;
char *fmt = "%12.4f";
static char *clabels[] = {"", "coefficient", "s.e.", "z", "p"};

n_coef = imsls_f_survival_glm(n_observations, n_class,
n_continuous, model, &x[0][0],
IMSLS_X_COL_CENSORING, icen, ilt, irt,
IMSLS_INFINITY_CHECK, lp_max,
IMSLS_COEF_STAT, &coef_stat,
0);

imsls_f_write_matrix("Coefficient Statistics", n_coef, 4,
coef_stat,
IMSLS_WRITE_FORMAT, fmt,
IMSLS_NO_ROW_LABELS,
IMSLS_COL_LABELS, clabels,
0);

}

Output

Coefficient Statistics
coefficient s.e. z p

-1.1027 1.3091 -0.8423 0.3998
-0.3626 0.4446 -0.8156 0.4149
0.1271 0.4863 0.2613 0.7939
0.8690 0.5861 1.4825 0.1385
0.2697 0.3882 0.6948 0.4873
-0.5400 0.1081 -4.9946 0.0000
-0.0090 0.0197 -0.4594 0.6460
-0.0034 0.0117 -0.2912 0.7710

Example 2
This example is the same as Example 1, but more optional arguments are
demonstrated.

#include <imsls.h>

main() {
static float x[40][7] = {

1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0,
1.0, 0.0, 6.0, 63.0, 9.0, 126.0, 0.0,
1.0, 0.0, 7.0, 65.0, 11.0, 118.0, 0.0,
1.0, 0.0, 4.0, 69.0, 10.0, 92.0, 0.0,
1.0, 0.0, 4.0, 63.0, 58.0, 8.0, 0.0,
1.0, 0.0, 7.0, 48.0, 9.0, 25.0, 1.0,
1.0, 0.0, 7.0, 48.0, 11.0, 11.0, 0.0,

486 •••• survival_glm IMSL C/Stat/Library

2.0, 0.0, 8.0, 63.0, 4.0, 54.0, 0.0,
2.0, 0.0, 6.0, 63.0, 14.0, 153.0, 0.0,
2.0, 0.0, 3.0, 53.0, 4.0, 16.0, 0.0,
2.0, 0.0, 8.0, 43.0, 12.0, 56.0, 0.0,
2.0, 0.0, 4.0, 55.0, 2.0, 21.0, 0.0,
2.0, 0.0, 6.0, 66.0, 25.0, 287.0, 0.0,
2.0, 0.0, 4.0, 67.0, 23.0, 10.0, 0.0,
3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0,
3.0, 0.0, 5.0, 63.0, 4.0, 12.0, 0.0,
4.0, 0.0, 5.0, 66.0, 16.0, 177.0, 0.0,
4.0, 0.0, 4.0, 68.0, 12.0, 12.0, 0.0,
4.0, 0.0, 8.0, 41.0, 12.0, 200.0, 0.0,
4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0,
4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0,
1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0,
1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0,
1.0, 1.0, 7.0, 50.0, 7.0, 991.0, 0.0,
1.0, 1.0, 2.0, 65.0, 21.0, 1.0, 0.0,
1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0,
1.0, 1.0, 6.0, 70.0, 13.0, 44.0, 0.0,
1.0, 1.0, 5.0, 40.0, 13.0, 15.0, 0.0,
2.0, 1.0, 7.0, 36.0, 22.0, 103.0, 1.0,
2.0, 1.0, 4.0, 44.0, 36.0, 2.0, 0.0,
2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0,
2.0, 1.0, 3.0, 59.0, 87.0, 51.0, 0.0,
3.0, 1.0, 4.0, 69.0, 5.0, 18.0, 0.0,
3.0, 1.0, 6.0, 50.0, 22.0, 90.0, 0.0,
3.0, 1.0, 8.0, 62.0, 4.0, 84.0, 0.0,
4.0, 1.0, 7.0, 68.0, 15.0, 164.0, 0.0,
4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0,
4.0, 1.0, 6.0, 49.0, 11.0, 43.0, 0.0,
4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0,
4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0.0};

int n_observations = 40;
int n_class = 2;
int n_continuous = 3;
int model = 0;
int n_coef;
int icen = 6, ilt = -1, irt = 5;
int lp_max = 40;
int n, *ncv, nrmiss, *obs;
float *iterations, *cv, criterion;
float *coef_stat, *casex;
char *fmt = "%12.4f";
char *fmt2 = "%4d%4d%6.4f%8.4f%8.1f";
static char *clabels[] = {"", "coefficient", "s.e.", "z", "p"};
static char *clabels2[] = {"", "Method", "Iteration", "Step Size",

"Coef Update", "Log-Likelihood"};

n_coef = imsls_f_survival_glm(n_observations, n_class,
n_continuous, model, &x[0][0],
IMSLS_X_COL_CENSORING, icen, ilt, irt,
IMSLS_INFINITY_CHECK, lp_max,
IMSLS_COEF_STAT, &coef_stat,
IMSLS_ITERATIONS, &n, &iterations,
IMSLS_CASE_ANALYSIS, &casex,
IMSLS_CLASS_INFO, &ncv, &cv,
IMSLS_OBS_STATUS, &obs,

Chapter 10: Survival Analysis survival_glm •••• 487

IMSLS_CRITERION, &criterion,
IMSLS_N_ROWS_MISSING, &nrmiss,
0);

imsls_f_write_matrix("Coefficient Statistics", n_coef, 4,
coef_stat,
IMSLS_WRITE_FORMAT, fmt,
IMSLS_NO_ROW_LABELS,
IMSLS_COL_LABELS, clabels,
0);

imsls_f_write_matrix("Iteration Information", n, 5, iterations,
IMSLS_WRITE_FORMAT, fmt2,
IMSLS_NO_ROW_LABELS,
IMSLS_COL_LABELS, clabels2, 0);

printf("\nLog-Likelihood = %12.5f\n", criterion);

imsls_f_write_matrix("Case Analysis", 1, n_observations, casex,
IMSLS_WRITE_FORMAT, fmt,
0);

imsls_f_write_matrix(
"Distinct Values for Classification Variable 1",
1, ncv[0], &cv[0], IMSLS_NO_COL_LABELS, 0);

imsls_f_write_matrix(
"Distinct Values for Classification Variable 2",
1, ncv[1], &cv[ncv[0]], IMSLS_NO_COL_LABELS, 0);

imsls_i_write_matrix("Observation Status", 1, n_observations,
obs, 0);

printf("\nNumber of Missing Values = %2d\n", nrmiss);
}

Output

Coefficient Statistics
coefficient s.e. z p

-1.1027 1.3091 -0.8423 0.3998
-0.3626 0.4446 -0.8156 0.4149
0.1271 0.4863 0.2613 0.7939
0.8690 0.5861 1.4825 0.1385
0.2697 0.3882 0.6948 0.4873
-0.5400 0.1081 -4.9946 0.0000
-0.0090 0.0197 -0.4594 0.6460
-0.0034 0.0117 -0.2912 0.7710

Iteration Information
Method Iteration Step Size Coef Update Log-Likelihood

0 0 -224.0
0 1 1.0000 0.9839 -213.4
1 2 1.0000 3.6033 -207.3
1 3 1.0000 10.1236 -204.3
1 4 1.0000 0.1430 -204.1
1 5 1.0000 0.0117 -204.1

488 •••• survival_glm IMSL C/Stat/Library

Log-Likelihood = -204.13916

Case Analysis
1 2 3 4 5

262.6884 0.0450 -0.5646 1.5646 0.0008

6 7 8 9 10
153.7777 0.0042 0.1806 0.8194 0.0029

11 12 13 14 15
270.5347 0.0482 0.5638 0.4362 0.0024

16 17 18 19 20
55.3168 0.0844 -0.6631 1.6631 0.0034

21 22 23 24 25
61.6845 0.3765 0.8703 0.1297 0.0142

26 27 28 29 30
230.4414 0.0025 -0.1085 0.1085 0.8972

31 32 33 34 35
232.0135 0.1960 0.9526 0.0474 0.0041

36 37 38 39 40
272.8432 0.1677 0.8021 0.1979 0.0030

Distinct Values for Classification Variable 1
1 2 3 4

Distinct Values for Classification Variable 2
0 1

Observation Status
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Number of Missing Values = 0

Example 3
In this example, the same data and model as example 1 are used, but
max_iterations is set to zero iterations with model coefficients restricted such
that µ = −1.25, β6 = −0.6, and the remaining six coefficients are equal to zero. A
chi-squared statistic, with 8 degrees of freedom for testing the coefficients is
specified as above (versus the alternative that it is not as specified), can be
computed, based on the output, as

χ2 1= −g gT �Σ

where

Chapter 10: Survival Analysis survival_glm •••• 489

�Σ

is output in cov. The resulting test statistic, χ2 = 6.107, based upon no iterations
is comparable to likelihood ratio test that can be computed from the log-
likelihood output in this example (−206.6835) and the log-likelihood output in
Example 2 (−204.1392).

χ LR
2 2 206 6835 204 1392 50886= − =. . .b g

Neither statistic is significant at the α = 0.05 level.

#include <imsls.h>

main() {
static float x[40][7] = {

1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0,
1.0, 0.0, 6.0, 63.0, 9.0, 126.0, 0.0,
1.0, 0.0, 7.0, 65.0, 11.0, 118.0, 0.0,
1.0, 0.0, 4.0, 69.0, 10.0, 92.0, 0.0,
1.0, 0.0, 4.0, 63.0, 58.0, 8.0, 0.0,
1.0, 0.0, 7.0, 48.0, 9.0, 25.0, 1.0,
1.0, 0.0, 7.0, 48.0, 11.0, 11.0, 0.0,
2.0, 0.0, 8.0, 63.0, 4.0, 54.0, 0.0,
2.0, 0.0, 6.0, 63.0, 14.0, 153.0, 0.0,
2.0, 0.0, 3.0, 53.0, 4.0, 16.0, 0.0,
2.0, 0.0, 8.0, 43.0, 12.0, 56.0, 0.0,
2.0, 0.0, 4.0, 55.0, 2.0, 21.0, 0.0,
2.0, 0.0, 6.0, 66.0, 25.0, 287.0, 0.0,
2.0, 0.0, 4.0, 67.0, 23.0, 10.0, 0.0,
3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0,
3.0, 0.0, 5.0, 63.0, 4.0, 12.0, 0.0,
4.0, 0.0, 5.0, 66.0, 16.0, 177.0, 0.0,
4.0, 0.0, 4.0, 68.0, 12.0, 12.0, 0.0,
4.0, 0.0, 8.0, 41.0, 12.0, 200.0, 0.0,
4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0,
4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0,
1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0,
1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0,
1.0, 1.0, 7.0, 50.0, 7.0, 991.0, 0.0,
1.0, 1.0, 2.0, 65.0, 21.0, 1.0, 0.0,
1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0,
1.0, 1.0, 6.0, 70.0, 13.0, 44.0, 0.0,
1.0, 1.0, 5.0, 40.0, 13.0, 15.0, 0.0,
2.0, 1.0, 7.0, 36.0, 22.0, 103.0, 1.0,
2.0, 1.0, 4.0, 44.0, 36.0, 2.0, 0.0,
2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0,
2.0, 1.0, 3.0, 59.0, 87.0, 51.0, 0.0,
3.0, 1.0, 4.0, 69.0, 5.0, 18.0, 0.0,
3.0, 1.0, 6.0, 50.0, 22.0, 90.0, 0.0,
3.0, 1.0, 8.0, 62.0, 4.0, 84.0, 0.0,
4.0, 1.0, 7.0, 68.0, 15.0, 164.0, 0.0,
4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0,
4.0, 1.0, 6.0, 49.0, 11.0, 43.0, 0.0,
4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0,
4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0.0};

int n_observations = 40;
int n_class = 2;

490 •••• survival_glm IMSL C/Stat/Library

int n_continuous = 3;
int model = 0;
int icen = 6, ilt = -1, irt = 5;
int lp_max = 40;
int n_coef_input = 8;
static float estimates[8] = {-1.25, 0.0, 0.0, 0.0,

0.0, -0.6, 0.0, 0.0};

int n_coef;
float *coef_stat, *means, *cov;
float criterion, *last_step;

char *fmt = "%12.4f";
static char *clabels[] = {"", "coefficient", "s.e.", "z", "p"};

n_coef = imsls_f_survival_glm(n_observations, n_class,
n_continuous, model, &x[0][0],
IMSLS_X_COL_CENSORING, icen, ilt, irt,
IMSLS_INFINITY_CHECK, lp_max,
IMSLS_INITIAL_EST_INPUT, n_coef_input, estimates,
IMSLS_MAX_ITERATIONS, 0,
IMSLS_COEF_STAT, &coef_stat,
IMSLS_MEANS, &means,
IMSLS_COV, &cov,
IMSLS_CRITERION, &criterion,
IMSLS_LAST_STEP, &last_step,
0);

imsls_f_write_matrix("Coefficient Statistics", n_coef, 4,
coef_stat,
IMSLS_WRITE_FORMAT, fmt,
IMSLS_NO_ROW_LABELS,
IMSLS_COL_LABELS, clabels,
0);

imsls_f_write_matrix("Covariate Means", 1, n_coef-1, means, 0);

imsls_f_write_matrix("Hessian", n_coef, n_coef, cov,
IMSLS_WRITE_FORMAT, fmt,
IMSLS_PRINT_UPPER,
0);

printf("\nLog-Likelihood = %12.5f\n", criterion);

imsls_f_write_matrix("Newton-Raphson Step", 1, n_coef, last_step,
IMSLS_WRITE_FORMAT, fmt, 0);

}

Output

Coefficient Statistics
coefficient s.e. z p

-1.2500 1.3773 -0.9076 0.3643
0.0000 0.4288 0.0000 1.0000
0.0000 0.5299 0.0000 1.0000
0.0000 0.7748 0.0000 1.0000
0.0000 0.4051 0.0000 1.0000

Chapter 10: Survival Analysis survival_glm •••• 491

-0.6000 0.1118 -5.3652 0.0000
0.0000 0.0215 0.0000 1.0000
0.0000 0.0109 0.0000 1.0000

Covariate Means
1 2 3 4 5 6

0.35 0.28 0.12 0.53 5.65 56.58

7
15.65

Hessian
1 2 3 4 5

1 1.8969 -0.0906 -0.1641 -0.1681 0.0778
2 0.1839 0.0996 0.1191 0.0358
3 0.2808 0.1264 -0.0226
4 0.6003 0.0460
5 0.1641

6 7 8
1 -0.0818 -0.0235 -0.0012
2 -0.0005 -0.0008 0.0006
3 0.0104 0.0005 -0.0021
4 0.0193 -0.0016 0.0007
5 0.0060 -0.0040 0.0017
6 0.0125 0.0000 0.0003
7 0.0005 -0.0001
8 0.0001

Log-Likelihood = -206.68349

Newton-Raphson Step
1 2 3 4 5

0.1706 -0.3365 0.1333 1.2967 0.2985

6 7 8
0.0625 -0.0112 -0.0026

Warning Errors
IMSLS_CONVERGENCE_ASSUMED_1 Too many step halvings.

Convergence is assumed.

IMSLS_CONVERGENCE_ASSUMED_2 Too many step iterations.
Convergence is assumed.

IMSLS_NO_PREDICTED_1 �estimates[0]� > 1.0. The expected
value for the log logistic
distribution (�model� = 4) does
not exist. Predicted values will not
be calculated.

IMSLS_NO_PREDICTED_2 �estimates[0]� > 1.0. The expected
value for the log extreme value
distribution(�model� = 8) does not

492 •••• survival_glm IMSL C/Stat/Library

exist. Predicted values will not be
calculated.

IMSLS_NEG_EIGENVALUE The Hessian has at least one
negative eigenvalue. An upper
bound on the absolute value of the
minimum eigenvalue is #
corresponding to variable index #.

IMSLS_INVALID_FAILURE_TIME_4 �x[#][�ilt�= #]� = # and
�x[#][�irt�= #]� = #. The cen-
soring interval has length 0.0. The
censoring code for this observation
is being set to 0.0.

Fatal Error
IMSLS_MAX_CLASS_TOO_SMALL The number of distinct values of

the classification variables exceeds
�max_class� = #.

IMSLS_TOO_FEW_COEF IMSLS_INITIAL_EST_INPUT is
specified, and �n_coef_input� = #.
The model specified requires #
coefficients.

IMSLS_TOO_FEW_VALID_OBS �n_observations� = # and
�n_rows_missing� = #.
�n_observations�−
�n_rows_missing� must be greater
than or equal to 2 in order to
estimate the coefficients.

IMSLS_SVGLM_1 For the exponential model
(�model� = 0) with �n_effects� = #
and no intercept, �n_coef� has
been determined to equal 0. With
no coefficients in the model,
processing cannot continue.

IMSLS_INCREASE_LP_MAX Too many observations are to be
deleted from the model. Either use
a different model or increase the
workspace.

IMSLS_INVALID_DATA_8 �n_class_values[#]� = #. The
number of distinct values for each
classification variable must be
greater than one.

Chapter 10: Survival Analysis survival_estimates •••• 493

survival_estimates
Estimates survival probabilities and hazard rates for the various parametric
models.

Synopsis
#include <imsls.h>

int *imsls_f_survival_estimates (Imsls_f_survival *survival_info,
int n_observations, float xpt[], float time, int npt,
float delta, ..., 0)

The type double function is imsls_d_survival_estimates.

Required Arguments

Imsls_f_survival *survival_info (Input)
Pointer to structure of type Imsls_f_survival containing the estimated
survival coefficients and other related information. See
imsls_f_survival_glm.

int n_observations (Input)
Number of observations for which estimates are to be calculated.

float xpt[] (Input)
Array xpt is an array of size n_observations by x_col_dim
containing the groups of covariates for which estimates are desired,
where x_col_dim is described in the documentation for
imsls_f_survival_glm. The covariates must be specified exactly as
in the call to imsls_f_survival_glm which produced
survival_info.

float time (Input)
Beginning of the time grid for which estimates are desired. Survival
probabilities and hazard rates are computed for each covariate vector
over the grid of time points time + i*delta for i = 0, 1, …, npt − 1.

int npt (Input)
Number of points on the time grid for which survival probabilities are
desired.

float delta (Input)
Increment between time points on the time grid.

Return Value
An array of size npt by (2 ∗ n_observations + 1) containing the estimated
survival probabilities for the covariate groups specified in xpt. Column 0
contains the survival time. Columns 1 and 2 contain the estimated survival
probabilities and hazard rates, respectively, for the covariates in the first row of

494 •••• survival_estimates IMSL C/Stat/Library

xpt. In general, the survival and hazard for row i of xpt is contained in columns
2i − 1 and 2i, respectively, for i = 1, 2, …, npt.

Synopsis with Optional Arguments
#include <imsls.h>

int *imsls_f_survival_estimates (Imsls_f_survival survival_info,
int n_observations, float xpt[], float time, int npt,
float delta,
IMSLS_XBETA, float **xbeta,
IMSLS_XBETA_USER, float xbeta[],
IMSLS_RETURN_USER, float sprob[],
0)

Optional Arguments
IMSLS_XBETA, float **xbeta (Output)

Address of a pointer to an array of length n_observations containing
the estimated linear response

w x+ �β

for each row of xpt.

IMSLS_XBETA_USER, float xbeta[] (Output)
Storage for array xbeta is provided by the user. See IMSLS_XBETA.

IMSLS_RETURN_USER, float sprob[] (Output)
User supplied array of size npt by (2 ∗ n_observations + 1)
containing the estimated survival probabilities for the covariate groups
specified in xpt. Column 0 contains the survival time. Columns 1 and 2
contain the estimated survival probabilities and hazard rates,
respectively, for the covariates in the first row of xpt. In general, the
survival and hazard for row i of xpt is contained in columns 2i − 1 and
2i, respectively, for i = 1, 2, …, npt.

Description
Function imsls_f_survival_estimates computes estimates of survival
probabilities and hazard rates for the parametric survival/reliability models fit by
function imsls_f_survival_glm.

Let η = xTβ be the linear parameterization, where x is the design vector
corresponding to a row of xpt (imsls_f_survival_estimates generates the
design vector using function imsls_f_regressors_for_glm), and β is a
vector of parameters associated with the linear model. Let T denote the random
response variable and S(t) denote the probability that T > t. All models considered
also allow a fixed parameter w (input in column ifix of xpt). Use of the
parameter is discussed in function imsls_f_survival_glm. There also may be
nuisance parameters θ > 0 or σ > 0. Let Φ denote the cumulative normal

Chapter 10: Survival Analysis survival_estimates •••• 495

distribution. The survival models available in imsls_f_survival_estimates
are:

model Name S (t)
0 Exponential exp [−t exp (wi + η)]

1 Linear hazard
exp exp− +
F
HG

I
KJ +

L
N
MM

O
Q
PPt t wi

θ η
2

2
b g

2 Log-normal
1−

− −F
HG

I
KJΦ

ln t wib g η
σ

3 Normal
1−

− −F
HG

I
KJΦ

t wiη
σ

4 Log-logistic
{ exp

ln
}1 1+

− −F
HG

I
KJ

−t wib g η
σ

5 Logistic
{ exp }1 1+

− −F
HG

I
KJ

−t wiη
σ

6 Log least extreme value
exp{ exp

ln
}−

− −F
HG

I
KJ

t wib g η
σ

7 Least extreme value
exp{ exp }−

− −F
HG

I
KJ

t wiη
σ

8 Log extreme value
1− −

− −F
HG

I
KJexp{ exp

ln
}

t wib g η
σ

9 Extreme value
1− −

− −F
HG

I
KJexp{ exp }

t wiη
σ

10 Weibull
exp{

exp
}−

+
L
NMM

O
QPP

t
wi η

θ

b g
Let λ(t) denote the hazard rate at time t. Then λ(t) and S(t) are related at

S t s ds
tb g b g=
−∞zexp()λ

Models 0, 1, 2, 4, 6, 8, and 10 require that T > 0 (in which case assume
λ(s) = 0 for s < 0), while the remaining models allow arbitrary values for T,
−∞ < T < ∞. The computations proceed in function
imsls_f_survival_estimates as follows:

1. The input arguments are checked for consistency and validity.

496 •••• survival_estimates IMSL C/Stat/Library

2. For each row of xpt, the explanatory variables are generated from the
classification and variables and the covariates using function
imsls_f_regressors_for_glm with
dummy_method = IMSLS_LEAVE_OUT_LAST. Given the explanatory
variables x, η is computed as η = xTβ, where β is input in
survival_info.

3. For each point requested in the time grid, the survival probabilities and
hazard rates are computed.

Example
This example is a continuation of the first example given for function
imsls_f_survival_glm. Prior to calling survival_estimates,
imsls_f_survival_glm is invoked to compute the parameter estimates
(contained in the structure survival_info). The example is taken from Lawless
(1982, p. 287) and involves the mortality of patients suffering from lung cancer.

#include <imsls.h>
#include <stdlib.h>
main() {

static float x[40][7] = {
1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0,
1.0, 0.0, 6.0, 63.0, 9.0, 126.0, 0.0,
1.0, 0.0, 7.0, 65.0, 11.0, 118.0, 0.0,
1.0, 0.0, 4.0, 69.0, 10.0, 92.0, 0.0,
1.0, 0.0, 4.0, 63.0, 58.0, 8.0, 0.0,
1.0, 0.0, 7.0, 48.0, 9.0, 25.0, 1.0,
1.0, 0.0, 7.0, 48.0, 11.0, 11.0, 0.0,
2.0, 0.0, 8.0, 63.0, 4.0, 54.0, 0.0,
2.0, 0.0, 6.0, 63.0, 14.0, 153.0, 0.0,
2.0, 0.0, 3.0, 53.0, 4.0, 16.0, 0.0,
2.0, 0.0, 8.0, 43.0, 12.0, 56.0, 0.0,
2.0, 0.0, 4.0, 55.0, 2.0, 21.0, 0.0,
2.0, 0.0, 6.0, 66.0, 25.0, 287.0, 0.0,
2.0, 0.0, 4.0, 67.0, 23.0, 10.0, 0.0,
3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0,
3.0, 0.0, 5.0, 63.0, 4.0, 12.0, 0.0,
4.0, 0.0, 5.0, 66.0, 16.0, 177.0, 0.0,
4.0, 0.0, 4.0, 68.0, 12.0, 12.0, 0.0,
4.0, 0.0, 8.0, 41.0, 12.0, 200.0, 0.0,
4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0,
4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0,
1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0,
1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0,
1.0, 1.0, 7.0, 50.0, 7.0, 991.0, 0.0,
1.0, 1.0, 2.0, 65.0, 21.0, 1.0, 0.0,
1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0,
1.0, 1.0, 6.0, 70.0, 13.0, 44.0, 0.0,
1.0, 1.0, 5.0, 40.0, 13.0, 15.0, 0.0,
2.0, 1.0, 7.0, 36.0, 22.0, 103.0, 1.0,
2.0, 1.0, 4.0, 44.0, 36.0, 2.0, 0.0,
2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0,
2.0, 1.0, 3.0, 59.0, 87.0, 51.0, 0.0,
3.0, 1.0, 4.0, 69.0, 5.0, 18.0, 0.0,

Chapter 10: Survival Analysis survival_estimates •••• 497

3.0, 1.0, 6.0, 50.0, 22.0, 90.0, 0.0,
3.0, 1.0, 8.0, 62.0, 4.0, 84.0, 0.0,
4.0, 1.0, 7.0, 68.0, 15.0, 164.0, 0.0,
4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0,
4.0, 1.0, 6.0, 49.0, 11.0, 43.0, 0.0,
4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0,
4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0.0};

int n_observations = 40;
int n_estimates = 2;
int n_class = 2;
int n_continuous = 3;
int model = 0;
int icen = 6, ilt = -1, irt = 5;
int lp_max = 40;
float time = 10.0;
int npt = 10;
float delta = 20.0;

int n_coef;
float *sprob;
Imsls_f_survival *survival_info;
char *fmt = "%12.2f%10.4f%10.6f%10.4f%10.6f";
char *clabels[] = {"", "Time", "S1", "H1", "S2", "H2"};

n_coef = imsls_f_survival_glm(n_observations, n_class,
n_continuous,
model, &x[0][0],
IMSLS_X_COL_CENSORING, icen, ilt, irt,
IMSLS_INFINITY_CHECK, lp_max,
IMSLS_SURVIVAL_INFO, &survival_info,
0);

sprob = imsls_f_survival_estimates(survival_info, n_estimates,
&x[0][0], time, npt, delta, 0);

imsls_f_write_matrix("Survival and Hazard Estimates",
npt, 2*n_estimates+1, sprob,
IMSLS_WRITE_FORMAT, fmt, IMSLS_NO_ROW_LABELS,
IMSLS_COL_LABELS, clabels, 0);

free (survival_info);
free (sprob);

}

Output

Survival and Hazard Estimates

Time S1 H1 S2 H2
10.00 0.9626 0.003807 0.9370 0.006503
30.00 0.8921 0.003807 0.8228 0.006503
50.00 0.8267 0.003807 0.7224 0.006503
70.00 0.7661 0.003807 0.6343 0.006503
90.00 0.7099 0.003807 0.5570 0.006503
110.00 0.6579 0.003807 0.4890 0.006503
130.00 0.6096 0.003807 0.4294 0.006503
150.00 0.5649 0.003807 0.3770 0.006503

498 •••• survival_estimates IMSL C/Stat/Library

170.00 0.5235 0.003807 0.3310 0.006503
190.00 0.4852 0.003807 0.2907 0.006503

Note that the hazard rate is constant over time for the exponential model.

Warning Errors
IMSLS_CONVERGENCE_ASSUMED_1 Too many step halvings.

Convergence is assumed.

IMSLS_CONVERGENCE_ASSUMED_2 Too many step iterations.
Convergence is assumed.

IMSLS_NO_PREDICTED_1 �estimates[0]� > 1.0. The expected
value for the log logistic
distribution (�model� = 4) does
not exist. Predicted values will not
be calculated.

IMSLS_NO_PREDICTED_2 �estimates[0]� > 1.0. The expected
value for the log extreme value
distribution (�model� = 8) does
not exist. Predicted values will not
be calculated.

IMSLS_NEG_EIGENVALUE The Hessian has at least one
negative eigenvalue. An upper
bound on the absolute value of the
minimum eigenvalue is #
corresponding to variable index #.

IMSLS_INVALID_FAILURE_TIME_4 �x[#][�ilt�= #]� = # and
�x[#][�irt�= #]� = #. The cen-
soring interval has length 0.0. The
censoring code for this observation
is being set to 0.0.

Fatal Error
IMSLS_MAX_CLASS_TOO_SMALL The number of distinct values of

the classification variables exceeds
�max_class� = #.

IMSLS_TOO_FEW_COEF IMSLS_INITIAL_EST_INPUT is
specified, and �n_coef_input� = #.
The model specified requires #
coefficients.

IMSLS_TOO_FEW_VALID_OBS �n_observations� = %(i1) and
�n_rows_missing� = #.
�n_observations�−
�n_rows_missing� must be greater

Chapter 10: Survival Analysis survival_estimates •••• 499

than or equal to 2 in order to
estimate the coefficients.

IMSLS_SVGLM_1 For the exponential model
(�model� = 0) with �n_effects� = #
and no intercept, �n_coef� has
been determined to equal 0. With
no coefficients in the model,
processing cannot continue.

IMSLS_INCREASE_LP_MAX Too many observations are to be
deleted from the model. Either use
a different model or increase the
workspace.

IMSLS_INVALID_DATA_8 �n_class_values[#]� = #. The
number of distinct values for each
classification variable must be
greater than one.

Chapter 11: Probability Distribution Functions and Inverses Routines •••• 501

Chapter 11: Probability Distribution
Functions and Inverses

Routines
11.1 Discrete Random Variables: Distribution Functions and

Probability Functions
Distribution Functions
Binomial distribution function....................................... binomial_cdf 504
Binomial probability function.. binomial_pdf 506
Hypergeometric distribution function................hypergeometric_cdf 507
Poisson distribution function... poisson_cdf 509

11.2 Continuous Random Variables
Distribution Functions and Their Inverses
Beta distribution function..beta_cdf 511
Inverse beta distribution function.......................... beta_inverse_cdf 512
Bivariate normal distribution function bivariate_normal_cdf 513
Chi-squared distribution function........................... chi_squared_cdf 515
Inverse chi-squared
distribution functionchi_squared_inverse_cdf 516
Noncentral chi-squared
distribution function .. non_central_chi_sq 518
Inverse of the noncentral chi-squared
distribution functionnon_central_chi_sq_inv 521
F distribution function ..F_cdf 522
Inverse F distribution functionF_inverse_cdf 525
Gamma distribution function ...gamma_cdf 526
Normal (Gaussian) distribution functionnormal_cdf 528
Inverse normal distribution function normal_inverse_cdf 530
Student�s t distribution function ..t_cdf 531
Inverse Student�s t distribution function...................... t_inverse_cdf 532
Noncentral Students�s t distribution functionnon_central_t_cdf 534
Inverse of the noncentral Student�s t
distribution function non_central_t_inv_cdf 536

502 •••• Usage Notes IMSL C/Stat/Library

Usage Notes
Definitions and discussions of the terms basic to this chapter can be found in
Johnson and Kotz (1969, 1970a, 1970b). These are also good references for the
specific distributions.

In order to keep the calling sequences simple, whenever possible, the
subprograms described in this chapter are written for standard forms of statistical
distributions. Hence, the number of parameters for any given distribution may be
fewer than the number often associated with the distribution. For example, while
a gamma distribution is often characterized by two parameters (or even a third,
�location�), there is only one parameter that is necessary, the �shape�.
The �scale� parameter can be used to scale the variable to the standard gamma
distribution. Also, the functions relating to the normal distribution,
imsls_f_normal_cdf (page 528) and imsls_f_normal_inverse_cdf
(page 530), are for a normal distribution with mean equal to zero and variance
equal to one. For other means and variances, it is very easy for the user to
standardize the variables by subtracting the mean and dividing by the square root
of the variance.

The distribution function for the (real, single-valued) random variable X is the
function F defined for all real x by

F(x) = Prob(X ≤ x)

where Prob(⋅) denotes the probability of an event. The distribution function is
often called the cumulative distribution function (CDF).

For distributions with finite ranges, such as the beta distribution, the CDF is 0 for
values less than the left endpoint and 1 for values greater than the right endpoint.
The subprograms described in this chapter return the correct values for the
distribution functions when values outside of the range of the random variable are
input, but warning error conditions are set in these cases.

Discrete Random Variables

For discrete distributions, the function giving the probability that the random
variable takes on specific values is called the probability function, defined by

p(x) = Prob(X = x)

The CDF for a discrete random variable is

F x p k
A

b g b g=�

Chapter 11: Probability Distribution Functions and Inverses Usage Notes •••• 503

where A is the set such that k ≤ x. Since the distribution function is a step function,
its inverse does not exist uniquely.

Continuous Distributions

For continuous distributions, a probability function, as defined above, would not
be useful because the probability of any given point is 0. For such distributions,
the useful analog is the probability density function (PDF). The integral of the
PDF is the probability over the interval, if the continuous random variable X has
PDF f, then

Prob(a X b f x dxa
b< ≤ = z) ()

The relationship between the CDF and the PDF is

F x f t dtx() ()= −∞z .

The �_cdf� functions described in this chapter evaluate cumulative distribution
functions.

For (absolutely) continuous distributions, the value of F(x) uniquely determines
x within the support of the distribution. The �_inverse_cdf� functions
described in this chapter compute the inverses of the distribution functions, that
is, given F(x) (called �P� for �probability�), a routine such as
imsls_f_beta_inverse_cdf (page 512) computes x. The inverses are defined
only over the open interval (0,1).

Additional Comments
Whenever a probability close to 1.0 results from a call to a distribution function
or is to be input to an inverse function, it is often impossible to achieve good
accuracy because of the nature of the representation of numeric values. In this
case, it may be better to work with the complementary distribution function (one
minus the distribution function). If the distribution is symmetric about some point
(as the normal distribution, for example) or is reflective about some point (as the
beta distribution, for example), the complementary distribution function has a
simple relationship with the distribution function. For example, to evaluate the
standard normal distribution at 4.0, using imsls_f_normal_inverse_cdf
(page 530) directly, the result to six places is 0.999968. Only two of those digits
are really useful, however. A more useful result may be 1.000000 minus this
value, which can be obtained to six significant figures as 3.16713E-05 by
evaluating imsls_f_normal_inverse_cdf at −4.0. For the normal
distribution, the two values are related by Φ(x) = 1 − Φ(−x), where Φ(⋅) is the
normal distribution function. Another example is the beta distribution with
parameters 2 and 10. This distribution is skewed to the right, so evaluating
imsls_f_beta_cdf (page 511) at 0.7, 0.999953 is obtained. A more precise
result is obtained by evaluating imsls_f_beta_cdf with parameters 10 and 2 at

504 •••• binomial_cdf IMSL C/Stat/Library

0.3. This yields 4.72392E-5. (In both of these examples, it is wise not to trust the
last digit.)

Many of the algorithms used by routines in this chapter are discussed by
Abramowitz and Stegun (1964). The algorithms make use of various expansions
and recursive relationships and often use different methods in different regions.

Cumulative distribution functions are defined for all real arguments, however, if
the input to one of the distribution functions in this chapter is outside the range of
the random variable, an error of Type 1 is issued, and the output is set to zero or
one, as appropriate. A Type 1 error is of lowest severity, a �note�, and, by
default, no printing or stopping of the program occurs. The other common errors
that occur in the routines of this chapter are Type 2, �alert�, for a function value
being set to zero due to underflow, Type 3, �warning�, for considerable loss of
accuracy in the result returned, and Type 5, �terminal�, for incorrect and/or
inconsistent input, complete loss of accuracy in the result returned, or inability to
represent the result (because of overflow). When a Type 5 error occurs, the result
is set to NaN (not a number, also used as a missing value code).

binomial_cdf
Evaluates the binomial distribution function.

Synopsis
#include <imsls.h>

float imsls_f_binomial_cdf (int k, int n, float p)

The type double function is imsls_d_binomial_cdf.

Required Arguments

int k (Input)
Argument for which the binomial distribution function is to be
evaluated.

int n (Input)
Number of Bernoulli trials.

float p (Input)
Probability of success on each trial.

Return Value
The probability that k or fewer successes occur in n independent Bernoulli trials,
each of which has a probability p of success.

Chapter 11: Probability Distribution Functions and Inverses binomial_cdf •••• 505

Description
The imsls_f_binomial_cdf function evaluates the distribution function of a
binomial random variable with parameters n and p. It does this by summing
probabilities of the random variable taking on the specific values in its range.
These probabilities are computed by the recursive relationship:

Pr PrX j
n j p

j p
X j= =

+ −
−

= −b g b g
b g b g1
1

1

To avoid the possibility of underflow, the probabilities are computed forward
from 0 if k is not greater than n × p; otherwise, they are computed backward from
n. The smallest positive machine number, ε, is used as the starting value for
summing the probabilities, which are rescaled by (1 − p)nε if forward
computation is performed and by pnε if backward computation is used.

For the special case of p = 0, imsls_f_binomial_cdf is set to 1; for the case
p = 1, imsls_f_binomial_cdf is set to 1 if k = n and is set to 0 otherwise.

Example
Suppose X is a binomial random variable with n = 5 and p = 0.95. In this
example, the function finds the probability that X is less than or equal to 3.

#include <imsls.h>

void main()
{

int k = 3;
int n = 5;
float p = 0.95;
float pr;

pr = imsls_f_binomial_cdf(k,n,p);
printf("Pr(x <= 3) = %6.4f\n", pr);

}

Output

Pr(x <= 3) = 0.0226

Informational Errors
IMSLS_LESS_THAN_ZERO Since �k� = # is less than zero, the

distribution function is set to zero.

IMSLS_GREATER_THAN_N The input argument, k, is greater than the
number of Bernoulli trials, n.

506 •••• binomial_pdf IMSL C/Stat/Library

binomial_pdf
Evaluates the binomial probability function.

Synopsis
#include <imsls.h>

float imsls_f_binomial_pdf (int k, int n, float p,..., 0)

The type double function is imsls_d_binomial_pdf.

Required Arguments

int k (Input)
Argument for which the binomial probability function is to be evaluated.

int n (Input)
Number of Bernoulli trials.

float p (Input)
Probability of success on each trial.

Return Value
The probability that a binomial random variable takes on a value equal to k.

Description
The function imsls_f_binomial_pdf evaluates the probability that a binomial
random variable with parameters n and p takes on the value k. It does this by
computing probabilities of the random variable taking on the values in its range
less than (or the values greater than) k. These probabilities are computed by the
recursive relationship

Pr(Pr(X j n j p
j p

X j= = + −
−

= −) ()
()

)1
1

1

To avoid the possibility of underflow, the probabilities are computed forward
from 0, if k is not greater than n times p, and are computed backward from n,
otherwise. The smallest positive machine number, ε, is used as the starting value
for computing the probabilities, which are rescaled by (1 − p)nε if forward
computation is performed and by pnε if backward computation is done.

For the special case of p = 0, imsls_f_binomial_pdf is set to 0 if k is greater
than 0 and to 1 otherwise; and for the case p = 1, imsls_f_binomial_pdf is set
to 0 if k is less than n and to 1 otherwise.

Example 1
Suppose X is a binomial random variable with n = 5 and p = 0.95. In this
example, we find the probability that X is equal to 3.

Chapter 11: Probability Distribution Functions and Inverses hypergeometric_cdf •••• 507

#include <stdio.h>
#include <imsls.h>

void main()
{

int k, n;
float p, prob;

k = 3;
n = 5;
p = 0.95;
prob = imsls_f_binomial_pdf(k, n, p);

printf("The probability that X is equal to 3 is %f\n", prob);
}

Output
The probability that X is equal to 3 is 0.021434

hypergeometric_cdf
Evaluates the hypergeometric distribution function.

Synopsis
#include <imsls.h>

float imsls_f_hypergeometric_cdf (int k, int n, int m, int l)

The type double function is imsls_d_hypergeometric_cdf.

Required Arguments

int k (Input)
Argument for which the hypergeometric distribution function is to be
evaluated.

int n (Input)
Sample size. Argument n must be greater than or equal to k.

int m (Input)
Number of defectives in the lot.

int l (Input)
Lot size. Argument l must be greater than or equal to n and m.

Return Value
The probability that k or fewer defectives occur in a sample of size n drawn from
a lot of size l that contains m defectives.

508 •••• hypergeometric_cdf IMSL C/Stat/Library

Description
Function imsls_f_hypergeometric_cdf evaluates the distribution function of
a hypergeometric random variable with parameters n, l, and m. The
hypergeometric random variable x can be thought of as the number of items of a
given type in a random sample of size n that is drawn without replacement from a
population of size l containing m items of this type. The probability function is

() ()()
() ()for , 1, ..., min ,

m l m
j n j

l
n

Pr x = j j i i n m
−
−= = +

where i = max (0, n − l + m).

If k is greater than or equal to i and less than or equal to min (n, m),
imsls_f_hypergeometric_cdf sums the terms in this expression for j going
from i up to k; otherwise, 0 or 1 is returned, as appropriate. To avoid rounding in
the accumulation, imsls_f_hypergeometric_cdf performs the summation
differently, depending on whether or not k is greater than the mode of the
distribution, which is the greatest integer less than or equal to
(m + 1) (n + 1)/(l + 2).

Example
Suppose X is a hypergeometric random variable with n = 100, l = 1000, and
m = 70. In this example, evaluate the distribution function at 7.

#include <imsls.h>

void main()
{

int k = 7;
int l = 1000;
int m = 70;
int n = 100;
float p;

p = imsls_f_hypergeometric_cdf(k,n,m,l);
printf("\nPr (x <= 7) = %6.4f", p);

}

Output

Pr (x <= 7) = 0.599

Informational Errors
IMSLS_LESS_THAN_ZERO Since �k� = # is less than zero, the

distribution function is set to zero.

IMSLS_K_GREATER_THAN_N The input argument, k, is greater than the
sample size.

Chapter 11: Probability Distribution Functions and Inverses poisson_cdf •••• 509

Fatal Errors
IMSLS_LOT_SIZE_TOO_SMALL Lot size must be greater than or equal to

n and m.

poisson_cdf
Evaluates the Poisson distribution function.

Synopsis
#include <imsls.h>

float imsls_f_poisson_cdf (int k, float theta)

The type double function is imsls_d_poisson_cdf.

Required Arguments
int k (Input)

Argument for which the Poisson distribution function is to be evaluated.

float theta (Input)
Mean of the Poisson distribution. Argument theta must be positive.

Return Value
The probability that a Poisson random variable takes a value less than or equal
to k.

Description
Function imsls_f_poisson_cdf evaluates the distribution function of a
Poisson random variable with parameter theta. The mean of the Poisson random
variable, theta, must be positive. The probability function (with θ = theta) is
as follows:

() / !, for 0, 1, 2,...xf x e x x−θ= θ =

The individual terms are calculated from the tails of the distribution to the mode
of the distribution and summed. Function imsls_f_poisson_cdf uses the
recursive relationship

() () ()()1 / 1 for 0, 1, 2,..., 1f x f x x x k+ = θ + = −

with f (0) = e-q.

510 •••• poisson_cdf IMSL C/Stat/Library

Figure 11-1 Plot of Fp (k, θ)

Example
Suppose X is a Poisson random variable with θ = 10. In this example, we evaluate
the probability that X is less than or equal to 7.

#include <imsls.h>

void main()
{

int k = 7;
float theta = 10.0;
float p;

p = imsls_f_poisson_cdf(k, theta);
printf("Pr(x <= 7) = %6.4f\n", p);

}

Output

Pr(x <= 7) = 0.2202

Informational Errors
IMSLS_LESS_THAN_ZERO Since �k� = # is less than zero, the

distribution function is set to zero.

Chapter 11: Probability Distribution Functions and Inverses beta_cdf •••• 511

beta_cdf
Evaluates the beta probability distribution function.

Synopsis
#include <imsls.h>

float imsls_f_beta_cdf (float x, float pin, float qin)

The type double function is imsls_d_beta_cdf.

Required Arguments

float x (Input)
Argument for which the beta probability distribution function is to be
evaluated.

float pin (Input)
First beta distribution parameter. Argument pin must be positive.

float qin (Input)
Second beta distribution parameter. Argument qin must be positive.

Return Value
The probability that a beta random variable takes on a value less than or equal
to x.

Description
Function imsls_f_beta_cdf evaluates the distribution function of a beta
random variable with parameters pin and qin. This function is sometimes called
the incomplete beta ratio and, with p = pin and q = qin, is denoted by Ix (p, q). It
is given by

I p q
p q
p q

t t dtx
px q,b g b g b gb g b g=

+
−− −zΓ Γ

Γ
1

0

11

where Γ (⋅) is the gamma function. The value of the distribution function by
Ix (p, q) is the probability that the random variable takes a value less than or equal
to x.

The integral in the expression above is called the incomplete beta function and is
denoted by βx(p, q). The constant in the expression is the reciprocal of the beta
function (the incomplete function evaluated at 1) and is denoted by β(p, q).

Function imsls_f_beta_cdf uses the method of Bosten and Battiste (1974).

512 •••• beta_inverse_cdf IMSL C/Stat/Library

Example
Suppose X is a beta random variable with parameters 12 and 12 (X has a
symmetric distribution). This example finds the probability that X is less than 0.6
and the probability that X is between 0.5 and 0.6. (Since X is a symmetric beta
random variable, the probability that it is less than 0.5 is 0.5.)

#include <imsls.h>

main()
{

float p, pin, qin, x;

pin = 12.0;
qin = 12.0;
x = 0.6;
p = imsls_f_beta_cdf(x, pin, qin);
printf("The probability that X is less than 0.6 is %6.4f\n",

p);
x = 0.5;
p -= imsls_f_beta_cdf(x, pin, qin);
printf("The probability that X is between 0.5 and");
printf(" 0.6 is %6.4f\n", p);

}

Output

The probability that X is less than 0.6 is 0.8364
The probability that X is between 0.5 and 0.6 is 0.3364

beta_inverse_cdf
Evaluates the inverse of the beta distribution function.

Synopsis
#include <imsls.h>

float imsls_f_beta_inverse_cdf (float p, float pin, float qin)

The type double function is imsls_d_beta_inverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the beta distribution function is to be
evaluated. Argument p must be in the open interval (0.0, 1.0).

float pin (Input)
First beta distribution parameter. Argument pin must be positive.

float qin (Input)
Second beta distribution parameter. Argument qin must be positive.

Chapter 11: Probability Distribution Functions and Inverses bivariate_normal_cdf •••• 513

Return Value
Function imsls_f_beta_inverse_cdf returns the inverse distribution function
of a beta random variable with parameters pin and qin.

Description
With P = p, p = pin, and q = qin, the beta_inverse_cdf returns x such that

P
p q
p q

t t dtpx q=
+

−− −zΓ Γ
Γ
b g b g
b g b g1

0

11

where Γ (⋅) is the gamma function. The probability that the random variable takes
a value less than or equal to x is P.

Example
Suppose X is a beta random variable with parameters 12 and 12 (X has a
symmetric distribution). In this example, we find the value x such that the
probability that X is less than or equal to x is 0.9.

#include <imsls.h>

main()
{

float p, pin, qin, x;

pin = 12.0;
qin = 12.0;
p = 0.9;
x = imsls_f_beta_inverse_cdf(p, pin, qin);
printf(" X is less than %6.4f with probability 0.9.\n",

x);
}

Output

X is less than 0.6299 with probability 0.9.

bivariate_normal_cdf
Evaluates the bivariate normal distribution function.

Synopsis
#include <imsls.h>

float imsls_f_bivariate_normal_cdf (float x, float y, float rho)

The type double function is imsls_d_bivariate_normal_cdf.

514 •••• bivariate_normal_cdf IMSL C/Stat/Library

Required Arguments

float x (Input)
The x-coordinate of the point for which the bivariate normal distribution
function is to be evaluated.

float y (Input)
The y-coordinate of the point for which the bivariate normal distribution
function is to be evaluated.

float rho (Input)
Correlation coefficient.

Return Value
The probability that a bivariate normal random variable with correlation rho
takes a value less than or equal to x and less than or equal to y.

Example
Suppose (X, Y) is a bivariate normal random variable with mean (0, 0) and
variance-covariance matrix as follows:

10 0 9
0 9 10
. .
. .
L
NM

O
QP

In this example, we find the probability that X is less than −2.0 and Y is less than
0.0.

#include <imsls.h>

main()
{

float p, rho, x, y;

x = -2.0;
y = 0.0;
rho = 0.9;
p = imsls_f_bivariate_normal_cdf(x, y, rho);
printf(" The probability that X is less than -2.0\n"

" and Y is less than 0.0 is %6.4f\n", p);

}

Output

The probability that X is less than -2.0
and Y is less than 0.0 is 0.0228

Chapter 11: Probability Distribution Functions and Inverses chi_squared_cdf •••• 515

chi_squared_cdf
Evaluates the chi-squared distribution function.

Synopsis
#include <imsls.h>

float imsls_f_chi_squared_cdf (float chi_squared, float df)

The type double function is imsls_d_chi_squared_cdf.

Required Arguments

float chi_squared (Input)
Argument for which the chi-squared distribution function is to be
evaluated.

float df (Input)
Number of degrees of freedom of the chi-squared distribution. Argument
df must be greater than or equal to 0.5.

Return Value
The probability that a chi-squared random variable takes a value less than or
equal to chi_squared.

Description
Function imsls_f_chi_squared_cdf evaluates the distribution function, F, of
a chi-squared random variable x = chi_squared with ν = df. Then,

F x
v

e t dtv
tx vb g b g= − −z1

2 22
2

0

2 1
/

/ /

/Γ

where Γ (⋅) is the gamma function. The value of the distribution function at the
point x is the probability that the random variable takes a value less than or equal
to x.

For ν > 65, imsls_f_chi_squared_cdf uses the Wilson-Hilferty
approximation (Abramowitz and Stegun 1964, Equation 26.4.17) to the normal
distribution, and function imsls_f_normal_cdf is used to evaluate the normal
distribution function.

For ν ≤ 65, imsls_f_chi_squared_cdf uses series expansions to evaluate the
distribution function. If x < max (ν / 2, 26), imsls_f_chi_squared_cdf uses
the series 6.5.29 in Abramowitz and Stegun (1964); otherwise, it uses the
asymptotic expansion 6.5.32 in Abramowitz and Stegun.

516 •••• chi_squared_inverse_cdf IMSL C/Stat/Library

Example
Suppose X is a chi-squared random variable with two degrees of freedom. In this
example, we find the probability that X is less than 0.15 and the probability that
X is greater than 3.0.

#include <imsls.h>

void main()
{

float chi_squared = 0.15;
float df = 2.0;
float p;

p = imsls_f_chi_squared_cdf(chi_squared, df);
printf("%s %s %6.4f\n", "The probability that chi-squared\n",

"with 2 df is less than 0.15 is", p);

chi_squared = 3.0;
p = 1.0 - imsls_f_chi_squared_cdf(chi_squared, df);
printf("%s %s %6.4f\n", "The probability that chi-squared\n",

"with 2 df is greater than 3.0 is", p);
}

Output

The probability that chi-squared
with 2 df is less than 0.15 is 0.0723

The probability that chi-squared
with 2 df is greater than 3.0 is 0.2231

Informational Errors
IMSLS_ARG_LESS_THAN_ZERO Since �chi_squared� = # is less than zero,

the distribution function is zero at
�chi_squared.�

Alert Errors
IMSLS_NORMAL_UNDERFLOW Using the normal distribution for large

degrees of freedom, underflow would have
occurred.

chi_squared_inverse_cdf
Evaluates the inverse of the chi-squared distribution function.

Synopsis
#include <imsls.h>

float imsls_f_chi_squared_inverse_cdf (float p, float df)

The type double function is imsls_d_chi_squared_inverse_cdf.

Chapter 11: Probability Distribution Functions and Inverses chi_squared_inverse_cdf •••• 517

Required Arguments

float p (Input)
Probability for which the inverse of the chi-squared distribution function
is to be evaluated. Argument p must be in the open interval (0.0, 1.0).

float df (Input)
Number of degrees of freedom of the chi-squared distribution. Argument
df must be greater than or equal to 0.5.

Return Value
The inverse at the chi-squared distribution function evaluated at p. The
probability that a chi-squared random variable takes a value less than or equal to
imsls_f_chi_squared_inverse_cdf is p.

Description
Function imsls_f_chi_squared_inverse_cdf evaluates the inverse
distribution function of a chi-squared random variable with ν = df and with
probability p. That is, it determines
x = imsls_f_chi_squared_inverse_cdf (p, df), such that

p
v

e t dtv
t vx

= − −z1
2 22

2 2 1

0/
/ /

/Γb g
where Γ (⋅) is the gamma function. The probability that the random variable takes
a value less than or equal to x is p.

For ν < 40, imsls_f_chi_squared_inverse_cdf uses bisection (if ν ≤ 2 or
p > 0.98) or regula falsi to find the point at which the chi-squared distribution
function is equal to p. The distribution function is evaluated using IMSL function
imsls_f_chi_squared_cdf.

For 40 ≤ ν < 100, a modified Wilson-Hilferty approximation
(Abramowitz and Stegun 1964, Equation 26.4.18) to the normal distribution is
used. IMSL function imsls_f_normal_cdf is used to evaluate the inverse of
the normal distribution function. For ν ≥ 100, the ordinary Wilson-Hilferty
approximation (Abramowitz and Stegun 1964, Equation 26.4.17) is used.

Example
In this example, we find the 99-th percentage point of a chi-squared random
variable with 2 degrees of freedom and of one with 64 degrees of freedom.

#include <imsls.h>

void main ()
{

float df, x;
float p = 0.99;

df = 2.0;

518 •••• non_central_chi_sq IMSL C/Stat/Library

x = imsls_f_chi_squared_inverse_cdf(p, df);
printf("For p = .99 with 2 df, x = %7.3f.\n", x);

df = 64.0;
x = imsls_f_chi_squared_inverse_cdf(p,df);
printf("For p = .99 with 64 df, x = %7.3f.\n", x);

}

Output

For p = .99 with 2 df, x = 9.210.
For p = .99 with 64 df, x = 93.217.

Warning Errors
IMSLS_UNABLE_TO_BRACKET_VALUE The bounds that enclose �p� could

not be found. An approximation for
imsls_f_chi_squared_inverse

_cdf is returned.

IMSLS_CHI_2_INV_CDF_CONVERGENCE The value of the inverse chi-squared
could not be found within a specified
number of iterations. An
approximation for
imsls_f_chi_squared_inverse

_cdf is returned.

non_central_chi_sq
Evaluates the noncentral chi-squared distribution function.

Synopsis
#include <imsls.h>
float imsls_f_non_central_chi_sq (float chi_squared, float df , float

delta)
The type double function is imsls_d_non_central_chi_sq.

Required Arguments
float chi_squared (Input)

Argument for which the noncentral chi-squared distribution function is
to be evaluated.

float df (Input)
Number of degrees of freedom of the noncentral chi-squared
distribution. Argument df must be greater than or equal to 0.5

float delta (Input)
The noncentrality parameter. delta must be nonnegative, and
delta + df must be less than or equal to 200,000.

Chapter 11: Probability Distribution Functions and Inverses non_central_chi_sq • 519

Return Value

The probability that a noncentral chi-squared random variable takes a value less
than or equal to chi_squared.

Description

Function imsls_f_non_central_chi_sq evaluates the distribution function
of a noncentral chi-squared random variable with df degrees of freedom and
noncentrality parameter alam, that is, with v = df, λ = alam, and
x = chi_squared,

(2) / 2 1/ 2 / 2

0 (2) / 20
2

2

2

(/ 2)
_ _ _ ()

!

v ii tx

v ii iv

e t e
non central chi sq x dt

i

+ −−λ −∞

+= +
λ=

 Γ  

∑ ∫

where Γ(⋅) is the gamma function. This is a series of central chi-squared
distribution functions with Poisson weights. The value of the distribution function
at the point x is the probability that the random variable takes a value less than or
equal to x.

The noncentral chi-squared random variable can be defined by the distribution
function above, or alternatively and equivalently, as the sum of squares of
independent normal random variables. If Y� have independent normal
distributions with means µ� and variances equal to one and

X Yi
n

i= ∑ =1
2

then X has a noncentral chi-squared distribution with n degrees of freedom and
noncentrality parameter equal to

∑ =i
n

i1
2µ

With a noncentrality parameter of zero, the noncentral chi-squared distribution is
the same as the chi-squared distribution.

Function imsls_f_non_central_chi_sq determines the point at which the
Poisson weight is greatest, and then sums forward and backward from that point,
terminating when the additional terms are sufficiently small or when a maximum
of 1000 terms have been accumulated. The recurrence relation 26.4.8 of
Abramowitz and Stegun (1964) is used to speed the evaluation of the central chi-
squared distribution functions.

520 •••• non_central_chi_sq IMSL C/Stat/Library

Figure 11-2 Noncentral Chi-squared Distribution Function

Example
In this example, imsls_f_non_central_chi_sq is used to compute the
probability that a random variable that follows the noncentral chi-squared
distribution with noncentrality parameter of 1 and with 2 degrees of freedom is
less than or equal to 8.642.

#include <imsls.h>

#include <stdio.h>

void main()

{

float chsq = 8.642;

float df = 2.0;

float alam = 1.0;

float p;

p = imsls_f_non_central_chi_sq(chsq, df, alam);

printf("The probability that a noncentral chi-squared random\n"

"variable with %2.0f df and noncentrality parameter %3.1f is less\n"

"than %5.3f is %5.3f.\n", df, alam, chsq, p);
}

Chapter 11: Probability Distribution Functions and Inverses non_central_chi_sq_inv •••• 521

Output

The probability that a noncentral chi-squared random
variable with 2 df and noncentrality parameter 1.0 is less
than 8.642 is 0.950

non_central_chi_sq_inv
Evaluates the inverse of the noncentral chi-squared function.

Synopsis
#include <imsls.h>
float imsls_f_non_central_chi_sq_inv (float p, float df, float delta)
The type double function is imsls_d_non_central_chi_sq_inv.

Required Arguments
float p (Input)

Probability for which the inverse of the noncentral chi-squared
distribution function is to be evaluated. p must be in the open interval
(0.0, 1.0).

float df (Input)
Number of degrees of freedom of the noncentral chi-squared
distribution. Argument df must be greater than or equal to 0.5

float delta (Input)
The noncentrality parameter. delta must be nonnegative, and
delta + df must be less than or equal to 200,000.

Return Value
The probability that a noncentral chi-squared random variable takes a value less
than or equal to imsls_f_non_central_chi_sq_inv is p.

Description
Function imsls_f_non_central_chi_sq_inv evaluates the inverse
distribution function of a noncentral chi-squared random variable with
df degrees of freedom and noncentrality parameter delta; that is, with
P = p, v = df, and λ = delta, it determines
c
�
 (= imsls_f_non_central_chi_sq_inv (p, df, delta)), such that

P e
i

x e dx
i

i

v i x

v i v i

c
=

−

=

∞ + − −

+ +� zλ λ/ ()/ /

()/
(/)

! ()

2

0

2 2 1 2

2 2 2
2

0

2
2

0

Γ

where Γ(⋅) is the gamma function. The probability that the random variable takes
a value less than or equal to c

� is P.

522 •••• F_cdf IMSL C/Stat/Library

Function imsls_f_non_central_chi_sq_inv uses bisection and modified
regula falsi to invert the distribution function, which is evaluated using
routine imsls_f_non_central_chi_sq (page 518). See
imsls_f_non_central_chi_sq for an alternative definition of the noncentral
chi-squared random variable in terms of normal random variables.

Example
In this example, we find the 95-th percentage point for a noncentral chi-squared
random variable with 2 degrees of freedom and noncentrality parameter 1.

#include <imsls.h>

#include <stdio.h>

void main()

{

float p = .95;

int df = 2;

float delta = 1.0;

float chi_squared;

chi_squared = imsls_f_non_central_chi_sq_inv(p, df, delta);

printf("The 0.05 noncentral chi-squared critical value is %6.4f.\n",

chi_squared);

}

Output

The 0.05 noncentral chi-squared critical value is 8.6422.

F_cdf
Evaluates the F distribution function.

Synopsis
#include <imsls.h>

float imsls_f_F_cdf (float f, float df_numerator,
float df_denominator)

The type double function is imsls_d_F_cdf.

Chapter 11: Probability Distribution Functions and Inverses F_cdf •••• 523

Required Arguments

float f (Input)
Point at which the F distribution function is to be evaluated.

float df_numerator (Input)
The numerator degrees of freedom. Argument df_numerator must be
positive.

float df_denominator (Input)
The denominator degrees of freedom. Argument df_denominator
must be positive.

Return Value
The probability that an F random variable takes a value less than or equal to the
input point, f.

Description
Function imsls_f_F_cdf evaluates the distribution function of a Snedecor�s F
random variable with df_numerator and df_denominator. The function is
evaluated by making a transformation to a beta random variable, then evaluating
the incomplete beta function. If X is an F variate with ν1 and ν2 degrees of
freedom and Y = (ν1X)/(ν2 + ν1X), then Y is a beta variate with parameters
p = ν1/2 and q = ν2/2. Function imsls_f_F_cdf also uses a relationship between
F random variables that can be expressed as

FF(f, v1, v2) = 1 − FF(1/f, v2, v1)

where FF is the distribution function for an F random variable.

524 •••• F_cdf IMSL C/Stat/Library

Figure 11-3 Plot of FF(f, 1.0, 1.0)

Example
This example finds the probability that an F random variable with one numerator
and one denominator degree of freedom is greater than 648.

#include <imsls.h>

main()
{

float p;
float F = 648.0;
float df_numerator = 1.0;
float df_denominator = 1.0;

p = 1.0 - imsls_f_F_cdf(F,df_numerator, df_denominator);
printf("%s %s %6.4f.\n", "The probability that an F(1,1) variate",

"is greater than 648 is", p);
}

Output

The probability that an F(1,1) variate is greater than 648 is 0.0250.

Chapter 11: Probability Distribution Functions and Inverses F_inverse_cdf •••• 525

F_inverse_cdf
Evaluates the inverse of the F distribution function.

Synopsis
#include <imsls.h>

float imsls_f_F_inverse_cdf (float p, float df_numerator,
float df_denominator)

The type double function is imsls_d_F_inverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the F distribution function is to be
evaluated. Argument p must be in the open interval (0.0, 1.0).

float df_numerator (Input)
Numerator degrees of freedom. Argument df_numerator must be
positive.

float df_denominator (Input)
Denominator degrees of freedom. Argument df_denominator must be
positive.

Return Value
The value of the inverse of the F distribution function evaluated at p. The
probability that an F random variable takes a value less than or equal to
imsls_f_F_inverse_cdf is p.

Description
Function imsls_f_F_inverse_cdf evaluates the inverse distribution function
of a Snedecor�s F random variable with ν1 = df_numerator numerator degrees
of freedom and ν2 = df_denominator denominator degrees of freedom. The
function is evaluated by making a transformation to a beta random variable, then
evaluating the inverse of an incomplete beta function. If X is an F variate with ν1
and ν2 degrees of freedom and Y = (ν1X)/(ν2 + ν1X), then Y is a beta variate with
parameters p = ν1/2 and q = ν2/2. If p ≤ 0.5, imsls_f_F_ inverse_cdf uses
this relationship directly; otherwise, it also uses a relationship between F random
variables that can be expressed as follows:

FF(f, v1, v2) = 1 − FF(1/f, v2, v1)

Example
This example finds the 99-th percentage point for an F random variable with 7
and 1 degrees of freedom.

526 •••• gamma_cdf IMSL C/Stat/Library

#include <imsls.h>

main()
{

float df_denominator = 1.0;
float df_numerator = 7.0;
float f;
float p = 0.99;

f = imsls_f_F_inverse_cdf(p, df_numerator, df_denominator);

printf("The F(7,1) 0.01 critical value is %6.3f\n", f);
}

Output

The F(7,1) 0.01 critical value is 5928.370

Fatal Errors
IMSLS_F_INVERSE_OVERFLOW Function imsls_f_F_inverse_cdf

overflows. This is because df_numerator
or df_denominator and p are too large.
The return value is set to machine infinity.

gamma_cdf
Evaluates the gamma distribution function.

Synopsis
#include <imsls.h>

float imsls_f_gamma_cdf (float x, float a)

The type double function is imsls_d_gamma_cdf.

Required Arguments

float x (Input)
Argument for which the gamma distribution function is to be evaluated.

float a (Input)
Shape parameter of the gamma distribution. This parameter must be
positive.

Return Value
The probability that a gamma random variable takes a value less than or equal to
x.

Chapter 11: Probability Distribution Functions and Inverses gamma_cdf •••• 527

Description
Function imsls_f_gamma_cdf evaluates the distribution function, F, of a
gamma random variable with shape parameter a,

F x
a

e t dtt a
x

b g b g= − −z1 1

0
Γ

where Γ(⋅) is the gamma function. (The gamma function is the integral from 0 to
∞ of the same integrand as above.) The value of the distribution function at the
point x is the probability that the random variable takes a value less than or equal
to x.

The gamma distribution is often defined as a two-parameter distribution with a
scale parameter b (which must be positive) or as a three-parameter distribution in
which the third parameter c is a location parameter. In the most general case, the
probability density function over (c, ∞) is as follows:

f t
b a

e x ca
t c b ab g b g b gb g= −− − −1 1

Γ
/

If T is a random variable with parameters a, b, and c, the probability that T ≤ t0
can be obtained from imsls_f_gamma_cdf by setting x = (t0 − c)/b.

If x is less than a or less than or equal to 1.0, imsls_f_gamma_cdf uses a
series expansion; otherwise, a continued fraction expansion is used.
(See Abramowitz and Stegun 1964.)

Example
Let X be a gamma random variable with a shape parameter of four. (In this case,
it has an Erlang distribution since the shape parameter is an integer.) This
example finds the probability that X is less than 0.5 and the probability that
X is between 0.5 and 1.0.

#include <imsls.h>

main()
{

float p, x;
float a = 4.0;

x = 0.5;
p = imsls_f_gamma_cdf(x,a);
printf("The probability that X is less than 0.5 is %6.4f\n", p);

x = 1.0;
p = imsls_f_gamma_cdf(x,a) - p;
printf("The probability that X is between 0.5 and 1.0 is %6.4f\n",

p);
}

528 •••• normal_cdf IMSL C/Stat/Library

Output

The probability that X is less than 0.5 is 0.0018
The probability that X is between 0.5 and 1.0 is 0.0172

Informational Errors
IMSLS_ARG_LESS_THAN_ZERO Since �x� = # is less than zero, the

distribution function is zero at �x.�

Fatal Errors
IMSLS_X_AND_A_TOO_LARGE Since �x� = # and �a� = # are so large, the

algorithm would overflow.

normal_cdf
Evaluates the standard normal (Gaussian) distribution function.

Synopsis
#include <imsls.h>

float imsls_f_normal_cdf (float x)

The type double function is imsls_d_normal_cdf.

Required Arguments

float x (Input)
Point at which the normal distribution function is to be evaluated.

Return Value
The probability that a normal random variable takes a value less than or equal to
x.

Description
Function imsls_f_normal_cdf evaluates the distribution function, Φ, of a
standard normal (Gaussian) random variable as follows:

Φ x e dtt
x

b g = −

−∞
z1

2

2 2

π
/

The value of the distribution function at the point x is the probability that the
random variable takes a value less than or equal to x.

The standard normal distribution (for which imsls_f_normal_cdf is the
distribution function) has mean of 0 and variance of 1. The probability that a

Chapter 11: Probability Distribution Functions and Inverses normal_cdf •••• 529

normal random variable with mean µ and variance σ2 is less than y is given by
imsls_f_normal_cdf evaluated at (y − µ)/σ.

Figure 11-4 Plot of Φ(x)

Example
Suppose X is a normal random variable with mean 100 and variance 225. This
example finds the probability that X is less than 90 and the probability that X is
between 105 and 110.

#include <imsls.h>

main()
{

float p, x1, x2;

x1 = (90.0-100.0)/15.0;
p = imsls_f_normal_cdf(x1);
printf("The probability that X is less than 90 is %6.4f\n", p);

x1 = (105.0-100.0)/15.0;
x2 = (110.0-100.0)/15.0;
p = imsls_f_normal_cdf(x2) - imsls_f_normal_cdf(x1);
printf("The probability that X is between 105 and 110 is %6.4f\n",

p);
}

Output

The probability that X is less than 90 is 0.2525
The probability that X is between 105 and 110 is 0.1169

530 •••• normal_inverse_cdf IMSL C/Stat/Library

normal_inverse_cdf
Evaluates the inverse of the standard normal (Gaussian) distribution function.

Synopsis
#include <imsls.h>

float imsls_f_normal_inverse_cdf (float p)

The type double function is imsls_d_normal_inverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the normal distribution function is to
be evaluated. Argument p must be in the open interval (0.0, 1.0).

Return Value
The inverse of the normal distribution function evaluated at p. The probability
that a standard normal random variable takes a value less than or equal to
imsls_f_normal_inverse_cdf is p.

Description
Function imsls_f_normal_inverse_cdf evaluates the inverse of the
distribution function, Φ, of a standard normal (Gaussian) random variable,
imsls_f_normal_inverse_cdf(p) = Φ-1(x), where

Φ x e dtt
x

b g = −

−∞
z1

2

2 2

π
/

The value of the distribution function at the point x is the probability that the
random variable takes a value less than or equal to x. The standard normal
distribution has a mean of 0 and a variance of 1.

Function imsls_f_normal_inverse_cdf (p) is evaluated by use of minimax
rational-function approximations for the inverse of the error function. General
descriptions of these approximations are given in Hart et al. (1968) and Strecok
(1968). The rational functions used in imsls_f_normal_inverse_cdf are
described by Kinnucan and Kuki (1968).

Example
This example computes the point such that the probability is 0.9 that a standard
normal random variable is less than or equal to this point.

#include <imsls.h>

main()

Chapter 11: Probability Distribution Functions and Inverses t_cdf •••• 531

{
float x;
float p = 0.9;

x = imsls_f_normal_inverse_cdf(p);
printf("The 90th percentile of a standard normal is %6.4f.\n", x);

}

Output

The 90th percentile of a standard normal is 1.2816.

t_cdf
Evaluates the Student�s t distribution function.

Synopsis
#include <imsls.h>

float imsls_f_t_cdf (float t, float df)

The type double function is imsls_d_t_cdf.

Required Arguments

float t (Input)
Argument for which the Student�s t distribution function is to be
evaluated.

float df (Input)
Degrees of freedom. Argument df must be greater than or equal to 1.0.

Return Value
The probability that a Student�s t random variable takes a value less than or equal
to the input t.

Description
Function imsls_f_t_cdf evaluates the distribution function of a Student�s t
random variable with ν = df degrees of freedom. If the square of
t is greater than or equal to ν, the relationship of a t to an F random variable (and
subsequently, to a beta random variable) is exploited, and percentage points from
a beta distribution are used. Otherwise, the method described by Hill (1970) is
used. If ν is not an integer, is greater than 19, or is greater than 200, a Cornish-
Fisher expansion is used to evaluate the distribution function. If ν is less than 20
and |t| is less than 2.0, a trigonometric series is used (see Abramowitz and Stegun
1964, Equations 26.7.3 and 26.7.4 with some rearrangement). For the remaining
cases, a series given by Hill (1970) that converges well for large values of t is
used.

532 •••• t_inverse_cdf IMSL C/Stat/Library

Figure 11-5 Plot of Ft (t, 6.0)

Example
This example finds the probability that a t random variable with 6 degrees of
freedom is greater in absolute value than 2.447. The fact that t is symmetric about
0 is used.

#include <imsls.h>

main ()
{

float p;
float t = 2.447;
float df = 6.0;

p = 2.0*imsls_f_t_cdf(-t,df);
printf("Pr(|t(6)| > 2.447) = %6.4f\n", p);

}

Output

Pr(|t(6)| > 2.447) = 0.0500

t_inverse_cdf
Evaluates the inverse of the Student�s t distribution function.

Synopsis
#include <imsls.h>

Chapter 11: Probability Distribution Functions and Inverses t_inverse_cdf •••• 533

float imsls_f_t_inverse_cdf (float p, float df)

The type double function is imsls_d_t_inverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the Student�s t distribution function
is to be evaluated. Argument p must be in the open interval (0.0, 1.0).

float df (Input)
Degrees of freedom. Argument df must be greater than or equal to 1.0.

Return Value
The inverse of the Student�s t distribution function evaluated at p. The probability
that a Student�s t random variable takes a value less than or equal to
imsls_f_t_inverse_cdf is p.

Description
Function imsls_f_t_inverse_cdf evaluates the inverse distribution function
of a Student�s t random variable with ν = df degrees of freedom. If ν equals 1 or
2, the inverse can be obtained in closed form. If ν is between 1 and 2, the
relationship of a t to a beta random variable is exploited and the inverse of the
beta distribution is used to evaluate the inverse; otherwise, the algorithm of Hill
(1970) is used. For small values of ν greater than 2, Hill�s algorithm inverts an
integrated expansion in 1/(1 + t2/ν) of the t density. For larger values, an
asymptotic inverse Cornish-Fisher type expansion about normal deviates is used.

Example
This example finds the 0.05 critical value for a two-sided t test with 6 degrees of
freedom.

#include <imsls.h>

void main()
{

float df = 6.0;
float p = 0.975;
float t;

t = imsls_f_t_inverse_cdf(p,df);

printf("The two-sided t(6) 0.05 critical value is %6.3f\n", t);
}

Output

The two-sided t(6) 0.05 critical value is 2.447

534 •••• non_central_t_cdf IMSL C/Stat/Library

Informational Errors
IMSLS_OVERFLOW Function imsls_f_t_inverse_cdf is set to

machine infinity since overflow would occur
upon modifying the inverse value for the F
distribution with the result obtained from the
inverse beta distribution.

non_central_t_cdf
Evaluates the noncentral Student�s t distribution function.

Synopsis
#include <imsls.h>
float imsls_f_non_central_t_cdf (float t, int df , float delta)
The type double function is imsls_d_non_central_t_cdf.

Required Arguments
float t (Input)

Argument for which the noncentral Student�s t distribution function is to
be evaluated.

int df (Input)
Number of degrees of freedom of the noncentral Student�s t distribution.
Argument df must be greater than or equal to 0.0

float delta (Input)
The noncentrality parameter.

Return Value
The probability that a noncentral Student�s t random variable takes a value less
than or equal to t.

Description
Function imsls_f_non_central_t_cdf evaluates the distribution function
F of a noncentral t random variable with df degrees of freedom and noncentrality
parameter delta; that is, with v = df, δ = delta , and t

�
 = t,

F t v e
v v x

v i dx
v

v

t

i
i

x
v x

ii
()

(/)()
(() /)()()

/ /

()/ !
/

0

2 2

2 1 2
0

2 2
2

0 2

2
2

1 2=
+

+ +
−

+−∞
=

∞

+z �
δ

δ

πΓ
Γ

where Γ(⋅) is the gamma function. The value of the distribution function at the
point t

�
 is the probability that the random variable takes a value less than or equal

to t
�
.

Chapter 11: Probability Distribution Functions and Inverses non_central_t_cdf •••• 535

The noncentral t random variable can be defined by the distribution function
above, or alternatively and equivalently, as the ratio of a normal random variable
and an independent chi-squared random variable. If w has a normal distribution
with mean δ and variance equal to one, u has an independent chi-squared
distribution with v degrees of freedom, and

x w u v= / /

then x has a noncentral t distribution with degrees of freedom and noncentrality
parameter δ.

The distribution function of the noncentral t can also be expressed as a double
integral involving a normal density function (see, for example, Owen 1962, page
108). The function TNDF uses the method of Owen (1962, 1965), which uses
repeated integration by parts on that alternate expression for the distribution
function.

Figure 11-6 Noncentral Student�s t Distribution Function

Example
Suppose t is a noncentral t random variable with 6 degrees of freedom and
noncentrality parameter 6. In this example, we find the probability that t is less
than 12.0. (This can be checked using the table on page 111 of Owen 1962, with
η = 0.866, which yields λ = 1.664.)

#include <imsls.h>

536 •••• non_central_t_inv_cdf IMSL C/Stat/Library

#include <stdio.h>

void main()

{

float t = 12.0;

int df = 6;

float delta = 6.0;

float p;

p = imsls_f_non_central_t_cdf(t, df, delta);

printf("The probability that t is less than 12 is %6.4f.\n", p);

}

Output
The probability that T is less than 12.0 is 0.9501

non_central_t_inv_cdf
Evaluates the inverse of the noncentral Student�s t distribution function.

Synopsis
#include <imsls.h>
float imsls_f_non_central_t_inv_cdf (float p, int df , float delta)
The type double function is imsls_d_non_central_t_inv_cdf.

Required Arguments
float p (Input)

A Probability for which the inverse of the noncentral Student's t
distribution function is to be evaluated. p must be in the open interval
(0.0, 1.0).

int df (Input)
Number of degrees of freedom of the noncentral Student�s t distribution.
Argument df must be greater than or equal to 0.0

float delta (Input)
The noncentrality parameter.

Return Value
The probability that a noncentral Student's t random variable takes a value less
than or equal to t is p.

Chapter 11: Probability Distribution Functions and Inverses non_central_t_inv_cdf •••• 537

Description
Function imsls_f_non_central_t_inv_cdf evaluates the inverse
distribution function of a noncentral t random variable with df degrees of
freedom and noncentrality parameter delta; that is, with P = p, v = df, and
δ = delta, it determines t

�
 (= imsls_f_non_central_t_inv_cdf

(p, df, delta)), such that

P v e
v v x

v i dx
v

v

t

i
i

x
v x

ii
=

+
+ +

−

+−∞
=

∞

+z �
/ /

()/ !
/

(/)()
(() /)()()

2 2

2 1 2
0

2 2
2

0 2

2
2

1 2
δ

δ

πΓ
Γ

where Γ(⋅) is the gamma function. The probability that the random variable takes
a value less than or equal to t

�
 is P. See imsls_f_non_central_t_cdf

(page 534) for an alternative definition in terms of normal and chi-squared
random variables. The function imsls_f_non_central_t_inv_cdf uses
bisection and modified regula falsi to invert the distribution function, which is
evaluated using routine imsls_f_non_central_t_cdf.

Example
In this example, we find the 95-th percentage point for a noncentral t random
variable with 6 degrees of freedom and noncentrality parameter 6.

#include <imsls.h>

#include <stdio.h>

void main()

{

float p = .95;

int df = 6;

float delta = 6.0;

float t;

t = imsls_f_non_central_t_inv_cdf(p, df, delta);

printf("The 0.05 noncentral t critical value is %6.4f.\n", t);
}

Output

The 0.05 noncentral t critical value is 11.995.

Chapter 12: Random Number Generation Routines •••• 539

Chapter 12: Random Number
Generation

Routines
12.1 Univariate Discrete Distributions

Generates pseudorandom binomial numbers random_binomial 544
Generates pseudorandom geometric
numbers .. random_geometric 546
Generates pseudorandom
hypergeometric numbersrandom_hypergeometric 548
Generates pseudorandom
logarithmic numbers ... random_logarithmic 550
Generates pseudorandom negative
binomial numbers ... random_neg_binomial 552
Generates pseudorandom Poisson numbers random_poisson 554
Generates pseudorandom discrete
uniform numbersrandom_uniform_discrete 555
Generates pseudorandom numbers from
a general discrete distributionrandom_general_discrete 557
Sets up a table to generate pseudorandom numbers from
a general discrete distribution discrete_table_setup 561

12.2 Univariate Continuous Distributions
Generates pseudorandom beta numbers random_beta 565
Generates pseudorandom Cauchy numbers random_cauchy 567
Generates pseudorandom chi_squared
numbers ...random_chi_squared 569
Generates pseudorandom exponential
numbers .. random_exponential 571
Generates pseudorandom mixed
exponential numbers random_exponential_mix 572
Generates pseudorandom gamma numbers random_gamma 574
Generates peudorandom lognormal numbers .. random_lognormal 576
Generates pseudorandom normal numbers random_normal 577

540 •••• Routines IMSL C/Stat/Library

Generates pseudorandom numbers from a
stable distribution... random_stable 579
Generates pseudorandom Student�s t random_student_t 581
Generates pseudorandom triangular numbers ...random_triangular 583
Generates pseudorandom uniform numbersrandom_uniform 584
Generates pseudorandom Von Mises
numbers..random_von_mises 586
Generates pseudorandom Weibull numbers random_weibull 587
Generates pseudorandom numbers from a general
continuous distribution random_general_continuous 589
Sets up table to generate pseudorandom numbers from a general
continuous distribution continuous_table_setup 592

12.3 Multivariate Continuous Distributions
Generates multivariate
normal vectors random_normal_multivariate 594
Generates a pseudorandom orthogonal matrix
or a correlation matrix random_orthogonal_matrix 596
Generates pseudorandom numbers from a multivariate distribution
determined from a given sample random_mvar_from_data 598
Generates pseudorandom numbers from a
multinomial distributionrandom_multinomial 601
Generates pseudorandom points on a unit circle or
K-dimensional sphere ...random_sphere 603
Generates a pseudorandom
two-way table... random_table_twoway 605

12.4 Order Statistics
Generates pseudorandom order statistics from a standard
normal distribution random_order_normal 607
Generates pseudorandom order statistics from a
uniform (0, 1) distribution random_order_uniform 608

12.5 Stochastic Processes
Generates pseudorandom ARMA
process numbers ...random_arma 610
Generates pseudorandom numbers from a
nonhomogeneous Poisson process.............................random_npp 615

12.6 Samples and Permutations
Generates a pseudorandom permutationrandom_permutation 618
Generates a simple pseudorandom sample
of indices... random_sample_indices 619
Generates a simple pseudorandom sample from
a finite population... random_sample 621

12.7 Utility Functions
Selects the uniform (0, 1) generator random_option 625

Chapter 12: Random Number Generation Usage Notes •••• 541

Retrieves the uniform (0, 1) multiplicative congruential
pseudorandom number generator.....................random_option_get 626
Retrieves the current value of the seed...............random_seed_get 626
Retrieves a seed for the congruential
generatorsrandom_substream_seed_get 628
Initializes a random seed.....................................random_seed_set 630
Sets the current table used in the
shuffled generator ...random_table_set 630
Retrieves the current table used in the
shuffled generator ...random_table_get 631
Sets the current table used in the
GFSR generatorrandom_GFSR_table_set 632
Retrieves the current table used in the
GFSR generatorrandom_GFSR_table_get 633

12.7 Low-discrepancy sequence
Generates a shuffled Faure sequence..................faure_next_point 636

Usage Notes
Overview of Random Number Generation

Sections 12.1 through 12.7 describe functions for the generation of random
numbers that are useful for applications in Monte Carlo or simulation studies.
Before using any of the random number generators, the generator must be
initialized by selecting a seed or starting value. The user can do this by calling the
function imsls_random_seed_set. If the user does not select a seed, one is
generated using the system clock. A seed needs to be selected only once in a
program, unless two or more separate streams of random numbers are maintained.
Other utility functions in this chapter can be used to select the form of the basic
generator to restart simulations and to maintain separate simulation streams.

In the following discussions, the phrases �random numbers,� �random deviates,�
�deviates,� and �variates� are used interchangeably. The phrase �pseudorandom�
is sometimes used to emphasize that the numbers generated are really not
�random� since they result from a deterministic process. The usefulness of
pseudorandom numbers is derived from the similarity, in a statistical sense, of
samples of the pseudorandom numbers to samples of observations from the
specified distributions. In short, while the pseudorandom numbers are completely
deterministic and repeatable, they simulate the realizations of independent and
identically distributed random variables.

Basic Uniform Generators

The random number generators in this chapter use either a multiplicative
congruential method or a generalized feedback shift register. The selection of the

542 •••• Usage Notes IMSL C/Stat/Library

type of generator is made by calling the routine imsls_random_option (page
625). If no selection is made explicitly, a multiplicative generator (with multiplier
16807) is used. Whatever distribution is being simulated, uniform (0, 1) numbers
are first generated and then transformed if necessary. These routines are portable
in the sense that, given the same seed and for a given type of generator, they
produce the same sequence in all computer/compiler environments. There are
many other issues that must be considered in developing programs for the
methods described below (see Gentle 1981 and 1990).

The Multiplicative Congruential Generators

The form of the multiplicative congruential generators is

xi ≡ cxi-1mod (231 − 1)

Each xi is then scaled into the unit interval (0,1). If the multiplier, c, is a primitive
root modulo 231 − 1 (which is a prime), then the generator will have a maximal
period of 231 − 2. There are several other considerations, however. See Knuth
(1981) for a good general discussion. The possible values for c in the generators
are 16807, 397204094, and 950706376. The selection is made by the function
imsls_random_option. The choice of 16807 will result in the fastest execution
time, but other evidence suggests that the performance of 950706376 is best
among these three choices (Fishman and Moore 1982). If no selection is made
explicitly, the functions use the multiplier 16807, which has been in use for some
time (Lewis et al. 1969).

The generation of uniform (0,1) numbers is done by the function
imsls_f_random_uniform. This function is portable in the sense that, given
the same seed, it produces the same sequence in all computer/compiler
environments.

Shuffled Generators

The user also can select a shuffled version of these generators using
imsls_random_option. The shuffled generators use a scheme due to
Learmonth and Lewis (1973). In this scheme, a table is filled with the first 128
uniform (0,1) numbers resulting from the simple multiplicative congruential
generator. Then, for each xi from the simple generator, the low-order bits of xi are
used to select a random integer, j, from 1 to 128. The j-th entry in the table is then
delivered as the random number; and xi, after being scaled into the unit interval, is
inserted into the j-th position in the table. This scheme is similar to that of
Bays and Durham (1976), and their analysis is applicable to this scheme as well.

The Generalized Feedback Shift Register Generator

The GFSR generator uses the recursion Xt = Xt-1563 ⊕ Xt-96. This generator,
which is different from earlier GFSR generators, was proposed by Fushimi
(1990), who discusses the theory behind the generator and reports on several

Chapter 12: Random Number Generation Usage Notes •••• 543

empirical tests of it. Background discussions on this type of generator can be
found in Kennedy and Gentle (1980), pages 150−162.

Setting the Seed

The seed of the generator can be set in imsls_random_seed_set and can be
retrieved by imsls_random_seed_get. Prior to invoking any generator in this
section, the user can call imsls_random_seed_set to initialize the seed, which
is an integer variable with a value between 1 and 2147483647. If it is not
initialized by imsls_random_seed_set, a random seed is obtained from the
system clock. Once it is initialized, the seed need not be set again.

If the user wants to restart a simulation, imsls_random_seed_get can be used
to obtain the final seed value of one run to be used as the starting value in a
subsequent run. Also, if two simultaneous random number streams are desired in
one run, imsls_random_seed_set and imsls_random_seed_get can be
used before and after the invocations of the generators in each stream.

If a shuffled generator or the GFSR generator is used, in addition to resetting the
seed, the user must also reset some values in a table. For the shuffled generators,
this is done using the routines imsls_f_random_table_get (page 631) and
imsls_f_random_table_set (page 630); and for the GFSR generator; the
table is retrieved and set by the routines imsls_random_GFSR_table_get
(page 633) and imsls_random_GFSR_table_set (page 632). The tables for
the shuffled generators are separate for single and double precision; so, if
precisions are mixed in a program, it is necessary to manage each precision
separately for the shuffled generators.

Timing Considerations

The generation of the uniform (0,1) numbers is done by the routine
imsls_f_random_uniform (page 584). The particular generator selected in
imsls_random_option (page 625), that is, the value of the multiplier and
whether shuffling is done or whether the GFSR generator is used, affects the
speed of imsls_f_random_uniform. The smaller multiplier (16807, selected
by iopt = 1) is faster than the other multipliers. The multiplicative congruential
generators that do not shuffle are faster than the ones that do. The GFSR
generator is roughly as fast as the fastest multiplicative congruential generator,
but the initialization for it (required only on the first invocation) takes longer than
the generation of thousands of uniform random numbers. Precise statements of
relative speeds depend on the computing system.

Distributions Other than the Uniform

The nonuniform generators use a variety of transformation procedures. All of the
transformations used are exact (mathematically). The most straightforward
transformation is the inverse CDF technique, but it is often less efficient than
others involving acceptance/rejection and mixtures. See Kennedy and Gentle
(1980) for discussion of these and other techniques.

544 •••• random_binomial IMSL C/Stat/Library

Many of the nonuniform generators in this chapter use different algorithms
depending on the values of the parameters of the distributions. This is particularly
true of the generators for discrete distributions. Schmeiser (1983) gives an
overview of techniques for generating deviates from discrete distributions.

Although, as noted above, the uniform generators yield the same sequences on
different computers, because of rounding, the nonuniform generators that use
acceptance/rejection may occasionally produce different sequences on different
computer/compiler environments.

Although the generators for nonuniform distributions use fast algorithms, if a very
large number of deviates from a fixed distribution are to be generated, it might be
worthwhile to consider a table-sampling method, as implemented in the routines
imsls_f_random_general_discrete (page 557),
imsls_f_discrete_table_setup (page 561),
imsls_f_random_general_continuous (page 589), and
imsls_f_continuous_table_setup (page 592). After an initialization stage,
which may take some time, the actual generation may proceed very fast.

Tests

Extensive empirical tests of some of the uniform random number generators
available in imsls_f_random_uniform (page 584) are reported by Fishman
and Moore (1982 and 1986). Results of tests on the generator using the multiplier
16807 with and without shuffling are reported by Learmonth and Lewis (1973b).
If the user wishes to perform additional tests, the routines in Chapter 7, �Tests of
Goodness of Fit and Randomness,� may be of use. Often in Monte Carlo
applications, it is appropriate to construct an ad hoc test that is sensitive to
departures that are important in the given application. For example, in using
Monte Carlo methods to evaluate a one-dimensional integral, autocorrelations of
order one may not be harmful, but they may be disastrous in evaluating a two-
dimensional integral. Although generally the routines in this chapter for
generating random deviates from nonuniform distributions use exact methods,
and, hence, their quality depends almost solely on the quality of the underlying
uniform generator, it is often advisable to employ an ad hoc test of goodness of fit
for the transformations that are to be applied to the deviates from the nonuniform
generator.

Other Notes on Usage

The generators for continuous distributions are available in both single and
double-precision versions. This is merely for the convenience of the user; the
double-precision versions should not be considered more �accurate,� except
possibly for the multivariate distributions.

random_binomial
Generates pseudorandom numbers from a binomial distribution.

Chapter 12: Random Number Generation random_binomial •••• 545

Synopsis
#include <imsls.h>

int *imsls_f_random_binomial (int n_random, int n, float p, ..., 0)

The type double function is imsls_d_random_binomial.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

int n (Input)
Number of Bernoulli trials.

float p (Input)
Probability of success on each trial. Parameter p must be greater than 0.0
and less than 1.0.

Return Value
An integer array of length n_random containing the random binomial deviates.

Synopsis with Optional Arguments
#include <imsls.h>

int *imsls_f_random_binomial (int n_random, int n, float p,
IMSLS_RETURN_USER, int ir[],
0)

Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied integer array of length n_random containing the random
binomial deviates.

Description
Function imsls_f_random_binomial generates pseudorandom numbers from
a binomial distribution with parameters n and p. Parameters n and p must be
positive, and p must less than 1. The probability function (with n = n and p = p) is

f x p px
n x n xb g e j b g= − −1

for x = 0, 1, 2, …, n.

The algorithm used depends on the values of n and p. If np < 10 or p is less than
machine epsilon (see imsls_f_machine, Chapter 14), the inverse CDF
technique is used; otherwise, the BTPE algorithm of Kachitvichyanukul and
Schmeiser (see Kachitvichyanukul 1982) is used. This is an acceptance/rejection

546 •••• random_geometric IMSL C/Stat/Library

method using a composition of four regions. (TPE=Triangle, Parallelogram,
Exponential, left and right.)

Example
In this example, imsls_f_random_binomial generates five pseudorandom
binomial deviates from a binomial distribution with parameters 20 and 0.5.

#include <stdio.h>
#include <imsls.h>

void main()
{

int n_random = 5;
int n = 20;
float p = 0.5;
int *ir;

imsls_random_seed_set(123457);
ir = imsls_f_random_binomial(n_random, n, p, 0);
imsls_i_write_matrix("Binomial (20, 0.5) random deviates:",

1, n_random, ir, IMSLS_NO_COL_LABELS, 0);
}

Output

Binomial (20, 0.5) random deviates:
14 9 12 10 12

random_geometric
Generates pseudorandom numbers from a geometric distribution.

Synopsis

#include <imsls.h>

int *imsls_f_random_geometric (int n_random, float p, ..., 0)
The type double function is imsls_d_random_geometric.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float p (Input)
Probability of succes on each trial. Parameter p must be positive and less
than 1.0.

Return Value
An integer array of length n_random containing the random geometric deviates.

Chapter 12: Random Number Generation random_geometric •••• 547

Synopsis with Optional Arguments
#include <imsls.h>

int *imsls_f_random_geometric (int n_random, float p,
IMSLS_RETURN_USER, int ir[],
0)

Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied integer array of length n_random containing the random
geometric deviates.

Description
Function imsls_f_random_geometric generates pseudorandom numbers from
a geometric distribution with parameter P, where P is the probability of getting a
success on any trial. A geometric deviate can be interpreted as the number of
trials until the first success (including the trial in which the first success is
obtained). The probability function is

f(x) = P(1 − P)x-1

for x = 1, 2, … and 0 < P < 1.

The geometric distribution as defined above has mean 1/P.

The i-th geometric deviate is generated as the smallest integer not less than

(log (Ui))/(log (1 − P)), where the Ui are independent uniform(0, 1) random
numbers (see Knuth 1981).

The geometric distribution is often defined on 0, 1, 2, ..., with mean (1 − P)/P.
Such deviates can be obtained by subtracting 1 from each element of ir (the
returned vector of random deviates).

Example
In this example, imsls_f_random_geometric generates five pseudorandom
geometric deviates from a geometric distribution with parameter an equal to 0.3.

#include <stdio.h>
#include <imsls.h>

void main()
{

int n_random = 5;
float p = 0.3;
int *ir;

imsls_random_seed_set(123457);
ir = imsls_f_random_geometric(n_random, p, 0);
imsls_i_write_matrix("Geometric(0.3) random deviates:",

1, n_random, ir, IMSLS_NO_COL_LABELS, 0);

548 •••• random_hypergeometric IMSL C/Stat/Library

}

Output

Geometric(0.3) random deviates:
1 4 1 2 1

random_hypergeometric
Generates pseudorandom numbers from a hypergeometric distribution.

Synopsis

#include <imsls.h>

int *imsls_f_random_hypergeometric (int n_random, int n, int m,
int l, ..., 0)

The type double function is imsls_d_random_hypergeometric.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

int n (Input)
Number of items in the sample. Parameter n must be positive.

int m (Input)
Number of special items in the population, or lot. Parameter m must be
positive.

int l (Input)
Number of items in the lot. Parameter l must be greater than both n and
m.

Return Value
An integer array of length n_random containing the random hypergeometric
deviates.

Synopsis with Optional Arguments
#include <imsls.h>

int *imsls_f_random_hypergeometric (int n_random, int n, int m,
int l,
IMSLS_RETURN_USER, int ir[],
0)

Chapter 12: Random Number Generation random_hypergeometric •••• 549

Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied integer array of length n_random containing the random
hypergeometric deviates.

Description
Function imsls_f_random_hypergeometric generates pseudorandom
numbers from a hypergeometric distribution with parameters N, M, and L. The
hypergeometric random variable X can be thought of as the number of items of a
given type in a random sample of size N that is drawn without replacement from a
population of size L containing M items of this type. The probability function is

f x
x
M

N x
L M

N
Lb g e je j
e j

=
−
−

for x = max (0, N − L + M), 1, 2, …, min (N, M)

If the hypergeometric probability function with parameters N, M, and L evaluated
at N − L + M (or at 0 if this is negative) is greater than the machine epsilon
(see imsls_f_machine, Chapter 14), and less than 1.0 minus the machine
epsilon, then imsls_f_random_hypergeometric uses the inverse CDF
technique. The routine recursively computes the hypergeometric probabilities,
starting at x = max (0, N − L + M) and using the ratio

f X x
f X x

= +
=

1b g
b g

(see Fishman 1978, p. 475).

If the hypergeometric probability function is too small or too close to 1.0, the
imsls_f_random_hypergeometric generates integer deviates uniformly in
the interval [1, L − i] for i = 0, 1, ..., and at the i-th step, if the generated deviate is
less than or equal to the number of special items remaining in the lot, the
occurence of one special item is tallied and the number of remaining special items
is decreased by one. This process continues until the sample size of the number of
special items in the lot is reached, whichever comes first. This method can be
much slower than the inverse CDF technique. The timing depends on N. If N is
more than half of L (which in practical examples is rarely the case), the user may
wish to modify the problem, replacing N by L − N, and to consider the generated
deviates to be the number of special items not included in the sample.

Example
In this example, imsls_f_random_hypergeometric generates five
pseudorandom hypergeometric deviates from a hypergeometric distribution to
simulate taking random samples of size 4 from a lot containing 20 items, of which

550 •••• random_logarithmic IMSL C/Stat/Library

12 are defective. The resulting hypergeometric deviates represent the numbers of
defectives in each of the five samples of size 4.

#include <imsls.h>
#include <stdio.h>

void main()
{

int n_random = 5;
int n = 4;
int m = 12;
int l = 20;
int *ir;

imsls_random_seed_set(123457);
ir = imsls_f_random_hypergeometric(n_random, n, m, l, 0);
imsls_i_write_matrix("Hypergeometric random deviates: ",

1, n_random, ir, IMSLS_NO_COL_LABELS, 0);
}

Output

Hypergeometric random deviates:
4 2 3 3 3

Fatal Errors
IMSLS_LOT_SIZE_TOO_SMALL The lot size must be greater than the sample

size and the number of defectives in the lot.
Lot size = #. Sample size = #. Number of
defectives in the lot = #.

random_logarithmic
Generates pseudorandom numbers from a logarithmic distribution.

Synopsis

#include <imsls.h>

int *imsls_f_random_logarithmic (int n_random, float a, ..., 0)

The type double function is imsls_d_random_logarithmic.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float a (Input)
Parameter of the logarithmic distribution. Parameter a must be positive
and less than 1.0.

Chapter 12: Random Number Generation random_logarithmic •••• 551

Return Value
An integer array of length n_random containing the random logarithmic deviates.

Synopsis with Optional Arguments
#include <imsls.h>

int *imsls_f_random_logarithmic (int n_random, float a,
IMSLS_RETURN_USER, int ir[],
0)

Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied integer array of length n_random containing the random
logarithmic deviates.

Description
Function imsls_f_random_logarithmic generates pseudorandom numbers
from a logarithmic distribution with parameter a. The probability function is

f x a
x a

x
b g b g= −

−ln 1

for x = 1, 2, 3, ..., and 0 < a < 1

The methods used are described by Kemp (1981) and depend on the value of a. If
a is less than 0.95, Kemp�s algorithm LS, which is a �chop-down� variant of an
inverse CDF technique, is used. Otherwise, Kemp�s algorithm LK, which gives
special treatment to the highly probable values of 1 and 2 is used.

Example
In this example, imsls_f_random_logarithmic generates five pseudorandom
logarithmic deviates from a logarithmic distribution with parameter a equal to 0.3.

#include <imsls.h>
#include <stdio.h>

void main()
{

int n_random = 5;
float a = 0.3;
int *ir;

imsls_random_seed_set(123457);
ir = imsls_f_random_logarithmic(n_random, a, 0);
imsls_i_write_matrix("logarithmic random deviates:",

1, n_random, ir, IMSLS_NO_COL_LABELS, 0);
}

552 •••• random_neg_binomial IMSL C/Stat/Library

Output

logarithmic random deviates:
2 1 1 1 2

random_neg_binomial
Generates pseudorandom numbers from a negative binomial distribution.

Synopsis

#include <imsls.h>

int *imsls_f_random_neg_binomial (int n_random, float rk, float p,
..., 0)

The type double function is imsls_d_random_neg_binomial.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float rk (Input)
Negative binomial parameter. Parameter rk must be positive. If rk is an
integer, the generated deviates can be thought of as the number of
failures in a sequence of Bernoulli trials before rk successes occur.

float p (Input)
Probability of failure on each trial. Parameter p must be greater than
machine epsilon (see imsls_f_machine, Chapter 14) and less than 1.0.

Return Value
An integer array of length n_random containing the random negative binomial
deviates.

Synopsis with Optional Arguments
#include <imsls.h>

int *imsls_f_random_neg_binomial (int n_random, float rk, float p,
IMSLS_RETURN_USER, int ir[],
0)

Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied integer array of length n_random containing the random
negative binomial deviates.

Chapter 12: Random Number Generation random_neg_binomial •••• 553

Description
Function imsls_f_random_neg_binomial generates pseudorandom numbers
from a negative binomial distribution with parameters rk and p. Parameters rk
and p must be positive and p must be less than 1. The probability function (with
r = rk and p = p) is

f x p px
r x r xb g e jb g= −+ −1 1

for x = 0, 1, 2, ...

If r is an integer, the distribution is often called the Pascal distribution and can be
thought of as modeling the length of a sequence of Bernoulli trials until r
successes are obtained, where p is the probability of getting a failure on any trial.
In this form, the random variable takes values r, r + 1, r + 2, … and can be
obtained from the negative binomial random variable defined above by adding
r to the negative binomial variable. This latter form is also equivalent to the sum
of r geometric random variables defined as taking values 1, 2, 3, ...

If rp/(1 − p) is less than 100 and (1 − p)r is greater than the machine epsilon,
imsls_f_random_neg_binomial uses the inverse CDF technique; otherwise,
for each negative binomial deviate, imsls_f_random_neg_binomial
generates a gamma (r, p/(1 − p)) deviate Y and then generates a Poisson deviate
with parameter Y.

Example
In this example, imsls_f_random_neg_binomial generates five
pseudorandom negative binomial deviates from a negative binomial (Pascal)
distribution with parameters r equal to 4 and p equal to 0.3.

#include <imsls.h>
#include <stdio.h>

void main()
{

int n_random = 5;
float rk = 4.0;
float p = 0.3;
int *ir;

imsls_random_seed_set(123457);
ir = imsls_f_random_neg_binomial(n_random, rk, p, 0);
imsls_i_write_matrix(

"Negative Binomial (4.0, 0.3) random deviates: ",
1, n_random, ir, IMSLS_NO_COL_LABELS, 0);

}

Output

Negative Binomial (4.0, 0.3) random deviates:
5 1 3 2 3

554 •••• random_poisson IMSL C/Stat/Library

random_poisson
Generates pseudorandom numbers from a Poisson distribution.

Synopsis
#include <imsls.h>

int *imsls_random_poisson (int n_random, float theta, ..., 0)

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float theta (Input)
Mean of the Poisson distribution. Argument theta must be positive.

Return Value
An array of length n_random containing the random Poisson deviates.

Synopsis with Optional Arguments
#include <imsls.h>

int *imsls_random_poisson (int n_random, float theta,
IMSLS_RETURN_USER, int r[],
0)

Optional Arguments
IMSLS_RETURN_USER, int r[] (Output)

User-supplied array of length n_random containing the random Poisson
deviates.

Description
Function imsls_random_poisson generates pseudorandom numbers from a
Poisson distribution with positive mean theta. The probability function (with
θ = theta) is

() () / ! for 0, 1, 2, ...xf x e x x−θ= θ =

If theta is less than 15, imsls_random_poisson uses an inverse CDF method;
otherwise, the PTPE method of Schmeiser and Kachitvichyanukul (1981) (see
also Schmeiser 1983) is used. The PTPE method uses a composition of four
regions, a triangle, a parallelogram, and two negative exponentials. In each region
except the triangle, acceptance/rejection is used. The execution time of the
method is essentially insensitive to the mean of the Poisson.

Chapter 12: Random Number Generation random_uniform_discrete •••• 555

Function imsls_random_seed_set can be used to initialize the seed of the
random number generator; function imsls_random_option can be used to
select the form of the generator.

Example
In this example, imsls_random_poisson is used to generate five
pseudorandom deviates from a Poisson distribution with mean equal to 0.5.

#include <imsls.h>

#define N_RANDOM 5

void main()
{

int *r;
int seed = 123457;
float theta = 0.5;

imsls_random_seed_set (seed);
r = imsls_random_poisson (N_RANDOM, theta, 0);
imsls_i_write_matrix ("Poisson(0.5) random deviates", 1, N_RANDOM, r,

0);
}

Output

Poisson(0.5) random deviates
1 2 3 4 5
2 0 1 0 1

random_uniform_discrete
Generates pseudorandom numbers from a discrete uniform distribution.

Synopsis
#include <imsls.h>

int *imsls_f_random_uniform_discrete (int n_random, int k, ..., 0)
The type double function is imsls_d_random_uniform_discrete.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

int k (Input)
Parameter of the discrete uniform distribution. The integers 1, 2, ..., k
occur with equal probability. Parameter k must be positive.

556 •••• random_uniform_discrete IMSL C/Stat/Library

Return Value
An integer array of length n_random containing the random discrete uniform
deviates.

Synopsis with Optional Arguments
#include <imsls.h>

int *imsls_f_random_uniform_discrete (int n_random, int k,
IMSLS_RETURN_USER, int ir[],
0)

Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied integer array of length n_random containing the random
discrete uniform deviates.

Description
Function imsls_f_random_uniform_discrete generates pseudorandom
numbers from a uniform discrete distribution over the integers 1, 2, ...k. A
random integer is generated by multiplying k by a uniform (0, 1) random number,
adding 1.0, and truncating the result to an integer. This, of course, is equivalent to
sampling with replacement from a finite population of size k

Example
In this example, imsls_f_random_uniform_discrete generates five
pseudorandom discrete uniform deviates from a discrete uniform distribution over
the integers 1 to 6.

#include <stdio.h>
#include <imsls.h>

void main()
{

int n_random = 5;
int k = 6;
int *ir;

imsls_random_seed_set(123457);
ir = imsls_f_random_uniform_discrete(n_random, k, 0);
imsls_i_write_matrix("Discrete uniform (1, 6) random deviates:" ,

1, n_random, ir, IMSLS_NO_COL_LABELS, 0);

}

Output

Discrete uniform (1, 6) random deviates:

6 2 5 4 6

Chapter 12: Random Number Generation random_general_discrete •••• 557

random_general_discrete
Generates pseudorandom numbers from a general discrete distribution using an
alias method or optionally a table lookup method.

Synopsis
#include <imsls.h>

int *imsls_f_random_general_discrete (int n_random, int imin, int
nmass, float probs[],..., 0)

The type double function is imsls_d_random_general_discrete.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

int imin (Input)
Smallest value the random deviate can assume.
This is the value corresponding to the probability in probs[0].

int nmass (Input)
Number of mass points in the discrete distribution.

float probs[] (Input)
Array of length nmass containing probabilities associated with the
individual mass points. The elements of probs must be nonnegative
and must sum to 1.0.

If the optional argument IMSLS_TABLE is used, then probs is a vector
of length at least nmass + 1 containing in the first nmass positions the
cumulative probabilities and, possibly, indexes to speed access to the
probabilities.
IMSL routine imsls_f_discrete_table_setup (page 561) can be
used to initialize probs properly. If no elements of probs are used as
indexes, probs [nmass] is 0.0 on input. The value in probs[0] is the
probability of imin. The value in probs [nmass-1] must be exactly 1.0
(since this is the CDF at the upper range of the distribution.)

Return Value
An integer array of length n_random containing the random discrete deviates.
To release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>

558 •••• random_general_discrete IMSL C/Stat/Library

int *imsls_f_random_general_discrete (int n_random, int imin, int
nmass, float probs[],
IMSLS_GET_INDEX_VECTORS, int **iwk, float **wk,
IMSLS_GET_INDEX_VECTORS_USER, int iwk[], float wk[],
IMSLS_SET_INDEX_VECTORS, int iwk[], float wk[],
IMSLS_RETURN_USER, int ir[],
IMSLS_TABLE,
 0)

Optional Arguments
IMSLS_GET_INDEX_VECTORS, int **iwk, float **wk (Output)

Retrieve indexing vectors that can be used to increase efficiency when
multiple calls will be made to imsls_f_random_general_discrete
with the same values in probs.

IMSLS_GET_INDEX_VECTORS_USER, int iwk[], float wk[] (Output)
User-supplied arrays of length nmass used for retrieve indexing vectors
that can be used to increase efficiency when multiple calls will be made
to imsls_f_random_general_discrete with the same values in
probs.

IMSLS_SET_INDEX_VECTORS, int *iwk, float *wk (Input)
Arrays of length nmass that can be used to increase efficiency when
multiple calls will be made to imsls_f_random_general_discrete
the same values in probs. These arrays are obtained by using one of the
options IMSLS_GET_INDEX_VECTORS or
IMSLS_GET_INDEX_VECTORS_USER in the first call to
imsls_f_random_general_discrete.

IMSLS_TABLE (Input)
Generate pseudorandom numbers from a general discrete distribution
using a table lookup method. If this option is used, then probs is a
vector of length at least nmass + 1 containing in the first nmass
positions the cumulative probabilities and, possibly, indexes to speed
access to the probabilities.

IMSLS_RETURN_USER, int ir[] (Output)
User-supplied array of length n_random containing the random discrete
deviates.

Description
Routine imsls_f_random_general_discrete generates pseudorandom
numbers from a discrete distribution with probability function given in the vector
probs; that is

Pr(X = i) = pj

for i = i�, i� + 1, …, i� + nm − 1 where j = i − i� + 1, pj = probs[j-1],
i� = imin, and nm = nmass.

Chapter 12: Random Number Generation random_general_discrete •••• 559

The algorithm is the alias method, due to Walker (1974), with modifications
suggested by Kronmal and Peterson (1979). The method involves a setup phase,
in which the vectors iwk and wk are filled. After the vectors are filled, the
generation phase is very fast. To increase efficiency, the first call to
imsls_f_random_general_discrete can retrieve the arrays iwk and wk
using the optional arguments IMSLS_GET_INDEX_VECTORS or
IMSLS_GET_INDEX_VECTORS_USER , then subsequent calls can be made using
the optional argument IMSLS_SET_INDEX_VECTORS.

If the optional argument IMSLS_TABLE is used,
imsls_f_random_general_discrete generates pseudorandom deviates
from a discrete distribution, using the table probs, which contains the cumulative
probabilities of the distribution and, possibly, indexes to speed the search of the
table. The routine imsls_f_discrete_table_setup (page 561) can be used
to set up the table probs. imsls_f_random_general_discrete uses the
inverse CDF method to generate the variates.

Example 1
In this example, imsls_f_random_general_discrete is used to generate
five pseudorandom variates from the discrete distribution:

Pr(X = 1) = .05

Pr(X = 2) = .45

Pr(X = 3) = .31

Pr(X = 4) = .04

Pr(X = 5) = .15

When imsls_f_random_general_discrete is called the first time,
IMSLS_GET_INDEX_VECTORS is used to initialize the index vectors iwk and wk.
In the next call, IMSLS_GET_INDEX_VECTORS is used, so the setup phase is
bypassed.

#include <stdio.h>
#include <imsls.h>

void main()
{

int nr = 5, nmass = 5, iopt = 0, imin = 1, *iwk, *ir;

float probs[] = {.05, .45, .31, .04, .15};
float *wk;

imsls_random_seed_set(123457);

ir = imsls_f_random_general_discrete(nr, imin, nmass, probs,
IMSLS_GET_INDEX_VECTORS, &iwk, &wk,
0);

imsls_i_write_matrix("Random deviates", 1, 5, ir,
IMSLS_NO_COL_LABELS,

560 •••• random_general_discrete IMSL C/Stat/Library

0);
free(ir);

ir = imsls_f_random_general_discrete(nr, imin, nmass, probs,
IMSLS_SET_INDEX_VECTORS, iwk, wk,
0);

imsls_i_write_matrix("Random deviates", 1, 5, ir,
IMSLS_NO_COL_LABELS,
0);

}

Output
Random deviates

3 2 2 3 5

Random deviates
1 3 4 5 3

Example 2
In this example, imsls_f_discrete_table_setup (page 561) is used to set
up a table and then imsls_f_random_general_discrete is used to generate
five pseudorandom variates from the binomial distribution with parameters 20
and 0.5.

#include <stdio.h>
#include <imsls.h>

float prf(int ix);
void main()
{

int nndx = 12, imin = 0, nmass = 21, nr = 5;
float del = 0.00001, *cumpr;
int *ir = NULL;

cumpr = imsls_f_discrete_table_setup (prf, del, nndx, &imin, &nmass, 0);

imsls_random_seed_set(123457);

ir = imsls_f_random_general_discrete(nr, imin, nmass, cumpr,
IMSLS_TABLE, 0);

imsls_i_write_matrix("Binomial (20, 0.5) random deviates", 1, 5, ir,
IMSLS_NO_COL_LABELS,
0);

}

float prf(int ix)
{

int n = 20;
float p = .5;
return imsls_f_binomial_probability (ix, n, p);

}

Chapter 12: Random Number Generation discrete_table_setup •••• 561

Output

Binomial (20, 0.5) random deviates
14 9 12 10 12

discrete_table_setup
 Sets up table to generate pseudorandom numbers from a general discrete
distribution.

Synopsis
#include <imsls.h>

float *imsls_f_discrete_table_setup (float prf(), float del,
int nndx, int *imin, int *nmass, ..., 0)

The type double function is imsls_d_discrete_table_setup.

Required Arguments

float prf(int ix) (Input)
User-supplied function to compute the probability associated with each
mass point of the distribution The argument to the function is the point
at which the probability function is to be evaluated. ix can range from
imin to the value at which the cumulative probability is greater than or
equal to 1.0 − del.

float del (Input)
Maximum absolute error allowed in computing the cumulative
probability.
Probabilities smaller than del are ignored; hence, del should be a small
positive number. If del is too small, however, the return value, cumpr
[nmass-1] must be exactly 1.0 since that value is compared to
1.0 − del.

int nndx (Input)
The number of elements of cumpr available to be used as indexes.
nndx must be greater than or equal to 1. In general, the larger nndx is,
to within sixty or seventy percent of nmass, the more efficient the
generation of random numbers using
imsls_f_random_general_discrete will be.

int *imin (Input/Output)
Pointer to a scalar containing the smallest value the random deviate can
assume. (Input/Output)
imin is not used if optional argument IMSLS_INDEX_ONLY is used. By
default, prf is evaluated at imin. If this value is less than del, imin is
incremented by 1 and again prf is evaluated at imin. This process is

562 •••• discrete_table_setup IMSL C/Stat/Library

continued until prf(imin) ≥ del. imin is output as this value and the
return value cumpr [0] is output as prf(imin).

int *nmass (Input/Output)
Pointer to a scalar containing the number of mass points in the
distribution. Input, if IMSLS_INDEX_ONLY is used; otherwise, output.
By default, nmass is the smallest integer such that
prf(imin + nmass − 1) > 1.0 − del. nmass does include the points
iminin + j for which prf(iminin + j) < del, for j = 0, 1, …,
iminout − iminin, where iminin denotes the input value of imin and
iminout denotes its output value.

Return Value
Array, cumpr, of length nmass + nndx containing in the first nmass positions,
the cumulative probabilities and in some of the remaining positions, indexes to
speed access to the probabilities. To release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>

void imsls_f_discrete_table_setup (float prf(), float del, int nndx,
int *imin, int *nmass,
IMSLS_INDEX_ONLY,
IMSLS_RETURN_USER, float cumpr[], int lcumpr,
 0)

Optional Arguments
IMSLS_INDEX_ONLY (Intput)

Fill only the index portion of the result, cumpr, using the values in the
first nmass positions. prf is not used and may be a dummy function;
also, imin is not used. The optional argument IMSLS_RETURN_USER is
required if IMSLS_INDEX_ONLY is used.

IMSLS_RETURN_USER, float cumpr[], int lcumpr (Input/Output)
cumpr is a user-allocated array of length nmass + nndx containing in
the first nmass positions, the cumulative probabilities and in some of the
remaining positions, indexes to speed access to the probabilities.
lcumpr is the actual length of cumpr as specified in the calling
function. Since, by default, the logical length of cumpr is determined in
imsls_f_discrete_table_setup, lcumpr is used for error
checking. If the option IMSLS_INDEX_ONLY is used, then only the
index portion of cumpr are filled.

Description
Routine imsls_f_discrete_table_setup sets up a table that routine
imsls_f_random_general_discrete (page 557) uses to generate

Chapter 12: Random Number Generation discrete_table_setup •••• 563

pseudorandom deviates from a discrete distribution. The distribution can be
specified either by its probability function prf or by a vector of values of the
cumulative probability function. Note that prf is not the cumulative probability
distribution function. If the cumulative probabilities are already available in
cumpr, the only reason to call imsls_f_discrete_table_setup is to form an
index vector in the upper portion of cumpr so as to speed up the generation of
random deviates by the routine imsls_f_random_general_discrete.

Example 1
In this example, imsls_f_discrete_table_setup is used to set up a table to
generate pseudorandom variates from the discrete distribution:

Pr(X = 1) = .05

Pr(X = 2) = .45

Pr(X = 3) = .31

Pr(X = 4) = .04

Pr(X = 5) = .15

In this simple example, we input the cumulative probabilities directly in cumpr
and request 3 indexes to be computed (nndx = 4). Since the number of mass
points is so small, the indexes would not have much effect on the speed of the
generation of the random variates.

#include <stdio.h>
#include <imsls.h>

float prf(int ix);
void main()
{

int i, lcumpr = 9, ir[5];
int nndx = 4, imin = 1, nmass = 5, nr = 5;

float cumpr[9], del = 0.00001, *p_cumpr = NULL;
i = 0;
cumpr[i++] = .05;
cumpr[i++] = .5;
cumpr[i++] = .81;
cumpr[i++] = .85;
cumpr[i++] = 1.0;

imsls_f_discrete_table_setup (prf, del,
nndx, &imin, &nmass,
IMSLS_INDEX_ONLY,
IMSLS_RETURN_USER, cumpr, lcumpr,
0);

imsls_f_write_matrix("Cumulative probabilities and indexes",
1, lcumpr, cumpr, 0);

}

564 •••• discrete_table_setup IMSL C/Stat/Library

float prf(int ix)
{

return 0.;

}

Output

Cumulative probabilities and indexes
1 2 3 4 5 6

0.05 0.50 0.81 0.85 1.00 3.00

7 8 9
1.00 2.00 5.00

Example 2
This example, imsls_f_random_general_discrete is used to set up a table
to generate binomial variates with parameters 20 and 0.5. The routine
imsls_f_binomial_probabililty (Chapter 11, Probability Distribution
Functions and Inverses) is used to compute the probabilities.

#include <stdio.h>
#include <imsls.h>

float prf(int ix);
void main()
{

int lcumpr = 33;
int nndx = 12, imin = 0, nmass = 21, nr = 5;
float del = 0.00001, *cumpr;
int *ir = NULL;

cumpr = imsls_f_discrete_table_setup (prf, del, nndx, &imin, &nmass, 0);

printf("The smallest point with positive probability using \n");
printf("the given del is %d and all points after \n", imin);
printf("point number %d (counting from the input value\n", nmass);
printf("of IMIN) have zero probability.\n");
imsls_f_write_matrix("Cumulative probabilities and indexes",

nmass+nndx, 1, cumpr,
IMSLS_WRITE_FORMAT, "%11.7f", 0);

}

float prf(int ix)
{

int n = 20;
float p = .5;
return imsls_f_binomial_probability(ix, n, p);

}

Chapter 12: Random Number Generation random_beta •••• 565

Output

The smallest point with positive probability using
the given del is 1 and all points after
point number 19 (counting from the input value
of IMIN) have zero probability.

Cumulative probabilities and indexes
1 0.0000191
2 0.0002003
3 0.0012875
4 0.0059080
5 0.0206938
6 0.0576583
7 0.1315873
8 0.2517219
9 0.4119013
10 0.5880987
11 0.7482781
12 0.8684127
13 0.9423417
14 0.9793062
15 0.9940920
16 0.9987125
17 0.9997997
18 0.9999809
19 1.0000000
20 11.0000000
21 1.0000000
22 7.0000000
23 8.0000000
24 9.0000000
25 9.0000000
26 10.0000000
27 11.0000000
28 11.0000000
29 12.0000000
30 13.0000000
31 19.0000000

random_beta
Generates pseudorandom numbers from a beta distribution.

Synopsis
#include <imsls.h>

float *imsls_f_random_beta (int n_random, float pin, float qin, ..., 0)

The type double function is imsls_d_random_beta.

566 •••• random_beta IMSL C/Stat/Library

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float pin (Input)
First beta distribution parameter. Argument pin must be positive.

float qin (Input)
Second beta distribution parameter. Argument qin must be positive.

Return Value
If no optional arguments are used, imsls_f_random_beta returns an array of
length n_random containing the random standard beta deviates. To release this
space, use free.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_beta (int n_random, float pin, float qin,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

Array of length n_random containing the random standard beta
deviates.

Description
Function imsls_f_random_beta generates pseudorandom numbers from a beta
distribution with parameters pin and qin, both of which must be positive. With
p = pin and q = qin, the probability density function is

f x
p q
p q

x x xp qb g b g
b g b g b g=

+
− ≤ ≤− −Γ

Γ Γ
1 11 0 1for

where Γ (⋅) is the gamma function.

The algorithm used depends on the values of p and q. Except for the trivial cases
of p = 1 or q = 1, in which the inverse CDF method is used, all of the methods use
acceptance/rejection. If p and q are both less than 1, the method of Jöhnk (1964)
is used. If either p or q is less than 1 and the other is greater than 1, the method of
Atkinson (1979) is used. If both p and q are greater than 1, algorithm BB (Cheng
1978), which requires very little setup time, is used if n_random is less than 4;
and algorithm B4PE of Schmeiser and Babu (1980) is used if n_random is
greater than or equal to 4. Note that for p and q both greater than 1, calling
imsls_f_random_beta in a loop getting less than four variates on each call will

Chapter 12: Random Number Generation random_cauchy •••• 567

not yield the same set of deviates as calling imsls_f_random_beta once and
getting all the deviates at once because two different algorithms are used.

The values returned in r are less than 1.0 and greater than ε, where ε is the
smallest positive number such that 1.0 − ε is less than 1.0.

Function imsls_random_seed_set can be used to initialize the seed of the
random number generator; function imsls_random_option can be used to
select the form of the generator.

Example
In this example, imsls_f_random_beta generates five pseudorandom beta
(3, 2) variates.

#include <imsls.h>

main()
{

int n_random = 5;
int seed = 123457;
float pin = 3.0;
float qin = 2.0;
float *r;

imsls_random_seed_set (seed);
r = imsls_f_random_beta (n_random, pin, qin, 0);
imsls_f_write_matrix("Beta (3,2) random deviates", 1, n_random,

r, 0);
}

Output

Beta (3,2) random deviates
1 2 3 4 5

0.2814 0.9483 0.3984 0.3103 0.8296

random_cauchy
Generates pseudorandom numbers from a Cauchy distribution.

Synopsis

#include <imsls.h>

float *imsls_f_random_cauchy (int n_random, ..., 0)

The type double function is imsls_d_random_cauchy.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

568 •••• random_cauchy IMSL C/Stat/Library

Return Value
An array of length n_random containing the random Cauchy deviates.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_cauchy (int n_random,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random Cauchy
deviates.

Description
Function imsls_f_random_cauchy generates pseudorandom numbers from a
Cauchy distribution. The probability density function is

f x S
S x T

b g b g
=

+ −π[]2 2

where T is the median and T − S is the first quartile. This function first generates
standard Cauchy random numbers (T = 0 and S = 1) using the technique described
below, and then scales the values using T and S.

Use of the inverse CDF technique would yield a Cauchy deviate from a uniform
(0, 1) deviate, u, as tan [π (u − 0.5)]. Rather than evaluating a tangent directly,
however, random_cauchy generates two uniform (−1, 1) deviates, x1 and x2.
These values can be thought of as sine and cosine values. If

x x1
2

2
2+

is less than or equal to 1, then x1/x2 is delivered as the unscaled Cauchy deviate;
otherwise, x1 and x2 are rejected and two new uniform (−1, 1) deviates are
generated. This method is also equivalent to taking the ration of two independent
normal deviates.

Example
In this example, imsls_f_random_cauchy generates five pseudorandom
Cauchy numbers. The generator used is a simple multiplicative congruential with
a multiplier of 16807.

#include <imsls.h>
#include <stdio.h>

void main()
{

Chapter 12: Random Number Generation random_chi_squared •••• 569

int n_random = 5;
float *r;

imsls_random_seed_set(123457);
r = imsls_f_random_cauchy(n_random, 0);
printf("Cauchy random deviates: %8.4f%8.4f%8.4f%8.4f%8.4f\n",

r[0], r[1], r[2], r[3], r[4]);

}

Output

Cauchy random deviates: 3.5765 0.9353 15.5797 2.0815 -0.1333

random_chi_squared
Generates pseudorandom numbers from a chi-squared distribution.

Synopsis

#include <imsls.h>

float *imsls_f_random_chi_squared (int n_random, float df, ..., 0)

The type double function is imsls_d_random_chi_squared.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float df (Input)
Degrees of freedom. Parameter df must be positive.

Return Value
An array of length n_random containing the random chi-squared deviates.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_chi_squared (int n_random, float df,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random chi-
squared deviates.

570 •••• random_chi_squared IMSL C/Stat/Library

Description
Function imsls_f_random_chi_squared generates pseudorandom numbers
from a chi-squared distribution with df degrees of freedom. If df is an even
integer less than 17, the chi-squared deviate r is generated as

r ui
i

n

= −
F
HG
I
KJ=

∏2
1

ln

where n = df/2 and the ui are independent random deviates from a uniform (0, 1)
distribution. If df is an odd integer less than 17, the chi-squared deviate is
generated in the same way, except the square of a normal deviate is added to the
expression above. If df is is greater than 16 or is not an integer, and if it is not too
large to cause overflow in the gamma random number generator, the chi-squared
deviate is generated as a special case of a gamma deviate, using function
imsls_f_random_gamma (page 574). If overflow would occur in
imsls_f_random_gamma, the chi-squared deviate is generated in the manner
described above, using the logarithm of the product of uniforms, but scaling the
quantities to prevent underflow and overflow.

Example
In this example, imsls_f_random_chi_squared generates five pseudorandom
chi-squared deviates with five degrees of freedom.

#include <imsls.h>
#include <stdio.h>

void main()
{

int n_random = 5;
float df = 5.0;
float *r;

imsls_random_seed_set(123457);
r = imsls_f_random_chi_squared(n_random, df, 0);
imsls_f_write_matrix("Chi-Squared random deviates: ",

1, n_random, r, IMSLS_NO_COL_LABELS, 0);

}

Output

Chi-Squared random deviates:
12.09 0.48 1.80 14.87 1.75

Chapter 12: Random Number Generation random_exponential •••• 571

random_exponential
Generates pseudorandom numbers from a standard exponential distribution.

Synopsis
#include <imsls.h>

float *imsls_f_random_exponential (int n_random, ..., 0)

The type double function is imsls_d_random_exponential.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

Return Value
An array of length n_random containing the random standard exponential
deviates.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_exponential (int n_random,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random standard
exponential deviates.

Description
Function imsls_f_random_exponential generates pseudorandom numbers
from a standard exponential distribution. The probability density function is
f (x) = e-x, for x > 0. Function imsls_f_random_exponential uses an
antithetic inverse CDF technique; that is, a uniform random deviate U is
generated, and the inverse of the exponential cumulative distribution function is
evaluated at 1.0 − U to yield the exponential deviate.

Deviates from the exponential distribution with mean θ can be generated by using
imsls_f_random_exponential and then multiplying each entry in r by θ.

Example
In this example, imsls_f_random_exponential generates five pseudorandom
deviates from a standard exponential distribution.

572 •••• random_exponential_mix IMSL C/Stat/Library

#include <imsls.h>

#define N_RANDOM 5

main()

{
int seed = 123457;
int n_random = N_RANDOM;
float *r;

imsls_random_seed_set(seed);
r = imsls_f_random_exponential(n_random, 0);
printf("%s: %8.4f%8.4f%8.4f%8.4f\n",

"Exponential random deviates",
r[0], r[1], r[2], r[3], r[4]);

}

Output

Exponential random deviates: 0.0344 1.3443 0.2662 0.5633

random_exponential_mix
Generates pseudorandom numbers from a mixture of two exponential
distributions.

Synopsis

#include <imsls.h>

float *imsls_f_random_exponential_mix (int n_random, float theta1,
float theta2, float p, ..., 0)

The type double function is imsls_d_random_exponential_mix.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float theta1 (Input)
Mean of the exponential distribution which has the larger mean.

float theta2 (Input)
Mean of the exponential distribution which has the smaller mean.
Parameter theta2 must be positive and less than or equal to theta1.

float p (Input)
Mixing parameter. Parameter p must be non-negative and less than or
equal to theta1/(theta1 − theta2).

Chapter 12: Random Number Generation random_exponential_mix •••• 573

Return Value
An array of length n_random containing the random deviates of a mixture of two
exponential distributions.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_exponential_mix (int n_random, float theta1,
float theta2, float p,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random
deviates.

Description
Function imsls_f_random_exponential_mix generates pseudorandom
numbers from a mixture of two exponential distributions. The probability density
function is

f x p e p ex xb g = + −− −

θ θ
θ θ

1 2

1 2
1/ /

for x > 0, where p = p, θ1 = theta1, and θ2 = theta2.

In the case of a convex mixture, that is, the case 0 < p < 1, the mixing parameter p
is interpretable as a probability; and imsls_f_random_exponential_mixed
with probability p generates an exponential deviate with mean θ1, and with
probability 1 − p generates an exponential with mean θ2. When p is greater than
1, but less than θ1/(θ1 − θ2), then either an exponential deviate with mean θ1 or
the sum of two exponentials with means θ1 and θ2 is generated. The probabilities
are q = p − (p − 1) (θ1/θ2) and 1 − q, respectively, for the single exponential and
the sum of the two exponentials.

Example
In this example, imsls_f_random_exponential_mix is used to generate five
pseudorandom deviates from a mixture of exponentials with means 2 and 1,
respecctively, and with mixing parameter 0.5.

#include <imsls.h>
#include <stdio.h>

void main()
{

int n_random = 5;
float theta1 = 2.0;

574 •••• random_gamma IMSL C/Stat/Library

float theta2 = 1.0;
float p = 0.5;
float *r;

imsls_random_seed_set(123457);
r = imsls_f_random_exponential_mix(n_random, theta1, theta2, p, 0);
imsls_f_write_matrix("Mixed exponential random deviates: ",

1, n_random, r, IMSLS_NO_COL_LABELS, 0);

}

Output

Mixed exponential random deviates:
0.070 1.302 0.630 1.976 0.372

random_gamma
Generates pseudorandom numbers from a standard gamma distribution.

Synopsis
#include <imsls.h>

float *imsls_f_random_gamma (int n_random, float a, ..., 0)

The type double function is imsls_d_random_gamma.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float a (Input)
Shape parameter of the gamma distribution. This parameter must be
positive.

Return Value
An array of length n_random containing the random standard gamma deviates.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_gamma (int n_random, float a,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_USER_RETURN, float r[] (Output)

User-supplied array of length n_random containing the random standard
gamma deviates.

Chapter 12: Random Number Generation random_gamma •••• 575

Description
Function imsls_f_random_gamma generates pseudorandom numbers from a
gamma distribution with shape parameter a and unit scale parameter. The
probability density function is

f x
a

x e xa xb g b g= ≥− −1 01

Γ
for

Various computational algorithms are used depending on the value of the shape
parameter a. For the special case of a = 0.5, squared and halved normal deviates
are used; for the special case of a = 1.0, exponential deviates are generated.
Otherwise, if a is less than 1.0, an acceptance-rejection method due to Ahrens,
described in Ahrens and Dieter (1974), is used. If a is greater than 1.0, a ten-
region rejection procedure developed by Schmeiser and Lal (1980) is used.

Deviates from the two-parameter gamma distribution with shape parameter a and
scale parameter b can be generated by using imsls_f_random_gamma and then
multiplying each entry in r by b. The following statements (in single precision)
would yield random deviates from a gamma (a, b) distribution.
float *r;

r = imsls_f_random_gamma(n_random, a, 0);
for (i=0; i<n_random; i++) *(r+i) *= b;

The Erlang distribution is a standard gamma distribution with the shape parameter
having a value equal to a positive integer; hence, imsls_f_random_gamma
generates pseudorandom deviates from an Erlang distribution with no
modifications required.

Function imsls_random_seed_set can be used to initialize the seed of the
random number generator; function imsls_random_option can be used to
select the form of the generator.

Example
In this example, imsls_f_random_gamma generates five pseudorandom
deviates from a gamma (Erlang) distribution with shape parameter equal to 3.0.

#include <imsls.h>

void main()
{

int seed = 123457;
int n_random = 5;
float a = 3.0;
float *r;

imsls_random_seed_set(seed);
r = imsls_f_random_gamma(n_random, a, 0);
imsls_f_write_matrix("Gamma(3) random deviates", 1, n_random, r, 0);

}

576 •••• random_lognormal IMSL C/Stat/Library

Output

Gamma(3) random deviates
1 2 3 4 5

6.843 3.445 1.853 3.999 0.779

random_lognormal
Generates pseudorandom numbers from a lognormal distribution.

Synopsis

#include <imsls.h>

float *imsls_f_random_lognormal (int n_random, float mean,
float std, ..., 0)

The type double function is imsls_d_random_lognormal.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float mean (Input)
Mean of the underlying normal distribution.

float std (Input)
Standard deviation of the underlying normal distribution.

Return Value
An array of length n_random containing the random deviates of a lognormal
distribution. The log of each element of the vector has a normal distribution with
mean mean and standard deviation std.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_lognormal (int n_random, float mean,
float std,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random
lognormal deviates.

Chapter 12: Random Number Generation random_normal •••• 577

Description
Function imsls_f_random_lognormal generates pseudorandom numbers from
a lognormal distribution with parameters mean and std. The scale parameter in
the underlying normal distribution, std, must be positive. The method is to
generate normal deviates with mean mean and standard deviation std and then to
exponentiate the normal deviates.

With µ = mean and σ = std, the probability density function for the lognormal
distribution is

f x
x

xb g b g= − −L
NM

O
QP

1
2

1
2 2

2

σ π σ
µexp ln

for x > 0. The mean and variance of the lognormal distribution are exp (µ + σ2/2)
and exp (2µ + 2σ2) − exp (2µ + σ2), respectively.

Example
In this example, imsls_f_random_lognormal is used to generate five
pseudorandom lognormal deviates with a mean of 0 and standard deviation of 1.

#include <stdio.h>
#include <imsls.h>

void main()
{

int n_random = 5;
float mean = 0.0;
float std = 1.0;
float *r;

imsls_random_seed_set(123457);
r = imsls_f_random_lognormal(n_random, mean, std, 0);
imsls_f_write_matrix("lognormal random deviates:",

1, n_random, r, IMSLS_NO_COL_LABELS, 0);
}

Output

lognormal random deviates:
7.780 2.954 1.086 3.588 0.293

random_normal
Generates pseudorandom numbers from a normal, N (µ, σ2), distribution.

Synopsis

#include <imsls.h>

float *imsls_f_random_normal (int n_random, ..., 0)

The type double function is imsls_d_random_normal.

578 •••• random_normal IMSL C/Stat/Library

Required Arguments

int n_random (Input)
Number of random numbers to generate.

Return Value
An array of length n_random containing the random normal deviates.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_normal (int n_random,
IMSLS_MEAN, float mean,
IMSLS_VARIANCE, float variance,
IMSLS_ACCEPT_REJECT_METHOD,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_MEAN, float mean (Input)

Parameter mean contains the mean, µ, of the N(µ, σ2) from which
random normal deviates are to be generated.
Default: mean = 0.0

IMSLS_VARIANCE, float variance (Input)
Parameter variance contains the variance of the N (µ, σ2) from which
random normal deviates are to be generated.
Default: variance = 1.0

IMSLS_ACCEPT_REJECT_METHOD

By default, random numbers are generated using an inverse CDF
technique. When optional argument IMSLS_ACCEPT_REJECT_METHOD
is specified, an acceptance/ rejection method is used instead. See the
�Description� section for details about each method.

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the generated
random standard normal deviates.

Description
By default, function imsls_f_random_normal generates pseudorandom
numbers from a normal (Gaussian) distribution using an inverse CDF technique.
In this method, a uniform (0, 1) random deviate is generated. The inverse of the
normal distribution function is then evaluated at that point, using the function
imsls_f_normal_inverse_cdf (Chapter 11).

If optional argument IMSLS_ACCEPT_REJECT_METHOD is specified, function
imsls_f_random_normal generates pseudorandom numbers using an

Chapter 12: Random Number Generation random_stable •••• 579

acceptance/rejection technique due to Kinderman and Ramage (1976). In this
method, the normal density is represented as a mixture of densities over which a
variety of acceptance/rejection method due to Marsaglia (1964), Marsaglia and
Bray (1964), and Marsaglia et al. (1964) are applied. This method is faster than
the inverse CDF technique.

Remarks
Function imsls_random_seed_set can be used to initialize the seed of the
random number generator; function imsls_random_option can be used to
select the form of the generator.

Example
In this example, imsls_f_random_normal generates five pseudorandom
deviates from a standard normal distribution.

#include <imsls.h>

#define N_RANDOM 5

void main()
{

int seed = 123457;
int n_random = N_RANDOM;
float *r;

imsls_random_seed_set (seed);
r = imsls_f_random_normal(n_random, 0);
printf("%s:\n%8.4f%8.4f%8.4f%8.4f%8.4f\n",

"Standard normal random deviates",
r[0], r[1], r[2], r[3], r[4]);

}

Output

Standard normal random deviates:
1.8279 -0.6412 0.7266 0.1747 1.0145
1.8280

random_stable
Generates pseudorandom numbers from a stable distribution.

Synopsis
#include <imsls.h>

float *imsls_f_random_stable (int n_random, float alpha,
float bprime, ..., 0)

The type double function is imsls_d_random_stable.

580 •••• random_stable IMSL C/Stat/Library

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float alpha (Input)
Characteristic exponent of the stable distribution. This parameter must
be positive and less than or equal to 2.

float bprime (Input)
Skewness parameter of the stable distribution. When bprime = 0, the
distribution is symmetric. Unless alpha = 1, bprime is not the usual
skewness parameter of the stable distribution. bprime must be greater
than or equal to − 1 and less than or equal to 1.

Return Value
An integer array of length n_random containing the random deviates. To release
this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_binomial (int n_random, float alpha,
float bprime,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random
deviates.

Description
Function imsls_f_random_stable generates pseudorandom numbers from a
stable distribution with parameters alpha and bprime. alpha is the usual
characteristic exponent parameter α and bprime is related to the usual skewness
parameter β of the stable distribution. With the restrictions 0 < α ≤ 2
and − 1 ≤ β ≤ 1, the characteristic function of the distribution is

ϕ(t) = exp[−| t |� exp(−πiβ(1 − |1 − α|)sign(t)/2)] for α ≠ 1

and

ϕ(t) = exp[−| t |(1 + 2iβ ln| t |)sign(t)/π)] for α = 1

When β = 0, the distribution is symmetric. In this case, if α = 2, the distribution is
normal with mean 0 and variance 2; and if α = 1, the distribution is Cauchy.

Chapter 12: Random Number Generation random_student_t •••• 581

The parameterization using bprime and the algorithm used here are due to
Chambers, Mallows, and Stuck (1976). The relationship between bprime = β′
and the standard β is

β′ = −tan(π(1 − α)/2) tan(−πβ(1 − |1 − α|)/2) for α ≠ 1

and

β′ = β for α = 1

The algorithm involves formation of the ratio of a uniform and an exponential
random variate.

Example
In this example, imsls_f_random_stable is used to generate five
pseudorandom symmetric stable variates with characteristic exponent 1.5. The
tails of this distribution are heavier than those of a normal distribution, but not so
heavy as those of a Cauchy distribution. The variance of this distribution does not
exist, however. (This is the case for any stable distribution with characteristic
exponent less than 2.)

#include <stdio.h>
#include <imsls.h>

void main()
{

int nr = 5;
float alpha = 1.5, bprime = 0.0, *r;

imsls_random_seed_set(123457);

r = imsls_f_random_stable(nr, alpha, bprime, 0);
imsls_f_write_matrix("Stable random deviates", 5, 1, r,

IMSLS_NO_ROW_LABELS, 0);

}

Output
Stable random deviates

4.409
1.056
2.546
5.672
2.166

random_student_t
Generates pseudorandom numbers from a Student�s t distribution.

Synopsis

#include <imsls.h>

582 •••• random_student_t IMSL C/Stat/Library

float *imsls_f_random_student_t (int n_random, float df, ..., 0)

The type double function is imsls_d_random_student_t.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float df (Input)
Degrees of freedom. Parameter df must be positive.

Return Value
An array of length n_random containing the random deviates of a Student�s t
distribution.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_student_t (int n_random, float df,
IMSLS_RETURN_USER, float r[],
IMSLS_MEAN, float mean,
IMSLS_VARIANCE, float variance,
0)

Optional Arguments
IMSLS_MEAN, float mean (Input)

Mean of the Student�s t distribution.
Default: mean = 0.0

IMSLS_VARIANCE, float variance (Input)
Variance of the Student�s t distribution.
Default: variance = 1.0

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the random
Student�s t deviates.

Description
Function imsls_f_random_student_t generates pseudorandom numbers from
a Student�s t distribution with df degrees of freedom, using a method suggested
by Kinderman et al. (1977). The method (�TMX� in the reference) involves a
representation of the t density as the sum of a triangular density over (−2, 2) and
the difference of this and the t density. The mixing probabilities depend on the
degrees of freedom of the t distribution. If the triangular density is chosen, the
variate is generated as the sum of two uniforms; otherwise, an
acceptance/rejection method is used to generate the difference density.

Chapter 12: Random Number Generation random_triangular •••• 583

random_triangular
Generates pseudorandom numbers from a triangular distribution on the interval
(0, 1).

Synopsis

#include <imsls.h>

float *imsls_f_random_triangular (int n_random, ..., 0)

The type double function is imsls_d_random_triangular.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

Return Value
An array of length n_random containing the random deviates of a triangular
distribution.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_triangular (int n_random,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random
triangular deviates.

Description
Function imsls_f_random_triangular generates pseudorandom numbers
from a triangular distribution over the unit interval. The probability density
function is f (x) = 4x, for 0 ≤ x ≤ 0.5, and f (x) = 4 (1 − x), for 0.5 < x ≤ 1. An
inverse CDF technique is used.

Example
In this example, imsls_f_random_triangular is used to generate five
pseudorandom deviates from a triangular distribution.

#include <stdio.h>
#include <imsls.h>

584 •••• random_uniform IMSL C/Stat/Library

void main()
{

int n_random = 5;
float *r;

imsls_random_seed_set(123457);
r = imsls_f_random_triangular(n_random, 0);
imsls_f_write_matrix("Triangular random deviates:",

1, n_random, r, IMSLS_NO_COL_LABELS, 0);
}

Output

Triangular random deviates:
0.8700 0.3610 0.6581 0.5360 0.7215

random_uniform
Generates pseudorandom numbers from a uniform (0, 1) distribution.

Synopsis
#include <imsls.h>

float *imsls_f_random_uniform (int n_random, …, 0)

The type double function is imsls_d_random_uniform.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

Return Value
An array of length n_random containing the random uniform (0, 1) deviates.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_uniform (int n_random,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random uniform
(0, 1) deviates.

Chapter 12: Random Number Generation random_uniform •••• 585

Description
Function imsls_f_random_uniform generates pseudorandom numbers from a
uniform (0, 1) distribution using a multiplicative congruential method. The form
of the generator is as follows:

xi ≡ cxi-1mod (231 − 1)

Each xi is then scaled into the unit interval (0, 1). The possible values for c in the
generators are 16807, 397204094, and 950706376. The selection is made by the
function imsls_random_option. The choice of 16807 will result in the fastest
execution time. If no selection is made explicitly, the functions use the multiplier
16807.

Function imsls_random_seed_set can be used to initialize the seed of the
random number generator; function imsls_random_option can be used to
select the form of the generator.

The user can select a shuffled version of these generators. In this scheme, a table
is filled with the first 128 uniform (0, 1) numbers resulting from the simple
multiplicative congruential generator. Then, for each xi from the simple generator,
the low-order bits of xi are used to select a random integer, j, from 1 to 128. The
j-th entry in the table is then delivered as the random number, and xi, after being
scaled into the unit interval, is inserted into the j-th position in the table.

The values returned by imsls_f_random_uniform are positive and less than
1.0. However, some values returned may be smaller than the smallest relative
spacing; hence, it may be the case that some value, for example r [i], is such that
1.0 − r [i] = 1.0.

Deviates from the distribution with uniform density over the interval (a, b) can be
obtained by scaling the output from imsls_f_random_uniform. The following
statements (in single precision) would yield random deviates from a uniform
(a, b) distribution.
float *r;
r = imsls_f_random_uniform (n_random, 0);
for (i=0; i<n_random; i++) r[i] = r[i]*(b-a) + a;

Example
In this example, imsls_f_random_uniform generates five pseudorandom
uniform numbers. Since function imsls_random_option is not called, the
generator used is a simple multiplicative congruential one with a multiplier of
16807.

#include <imsls.h>
#include <stdio.h>

#define N_RANDOM 5

void main()
{

float *r;

586 •••• random_von_mises IMSL C/Stat/Library

imsls_random_seed_set(123457);

r = imsls_f_random_uniform(N_RANDOM, 0);

printf("Uniform random deviates: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
r[0], r[1], r[2], r[3], r[4]);

}

Output

Uniform random deviates: 0.9662 0.2607 0.7663 0.5693 0.8448

random_von_mises
Generates pseudorandom numbers from a von mises distribution.

Synopsis

#include <imsls.h>

float *imsls_f_random_von_mises (int n_random, float c, …, 0)

The type double function is imsls_d_random_von_mises.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float c (Input)
Parameter of the von Mises distribution. This parameter must be greater
than one-half of machine epsilon (On many machines, the lower bound
for c is 10-3).

Return Value
An array of length n_random containing the random deviates of a von Mises
distribution.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_von_mises (int n_random, float c,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random von
mises deviates.

Chapter 12: Random Number Generation random_weibull •••• 587

Description
Function imsls_f_random_von_mises generates pseudorandom numbers from
a von Mises distribution with parameter c, which must be positive. With c = c,
the probability density function is

f x
I c

c xb g b g b g= 1
2 0π

exp cos

for −π < x < π, where I0 (c) is the modified Bessel function of the first kind of
order 0. The probability density is equal to 0 outside the interval (−π, π).

The algorithm is an acceptance/rejection method using a wrapped Cauchy
distribution as the majorizing distribution. It is due to Nest and Fisher (1979).

Example
In this example, imsls_f_random_von_mises is used to generate five
pseudorandom von Mises variates with c = 1.

#include <stdio.h>
#include <imsls.h>

void main()
{

int n_random = 5;
float c = 1.0;
float *r;

imsls_random_seed_set(123457);
r = imsls_f_random_von_mises(n_random, c, 0);
imsls_f_write_matrix("Von Mises random deviates:",

1, n_random, r, IMSLS_NO_COL_LABELS, 0);
}

Output

Von Mises random deviates:
0.247 -2.433 -1.022 -2.172 -0.503

random_weibull
Generates pseudorandom numbers from a Weibull distribution.

Synopsis

#include <imsls.h>

float *imsls_f_random_weibull (int n_random, float a, …, 0)
The type double function is imsls_d_random_weibull.

588 •••• random_weibull IMSL C/Stat/Library

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float a (Input)
Shape parameter of the Weibull distribution. This parameter must be
positive.

Return Value
An array of length n_random containing the random deviates of a Weibull
distribution.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_weibull (int n_random, float a,
IMSLS_B, float b,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_B, float b (Input)

Scale parameter of the two parameter Weibull distribution.
Default: b = 1.0

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the random Weibull
deviates.

Description
Function imsls_f_random_weibull generates pseudorandom numbers from a
Weibull distribution with shape parameter a and scale parameter b. The
probability density function is

f x abx bxa ab g e j= −−1 exp

for x ≥ 0, a > 0, and b > 0. Function imsls_f_random_weibull uses an
antithetic inverse CDF technique to generate a Weibull variate; that is, a uniform
random deviate U is generated and the inverse of the Weibull cumulative
distribution function is evaluated at 1.0 − U to yield the Weibull deviate.

Note that the Rayleigh distribution with probability density function

r x xe
xb g e je j=

−1
2

22 2

α
α/

Chapter 12: Random Number Generation random_general_continuous •••• 589

for x ≥ 0 is the same as a Weibull distribution with shape parameter a equal to 2
and scale parameter b equal to

2α

Example
In this example, imsls_f_random_weibull is used to generate five
pseudorandom deviates from a two-parameter Weibull distribution with shape
parameter equal to 2.0 and scale parameter equal to 6.0�a Rayleigh distribution
with the following parameter:

α = 3 2

#include <stdio.h>
#include <imsls.h>

void main()
{

int n_random = 5;
float a = 3.0;
float *r;

imsls_random_seed_set(123457);
r = imsls_f_random_weibull(n_random, a, 0);
imsls_f_write_matrix("Weibull random deviates:",

1, n_random, r, IMSLS_NO_COL_LABELS, 0);
}

Output

Weibull random deviates:
0.325 1.104 0.643 0.826 0.552

Warning Errors
IMSLS_SMALL_A The shape parameter is so small that a relatively

large proportion of the values of deviates from
the Weibull cannot be represented.

random_general_continuous
Generates pseudorandom numbers from a general continuous distribution.

Synopsis
#include <imsls.h>

float *imsls_f_random_general_continuous (int n_random, int ndata,
float table[],..., 0)

The type double function is imsls_d_random_general_continuous.

590 •••• random_general_continuous IMSL C/Stat/Library

Required Arguments

int n_random (Input)
Number of random numbers to generate.

int ndata (Input)
Number of points at which the CDF is evaluated for interpolation.
ndata must be greater than or equal to 4.

float *table (Input/Ouput)
ndata by 5 table to be used for interpolation of the cumulative
distribution function.
The first column of table contains abscissas of the cumulative
distribution function in ascending order, the second column contains the
values of the CDF (which must be strictly increasing beginning with 0.0
and ending at 1.0) and the remaining columns contain values used in
interpolation. This table is set up using routine
imsls_f_continous_table_setup (page 592).

Return Value
An array of length n_random containing the random discrete deviates. To release
this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>

int *imsls_f_random_general_continuous (int n_random, int ndata,
float table[],
IMSLS_TABLE_COL_DIM, int table_col_dim,
IMSLS_RETURN_USER, float r[],
 0)

Optional Arguments
IMSLS_TABLE_COL_DIM, int table_col_dim (Intput)

Column dimension of the matrix table.
Default: table_col_dim = 5

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the random
continuous deviates.

Description
Routine imsls_f_random_general_continuous generates pseudorandom
numbers from a continuous distribution using the inverse CDF technique, by
interpolation of points of the distribution function given in table, which is set up
by routine imsls_f_continuous_table_setup (page 592). A strictly
monotone increasing distribution function is assumed. The interpolation is by an

Chapter 12: Random Number Generation random_general_continuous •••• 591

algorithm attributable to Akima (1970), using piecewise cubics. The use of this
technique for generation of random numbers is due to Guerra, Tapia, and
Thompson (1976), who give a description of the algorithm and accuracy
comparisons between this method and linear interpolation. The relative errors
using the Akima interpolation are generally considered very good.

Example 1
In this example, imsls_f_continuous_table_setup (page 592) is used to
set up a table for generation of beta pseudorandom deviates. The CDF for this
distribution is computed by the routine imsls_f_beta_cdf (Chapter 11,
Probability Distribution Functions and Inverses). The table contains 100 points at
which the CDF is evaluated and that are used for interpolation.

#include <stdio.h>
#include <imsls.h>

float cdf(float);
void main()
{

int i, iopt=0, ndata= 100;
float table[100][5], x = 0.0, *r;

for (i=0;i<ndata;i++) {
table[i][0] = x;
x += .01;

}

imsls_f_continuous_table_setup(cdf, iopt, ndata, (float*)table);

imsls_random_seed_set(123457);
r = imsls_f_random_general_continuous (5, ndata, table, 0);
imsls_f_write_matrix("Beta (3, 2) random deviates", 5, 1, r, 0);

}

float cdf(float x)
{

return imsls_f_beta_cdf(x, 3., 2.);
}

Output
*** WARNING Error from imsls_f_continuous_table_setup. The values of the
*** CDF in the second column of table did not begin at 0.0 and end
*** at 1.0, but they have been adjusted. Prior to adjustment,
*** table[0][1] = 0.000000e+00 and table[ndata-1][1]= 9.994079e-01.

Beta (3, 2) random deviates
1 0.9208
2 0.4641
3 0.7668
4 0.6536
5 0.8171

592 •••• continuous_table_setup IMSL C/Stat/Library

continuous_table_setup
Sets up table to generate pseudorandom numbers from a general continuous
distribution.

Synopsis
#include <imsls.h>

void imsls_f_continuous_table_setup (float cdf(), int iopt, int
ndata, float *table, ..., 0)

The type double function is imsls_d_continuous_table_setup.

Required Arguments

float cdf(float x) (Input)
User-supplied function to compute the cumulative distribution function.
The argument to the function is the point at which the distribution
function is to be evaluated

int iopt (Input)
Indicator of the extent to which table is initialized prior to calling
imsls_f_continuous_table_setup.

iopt Action
0 imsls_f_continuous_table_setup fills the last four

columns of table. The user inputs the points at which the CDF
is to be evaluated in the first column of table. These must be
in ascending order.

1 imsls_f_continuous_table_setup fills the last three
columns of table. The user supplied function cdf is not used
and may be a dummy function; instead, the cumulative
distribution function is specified in the first two columns of
table. The abscissas (in the first column) must be in ascending
order and the function must be strictly monotonically
increasing.

int ndata (Input)
Number of points at which the CDF is evaluated for interpolation.
ndata must be greater than or equal to 4.

float *table (Input/Ouput)
ndata by 5 table to be used for interpolation of the cumulative
distribution function.
The first column of table contains abscissas of the cumulative
distribution function in ascending order, the second column contains the
values of the CDF (which must be strictly increasing), and the remaining
columns contain values used in interpolation. The first row of table
corresponds to the left limit of the support of the distribution and the

Chapter 12: Random Number Generation continuous_table_setup •••• 593

last row corresponds to the right limit of the support; that is,
table[0][1] = 0.0 and table[ndata-1][1] = 1.0.

Synopsis with Optional Arguments
#include <imsls.h>

void imsls_f_continuous_table_setup (float cdf(), int iopt,
int ndata, float table[],
IMSLS_TABLE_COL_DIM,
 0)

Optional Arguments
IMSLS_TABLE_COL_DIM, int table_col_dim (Intput)

Column dimension of the array table.
Default: table_col_dim = 5

Description
Routine imsls_f_continuous_table_setup sets up a table that routine
imsls_f_random_general_continuous (page 589) can use to generate
pseudorandom deviates from a continuous distribution. The distribution is
specified by its cumulative distribution function, which can be supplied either in
tabular form in table or by a function cdf. See the documentation for the
routine imsls_f_random_general_continuous for a description of the
method.

Example 1
In this example, imsls_f_continuous_table_setup is used to set up a
table to generate pseudorandom variates from a beta distribution. This example
is continued in the documentation for routine
imsls_f_random_general_continuous (page 589) to generate the random
variates.

#include <stdio.h>
#include <imsls.h>

float cdf(float);
void main()
{

int i, iopt=0, ndata= 100;
float table[100][5], x = 0.0;

for (i=0;i<ndata;i++) {
table[i][0] = x;
x += .01;

}

imsls_f_continuous_table_setup(cdf, iopt, ndata, table);
printf("The first few values from the table:\n");

594 •••• random_normal_multivariate IMSL C/Stat/Library

for (i=0;i<10;i++) printf("%4.2f\t%8.4f\n", table[i][0], table[i][1]);

}

float cdf(float x)
{

return imsls_f_beta_cdf(x, 3., 2.);
}

Output

*** WARNING Error from imsls_f_continuous_table_setup. The values of the
*** CDF in the second column of table did not begin at 0.0 and end
*** at 1.0, but they have been adjusted. Prior to adjustment,
*** table[0][1] = 0.000000e+00 and table[ndata-1][1]= 9.994079e-01.

The first few values from the table:
0.00 0.0000
0.01 0.0000
0.02 0.0000
0.03 0.0001
0.04 0.0002
0.05 0.0005
0.06 0.0008
0.07 0.0013
0.08 0.0019
0.09 0.0027

random_normal_multivariate
Generates pseudorandom numbers from a multivariate normal distribution.

Synopsis
#include <imsls.h>

float *imsls_f_random_normal_multivariate (int n_vectors,
int length, float *covariances, …, 0)

The type double function is imsls_d_random_normal_multivariate.

Required Arguments

int n_vectors (Input)
Number of random multivariate normal vectors to generate.

int length (Input)
Length of the multivariate normal vectors.

float *covariances (Input)
Array of size length × length containing the variance-covariance
matrix.

Chapter 12: Random Number Generation random_normal_multivariate •••• 595

Return Value
An array of length n_vectors × length containing the random multivariate
normal vectors stored consecutively.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_normal_multivariate (int n_vectors,
int length, float *covariances,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_vectors × length containing the
random multivariate normal vectors stored consecutively.

Description
Function imsls_f_random_normal_multivariate generates pseudorandom
numbers from a multivariate normal distribution with mean vector consisting of
all zeros and variance-covariance matrix imsls_f_covariances. First, the
Cholesky factor of the variance-covariance matrix is computed. Then,
independent random normal deviates with mean 0 and variance 1 are generated,
and the matrix containing these deviates is postmultiplied by the Cholesky factor.
Because the Cholesky factorization is performed in each invocation, it is best to
generate as many random vectors as needed at once.

Deviates from a multivariate normal distribution with means other than 0 can be
generated by using imsls_f_random_normal_multivariate and then by
adding the vectors of means to each row of the result.

Example
In this example, imsls_f_random_normal_multivariate generates five
pseudorandom normal vectors of length 2 with variance-covariance matrix equal
to the following:

0500 0 375
0 375 0500
. .
. .
L
NM

O
QP

#include <imsls.h>

void main()
{

int n_vectors = 5;
int length = 2;
float covariances[] = {.5, .375, .375, .5};
float *random;

596 •••• random_orthogonal_matrix IMSL C/Stat/Library

imsls_random_seed_set (123457);
random = imsls_f_random_normal_multivariate (n_vectors, length,

covariances, 0);

imsls_f_write_matrix ("multivariate normal random deviates",
n_vectors, length, random, 0);

}

Output

multivariate normal random deviates
1 2

1 1.451 1.246
2 0.766 -0.043
3 0.058 -0.669
4 0.903 0.463
5 -0.867 -0.933

random_orthogonal_matrix
Generates a pseudorandom orthogonal matrix or a correlation matrix.

Synopsis
#include <imsls.h>

float *imsls_f_random_orthogonal_matrix (int n, ..., 0)

The type double function is imsls_d_random_orthogonal_matrix.

Required Arguments

int n (Input)
The order of the matrix to be generated.

Return Value
n by n random orthogonal matrix. To release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_orthogonal_matrix (int n,
IMSLS_EIGENVALUES, float *eignevalues[],
IMSLS_A_MATRIX, float *a,
IMSLS_A_COL_DIM, int a_col_dim,
IMSLS_RETURN_USER, float r[],
 0)

Chapter 12: Random Number Generation random_orthogonal_matrix •••• 597

Optional Arguments
IMSLS_EIGENVALUES, float *eigenvalues (Input)

A vector of length n containing the eigenvalues of the correlation matrix
to be generated. The elements of eigenvalues must be positive, they
must sum to n, and they cannot all be equal.

IMSLS_A_MATRIX, float *a (Input)
n by n random orthogonal matrix. A random correlation matrix is
generated using the orthogonal matrix input in a. The option
IMSLS_EIGENVALUES must also be supplied if IMSLS_A_MATRIX is
used.

IMSLS_A_COL_DIM, int a_col_dim (Input)
Column dimension of the matrix a.
Default: a_col_dim = n

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n × n containing the random correlation
matrix.

Description
Routine imsls_f_random_orthogonal_matrix generates a pseudorandom
orthogonal matrix from the invariant Haar measure. For each column, a random
vector from a uniform distribution on a hypersphere is selected and then is
projected onto the orthogonal complement of the columns already formed. The
method is described by Heiberger (1978). (See also Tanner and Thisted 1982.)

If the optional argument IMSLS_EIGENVALUES is used, a correlation matrix is
formed by applying a sequence of planar rotations to the matrix AT DA, where
D = diag(eigenvalues[0], …, eigenvalues [n-1]), so as to yield ones along
the diagonal. The planar rotations are applied in such an order that in the two by
two matrix that determines the rotation, one diagonal element is less than 1.0 and
one is greater than 1.0. This method is discussed by Bendel and Mickey (1978)
and by Lin and Bendel (1985).

The distribution of the correlation matrices produced by this method is not
known. Bendel and Mickey (1978) and Johnson and Welch (1980) discuss the
distribution.

For larger matrices, rounding can become severe; and the double precision results
may differ significantly from single precision results.

Example
In this example, imsls_f_random_orthogonal_matrix is used to generate a
4 by 4 pseudorandom correlation matrix with eigenvalues in the ratio 1:2:3:4.

#include <stdio.h>
#include <imsls.h>

void main()

598 •••• random_mvar_from_data IMSL C/Stat/Library

{
int i, n = 4;
float *a, *cor;
float ev[] = {1., 2., 3., 4.};

for (i=0;i<4;i++) ev[i] = 4.*ev[i]/10.;

imsls_random_seed_set(123457);

a = imsls_f_random_orthogonal_matrix(n, 0);
imsls_f_write_matrix("Random orthogonal matrix",

4, 4, (float*)a, 0);

cor = imsls_f_random_orthogonal_matrix(n,
IMSLS_EIGENVALUES, ev,
IMSLS_A_MATRIX, a,
0);

imsls_f_write_matrix("Random correlation matrix",
4, 4, (float*)cor, 0);

}

Output

Random orthogonal matrix
1 2 3 4

1 -0.8804 -0.2417 0.4065 -0.0351
2 0.3088 -0.3002 0.5520 0.7141
3 -0.3500 0.5256 -0.3874 0.6717
4 -0.0841 -0.7584 -0.6165 0.1941

Random correlation matrix
1 2 3 4

1 1.000 -0.236 -0.326 -0.110
2 -0.236 1.000 0.191 -0.017
3 -0.326 0.191 1.000 -0.435
4 -0.110 -0.017 -0.435 1.000

random_mvar_from_data
Generates pseudorandom numbers from a multivariate distribution determined
from a given sample.

Synopsis
#include <imsls.h>

float *imsls_f_random_mvar_from_data (int n_random, int ndim, int
nsamp, float x[], int nn, ..., 0)

The type double function is imsls_d_random_mvar_from_data.

Chapter 12: Random Number Generation random_mvar_from_data •••• 599

Required Arguments

int n_random (Input)
Number of random multivariate vectors to generate.

int ndim (Input)
The length of the multivariate vectors, that is, the number of dimensions.

int nsamp (Input)
Number of given data points from the distribution to be simulated.

float x[] (Input)
Array of size nsamp × ndim matrix containing the given sample.

int nn (Input)
Number of nearest neighbors of the randomly selected point in x that are
used to form the output point in the result.

Return Value
n_random × ndim matrix containing the random multivariate vectors in its rows.
To release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>

float * imsls_f_random_mvar_from_data (int n_random, int ndim,
int nsamp, float x[], int nn,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_RETURN_USER, float r[],
 0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of the matrix x.
Default: x_col_dim = ndim

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random × ndim containing the random
correlation matrix.

Description
Given a sample of size n (= nsamp) of observations of a k-variate random
variable, imsls_f_random_mvar_from_data generates a pseudorandom
sample with approximately the same moments as the given sample. The sample
obtained is essentially the same as if sampling from a Gaussian kernel estimate of
the sample density. (See Thompson 1989.) Routine
imsls_f_random_mvar_from_data uses methods described by Taylor and
Thompson (1986).

600 •••• random_mvar_from_data IMSL C/Stat/Library

Assume that the (vector-valued) observations xi are in the rows of x. An
observation, xj, is chosen randomly; its nearest m (= nn) neighbors,

1 2
, ,...,

mj j jx x x

are determined; and the mean

 x j

of those nearest neighbors is calculated. Next, a random sample

u�, u�, …, um is generated from a uniform distribution with lower bound

1 3 1
2m

m
m

−
−b g

and upper bound

 1 3 1
2m

m
m

+
−b g

The random variate delivered is

u x x xl jl j
l

m

j− +
=
� d i

1

The process is then repeated until n_random such simulated variates are
generated and stored in the rows of the result.

Example
In this example, imsls_f_random_mvar_from_data is used to generate 5
pseudorandom vectors of length 4 using the initial and final systolic pressure and
the initial and final diastolic pressure from Data Set A in Afifi and Azen (1979)
as the fixed sample from the population to be modeled. (Values of these four
variables are in the seventh, tenth, twenty-first, and twenty-fourth columns of data
set number nine in routine imsls_f_data_sets, Chapter 14, Utilities.)

#include <stdio.h>
#include <imsls.h>

void main()
{

int i, nrrow, nrcol, nr = 5, k=4, nsamp = 113, nn = 5;
float x[113][4], rdata[113][34], *r;

imsls_random_seed_set(123457);

imsls_f_data_sets(9,
IMSLS_N_OBSERVATIONS, &nrrow,
IMSLS_N_VARIABLES, &nrcol,
IMSLS_RETURN_USER, rdata,

Chapter 12: Random Number Generation random_multinomial •••• 601

0);
for (i=0;i<nrrow;i++) x[i][0] = rdata[i][6];
for (i=0;i<nrrow;i++) x[i][1] = rdata[i][9];
for (i=0;i<nrrow;i++) x[i][2] = rdata[i][20];
for (i=0;i<nrrow;i++) x[i][3] = rdata[i][23];

r = imsls_f_random_mvar_from_data(nr, k, nsamp, x, nn, 0);
imsls_f_write_matrix("Random variates", 5, 4, r, 0);

}

Output

Random variates
1 2 3 4

1 162.8 90.5 153.7 104.9
2 153.4 78.3 176.7 85.2
3 93.7 48.2 153.5 71.4
4 101.8 54.2 113.1 56.3
5 91.7 58.8 48.4 28.1

random_multinomial
Generates pseudorandom numbers from a multinomial distribution.

Synopsis
#include <imsls.h>

int *imsls_random_multinomial (int n_random, int n, int k,
float p[], ..., 0)

Required Arguments

int n_random (Input)
Number of random multinomial vectors to generate.

int n (Input)
Multinomial parameter indicating the number of independent trials.

int k (Input)
The number of mutually exclusive outcomes on any trial. k is the length
of the multinomial vectors. k must be greater than or equal to 2.

float p[] (Input)
Vector of length k containing the probabilities of the possible outcomes.
The elements of p must be positive and must sum to 1.0.

Return Value
n_random by k matrix containing the random multinomial vectors in its rows.
To release this space, use free.

602 •••• random_multinomial IMSL C/Stat/Library

Synopsis with Optional Arguments
#include <imsls.h>

int *imsls_random_multinomial (int n_random, int n, int k,
float p[],
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random × k containing the random
deviates.

Description
Routine imsls_random_multinomial generates pseudorandom numbers from
a K-variate multinomial distribution with parameters n and p. k and n must be
positive. Each element of p must be positive and the elements must sum to 1. The
probability function (with n = n, k = k, and pi = p[i+1]) is

() 1 2
1 2 1 2

1 2

!, ,..., ...
! !... !

kxx x
k k

k

nf x x x p p p
x x x

=

for xi ≥ 0 and

x ni
i

k

=

−

� =
0

1

The deviate in each row of r is produced by generation of the binomial deviate x
�

with parameters n and pi and then by successive generations of the conditional
binomial deviates xj given x

�
, x

�
, �, xj-� with parameters n − x� − x� − � − xj-� and

pj /(1 − p
�
 − p

�
 − � − pj-�).

Example
In this example, imsls_random_multinomial is used to generate five
pseudorandom 3-dimensional multinomial variates with parameters n = 20 and
p = [0.1, 0.3, 0.6].

#include <stdio.h>
#include <imsls.h>

void main()
{

int nr = 5, n = 20, k = 3, *ir;
float p[3] = {.1, .3, .6};

imsls_random_seed_set(123457);

Chapter 12: Random Number Generation random_sphere •••• 603

ir = imsls_random_multinomial(nr, n, k, p, 0);

imsls_i_write_matrix("Multinomial random_deviates", 5, 3, ir,
IMSLS_NO_ROW_LABELS,
IMSLS_NO_COL_LABELS, 0);

}

Output
Multinomial random_deviates

5 4 11
3 6 11
3 3 14
5 5 10
4 5 11

random_sphere
Generates pseudorandom points on a unit circle or K-dimensional sphere

Synopsis
#include <imsls.h>

float *imsls_f_random_sphere (int n_random, int k,..., 0)

The type double function is imsls_d_random_sphere.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

int k (Input)
Dimension of the circle (k = 2) or of the sphere.

Return Value
n_random by k matrix containing the random Cartesian coordinates on the unit
circle or sphere. To release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_sphere (int n_random, int k,
IMSLS_RETURN_USER, float r[],
 0)

604 •••• random_sphere IMSL C/Stat/Library

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of size n_random by k containing the random
Cartesian coordinates on the unit circle or sphere.

Description
Routine imsls_f_random_sphere generates pseudorandom coordinates of
points that lie on a unit circle or a unit sphere in K-dimensional space. For points
on a circle (k = 2), pairs of uniform (− 1, 1) points are generated and accepted
only if they fall within the unit circle (the sum of their squares is less than 1), in
which case they are scaled so as to lie on the circle.

For spheres in three or four dimensions, the algorithms of Marsaglia (1972) are
used. For three dimensions, two independent uniform (− 1, 1) deviates U� and U�

are generated and accepted only if the sum of their squares S� is less than 1. Then,
the coordinates

Z U S Z U S Z S1 1 1 2 2 1 3 12 1 2 1 1 2= − = − = −, ,and

are formed. For four dimensions, U�, U�, and S� are produced as described above.
Similarly, U�, U�, and S� are formed. The coordinates are then

Z U Z U Z U S S1 1 2 2 3 3 1 21= = = −, , /b g
and

Z U S S4 4 1 21= −b g /
For spheres in higher dimensions, K independent normal deviates are generated
and scaled so as to lie on the unit sphere in the manner suggested by Muller
(1959).

Example
In this example, imsls_f_random_sphere is used to generate two uniform
random deviates from the surface of the unit sphere in three space.

#include <stdio.h>
#include <imsls.h>

void main()
{

int n_random = 2;
int k = 3;
float *z;
char *rlabel[] = {"First point",

"Second point"};

imsls_random_seed_set(123457);

z = imsls_f_random_sphere(n_random, k, 0);

Chapter 12: Random Number Generation random_table_twoway •••• 605

imsls_f_write_matrix("Coordinates", n_random, k, z,
IMSLS_ROW_LABELS, rlabel,
IMSLS_NO_COL_LABELS,
0);

}

Output

Coordinates
First point 0.8893 0.2316 0.3944
Second point 0.1901 0.0396 -0.9810

random_table_twoway
Generates a pseudorandom two-way table.

Synopsis
#include <imsls.h>

int *imsls_random_table_twoway (int nrow, int ncol, int nrtot[],
int nctot[],..., 0)

Required Arguments

int nrow (Input)
Number of rows in the table.

int ncol (Input)
Number of columns in the table.

int nrtot[] (Input)
Array of length nrow containing the row totals.

int nctot[] (Input)
Array of length ncol containing the column totals. (Input)
The elements of nrtot and nctot must be nonnegative and must sum
to the same quantity.

Return Value
nrow by ncol random matrix with the given row and column totals. To release
this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>

int *imsls_random_table_twoway (int nrow, int ncol, int nrtot[],
int nctot[],

606 •••• random_table_twoway IMSL C/Stat/Library

IMSLS_RETURN_USER, int ir[],
 0)

Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied array of size nrow by ncol containing the random matrix
with the given row and column totals.

Description
Routine imsls_random_table_twoway generates pseudorandom entries for a
two-way contingency table with fixed row and column totals. The method
depends on the size of the table and the total number of entries in the table. If the
total number of entries is less than twice the product of the number of rows and
columns, the method described by Boyette (1979) and by Agresti, Wackerly, and
Boyette (1979) is used. In this method, a work vector is filled with row indices so
that the number of times each index appears equals the given row total. This
vector is then randomly permuted and used to increment the entries in each row
so that the given row total is attained.

For tables with larger numbers of entries, the method of Patefield (1981) is used.
This method can be considerably faster in these cases. The method depends on
the conditional probability distribution of individual elements, given the entries in
the previous rows. The probabilities for the individual elements are computed
starting from their conditional means.

Example
In this example, imsls_random_table_twoway is used to generate a two by
three table with row totals 3 and 5, and column totals 2, 4, and 2.

#include <stdio.h>
#include <imsls.h>

void main()
{

int *itable, nrow = 2, ncol = 3;
int nrtot[2] = {3, 5};
int nctot[3] = {2, 4, 2};
char *title = "A random contingency table with fixed marginal totals";

imsls_random_seed_set(123457);

itable = imsls_random_table_twoway(nrow, ncol, nrtot, nctot, 0);

imsls_i_write_matrix(title, nrow, ncol, itable,
IMSLS_NO_ROW_LABELS,
IMSLS_NO_COL_LABELS,
0);

}

Chapter 12: Random Number Generation random_order_normal •••• 607

Output
A random contingency table with fixed marginal totals

0 2 1
2 2 1

random_order_normal
Generates pseudorandom order statistics from a standard normal distribution.

Synopsis
#include <imsls.h>

float *imsls_f_random_order_normal (int ifirst, int ilast, int n,...,
0)

The type double function is imsls_d_random_order_normal.

Required Arguments

int ifirst (Input)
First order statistic to generate.

int ilast (Input)
Last order statistic to generate.
ilast must be greater than or equal to ifirst. The full set of order
statistics from ifirst to ilast is generated. If only one order statistic
is desired, set ilast = ifirst.

int n (Input)
Size of the sample from which the order statistics arise.

Return Value
An array of length ilast + 1 − ifirst containing the random order statistics in
ascending order.
The first element is the ifirst order statistic in a random sample of size n from
the standard normal distribution. To release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_order_normal (int ifirst, int ilast, int n,
IMSLS_RETURN_USER, float r[],
 0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length ilast + 1 − ifirst containing the
random order statistics in ascending order.

608 •••• random_order_uniform IMSL C/Stat/Library

Description
Routine imsls_f_random_order_normal generates the ifirst through the
ilast order statistics from a pseudorandom sample of size N from a normal
(0, 1) distribution. Routine imsls_f_random_order_normal uses the routine
imsls_f_random_order_uniform (page 608) to generate order statistics
from the uniform (0, 1) distribution and then obtains the normal order statistics
using the inverse CDF transformation.

Each call to imsls_f_random_order_normal yields an independent event so
order statistics from different calls may not have the same order relations with
each other.

Example
In this example, imsls_f_random_order_normal is used to generate the
fifteenth through the nineteenth order statistics from a sample of size twenty.

#include <stdio.h>
#include <imsls.h>

void main()
{

float *r = NULL;

imsls_random_seed_set(123457);

r = imsls_f_random_order_normal(15, 19, 20, 0);

printf("The 15th through the 19th order statistics from a \n");
printf("random sample of size 20 from a normal distribution\n");
imsls_f_write_matrix("", 5, 1, r, 0);

}

Output
The 15th through the 19th order statistics from a
random sample of size 20 from a normal distribution

1 0.4056
2 0.4681
3 0.4697
4 0.9067
5 0.9362

random_order_uniform
Generates pseudorandom order statistics from a uniform (0, 1) distribution.

Synopsis
#include <imsls.h>

Chapter 12: Random Number Generation random_order_uniform •••• 609

float *imsls_f_random_order_uniform (int ifirst, int ilast,
int n,..., 0)

The type double function is imsls_d_random_order_uniform.

Required Arguments

int ifirst (Input)
First order statistic to generate.

int ilast (Input)
Last order statistic to generate.
ilast must be greater than or equal to ifirst. The full set of order
statistics from ifirst to ilast is generated. If only one order statistic
is desired, set ilast = ifirst.

int n (Input)
Size of the sample from which the order statistics arise.

Return Value
An array of length ilast + 1 − ifirst containing the random order statistics in
ascending order.
The first element is the ifirst order statistic in a random sample of size n from
the uniform (0, 1) distribution. To release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_order_uniform (int ifirst, int ilast, int n,
IMSLS_RETURN_USER, float r[],
 0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length ilast + 1 − ifirst containing the
random order statistics in ascending order.

Description
Routine imsls_f_random_order_uniform generates the ifirst through the
ilast order statistics from a pseudorandom sample of size n from a uniform
(0, 1) distribution. Depending on the values of ifirst and ilast, different
methods of generation are used to achieve greater efficiency. If ifirst = 1 and
ilast = n, that is, if the full set of order statistics are desired, the spacings
between successive order statistics are generated as ratios of exponential variates.
If the full set is not desired, a beta variate is generated for one of the order
statistics, and the others are generated as extreme order statistics from conditional

610 •••• random_arma IMSL C/Stat/Library

uniform distributions. Extreme order statistics from a uniform distribution can be
obtained by raising a uniform deviate to an appropriate power.

Each call to imsls_f_random_order_uniform yields an independent event.
This means, for example, that if on one call the fourth order statistic is requested
and on a second call the third order statistic is requested, the �fourth� may be
smaller than the �third�. If both the third and fourth order statistics from a given
sample are desired, they should be obtained from a single call to
imsls_f_random_order_uniform (by specifying ifirst less than or equal
to 3 and ilast greater than or equal to 4).

Example
In this example, imsls_f_random_order_uniform is used to generate the
fifteenth through the nineteenth order statistics from a sample of size twenty.

#include <stdio.h>
#include <imsls.h>

void main()
{

float *r = NULL;

imsls_random_seed_set(123457);

r = imsls_f_random_order_uniform(15, 19, 20, 0);

printf("The 15th through the 19th order statistics from a \n");
printf("random sample of size 20 from a uniform distribution\n");
imsls_f_write_matrix("", 5, 1, r, 0);

}

Output
The 15th through the 19th order statistics from a
random sample of size 20 from a uniform distribution

1 0.6575
2 0.6802
3 0.6807
4 0.8177
5 0.8254

random_arma
Generates a time series from a specific ARMA model.

Synopsis
#include <imsls.h>

Chapter 12: Random Number Generation random_arma •••• 611

float *imsls_f_random_arma (int n_observations, int p, float ar[],
int q, float ma[], ..., 0)

The type double function is imsls_d_random_arma.

Required Arguments

int n_observations (Input)
Number of observations to be generated. Parameter n_observations
must be greater than or equal to one.

int p (Input)
Number of autoregressive parameters. Paramater p must be greater than
or equal to zero.

float ar[] (Input)
Array of length p containing the autoregressive parameters.

int q (Input)
Number of moving average parameters. Parameter q must be greater
than or equal to zero.

float ma[] (Input)
Array of length q containing the moving average parameters.

Return Value
An array of length n_observations containing the generated time series.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_arma (int n_observations, int p, float ar[],
int q, float ma[],
IMSLS_ARMA_CONSTANT, float constant,
IMSLS_VAR_NOISE, float *a_variance,
IMSLS_INPUT_NOISE, float *a_input,
IMSLS_OUTPUT_NOISE, float **a_return,
IMSLS_OUTPUT_NOISE_USER, float a_return[],
IMSLS_NONZERO_ARLAGS, int *ar_lags,
IMSLS_NONZERO_MALAGS, int *ma_lags,
IMSLS_INITIAL_W, float *w_initial,
IMSLS_ACCEPT_REJECT_METHOD,
IMSLS_RETURN_USER, float w[],
0)

Optional Arguments
IMSLS_ARMA_CONSTANT, float constant (Input)

Overall constant. See �Description�.
Default: constant = 0

612 •••• random_arma IMSL C/Stat/Library

IMSLS_VAR_NOISE, float a_variance (Input)
If IMSLS_VAR_NOISE is specified (and IMSLS_INPUT_NOISE is not
specified) the noise at will be generated from a normal distribution with
mean 0 and variance a_variance.
Default: a_variance = 1.0

IMSLS_INPUT_NOISE, float *a_input (Input)
If IMSLS_INPUT_NOISE is specified, the user will provide an array of
length n_observations + max (ma_lags[i]) containing the random
noises. If this option is specified, then IMSLS_VAR_NOISE should not be
specified (a warning message will be issued and the option
IMSLS_VAR_NOISE will be ignored).

IMSLS_OUTPUT_NOISE, float **a_return (Output)
An address of a pointer to an internally allocated array of length
n_observations + max (ma_lags[i]) containing the random noises.

IMSLS_OUTPUT_NOISE_USER, float a_return[] (Output)
Storage for array a_return is provided by user. See
IMSLS_OUTPUT_NOISE.

IMSLS_NONZERO_ARLAGS, int ar_lags[] (Input)
An array of length p containing the order of the nonzero autoregressive
parameters.
Default: ar_lags = [1, 2, ..., p]

IMSLS_NONZERO_MALAGS, int ma_lags (Input)
An array of length q containing the order of the nonzero moving average
parameters.
Default: ma_lags = [1, 2, ..., q]

IMSLS_INITIAL_W, float w_initial[] (Input)
Array of length max (ar_lags[i]) containing the initial values of the
time series.
Default: all the elements in w_initial = constant/(1 − ar [0] −
 ar [1] − … − ar [p − 1])

IMSLS_ACCEPT_REJECT_METHOD (Input)
If IMSLS_ACCEPT_REJECT_METHOD is specified, the random noises
will be generated from a normal distribution using an
acceptance/rejection method. If IMSLS_ACCEPT_REJECT_METHOD is
not specified, the random noises will be generated using an inverse
normal CDF method. This argument will be ignored if
IMSLS_INPUT_NOISE is specified.

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the generated time
series.

Chapter 12: Random Number Generation random_arma •••• 613

Description
Function imsls_f_random_arma simulates an ARMA(p, q) process, {Wt}, for
t = 1, 2, ..., n (with n = n_observations, p = p, and q = q). The model is

φ θ θB W B A t Zt tb g b g= + ∈0

()
()

2
1 2

2
1 2

1 ...

1 ...

P
p

q
q

B B B B

B B B B

φ = − φ − φ − − φ

θ = − θ − θ − − θ

Let µ be the mean of the time series {Wt}. The overall constant θ0 (constant) is

θ
µ

µ φ0
1

0

1 0
=

=

− >

R
S|
T| =�

p

pi
p

ie j
Time series whose innovations have a nonnormal distribution may be simulated
by providing the appropriate innovations in a_input and start values in
w_initial.

The time series is generated according to the followng model:

X[i] = constant + ar[0] ⋅ X[i − ar_lags[0]] + � +

ar[p − 1] ⋅ X[i − ar_lags[p − 1]] +

A[i] − ma[0] ⋅ A[i − ma_lags[0]] − � −

ma[q − 1] ⋅ A[i − ma_lags[q − 1]]

where the constant is related to the mean of the series,

W

as follows:

[]constant (1 ar 0 ... ar[q 1])W= ⋅ − − − −

and where

X[t] = W[t], t = 0, 1, �, n_observations − 1

and

W[t] = w_initial[t + p], t = −p, −p + 1, �, −2, −1

and A is either a_input (if IMSLS_INPUT_NOISE is specified) or a_return
(otherwise).

614 •••• random_arma IMSL C/Stat/Library

Examples

Example 1
In this example, imsls_f_random_arma is used to generate a time series of
length five, using an ARMA model with three autoregressive parameters and two
moving average parameters. The start values are 0.1000, 0.0500, and 0.0375.

#include <stdio.h>
#include <imsls.h>

void main()
{

int n_random = 5;
int np = 3;
float phi[3] = {0.5, 0.25, 0.125};
int nq = 2;
float theta[2] = {-0.5, -0.25};
float *r;

imsls_random_seed_set(123457);
r = imsls_f_random_arma(n_random, np, phi, nq, theta, 0);
imsls_f_write_matrix("ARMA random deviates:",

1, n_random, r, IMSLS_NO_COL_LABELS, 0);
}

Output

ARMA random deviates:
0.863 0.809 1.904 0.110 2.266

Example 2
In this example, a time series of length 5 is generated using an ARMA model with
4 autoregressive parameters and 2 moving average parameters. The start values
are 0.1, 0.05 and 0.0375.

#include <stdio.h>
#include <imsls.h>

void main()
{

int n_random = 5;
int np = 3;
float phi[3] = {0.5, 0.25, 0.125};
int nq = 2;
float theta[2] = {-0.5, -0.25};
float wi[3] = {0.1, 0.05, 0.0375};
float theta0 = 1.0;
float avar = 0.1;
float *r;

imsls_random_seed_set(123457);
r = imsls_f_random_arma(n_random, np, phi, nq, theta,

IMSLS_ACCEPT_REJECT_METHOD,
IMSLS_INITIAL_W, wi,

Chapter 12: Random Number Generation random_npp •••• 615

IMSLS_ARMA_CONSTANT, theta0,
IMSLS_VAR_NOISE, avar,
0);

imsls_f_write_matrix("ARMA random deviates:",
1, n_random, r, IMSLS_NO_COL_LABELS, 0);

}

Output

ARMA random deviates:
1.403 2.220 2.286 2.888 2.832

Warning Errors
IMSLS_RNARM_NEG_VAR VAR(a) = �a_variance� = #, VAR(a) must be

greater than 0. The absolute value of # is used for
VAR(a).

IMSLS_RNARM_IO_NOISE Both IMSLS_INPUT_NOISE and
IMSLS_OUTPUT_NOISE are specified.
IMSLS_INPUT_NOISE is used.

random_npp
Generates pseudorandom numbers from a nonhomogeneous Poisson process.

Synopsis
#include <imsls.h>

float *imsls_f_random_npp (float tbegin, float tend, float ftheta(),
float theta_min, float theta_max, int neub, int *ne, ..., 0)

The type double function is imsls_d_random_npp.

Required Arguments

float tbegin (Input)
Lower endpoint of the time interval of the process.
tbegin must be nonnegative. Usually, tbegin = 0.

float tend (Input)
Upper endpoint of the time interval of the process.
tend must be greater than tbegin.

float ftheta(float t) (Input)
User-supplied function to provide the value of the rate of the process as
a function of time. This function must be defined over the interval from
tbegin to tend and must be nonnegative in that interval.

float theta_min (Input)
Minimum value of the rate function ftheta() in the interval (tbegin,

616 •••• random_npp IMSL C/Stat/Library

tend).
If the actual minimum is unknown, set theta_min = 0.0.

float theta_max (Input)
Maximum value of the rate function ftheta() in the interval (tbegin,
tend).
If the actual maximum is unknown, set theta_max to a known upper
bound of the maximum. The efficiency of imsls_f_random_npp is
less the greater theta_max exceeds the true maximum.

int neub (Input)
Upper bound on the number of events to be generated.
In order to be reasonably sure that the full process through time tend is
generated, calculate neub as neub = X + 10.0 * SQRT(X), where
X = theta_max * (tend − tbegin).

int *ne (Output)
Number of events actually generated.
If ne is less that neub, the time tend is reached before neub events are
realized.

Return Value
An array of length neub containing the the times to events in the first ne
elements. To release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_npp (float tbegin, float tend, float ftheta(),
float theta_min, float theta_max, int neub, int *ne,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length neub containing the the times to events in
the first ne elements.

Description
Routine imsls_f_random_npp simulates a one-dimensional nonhomogeneous
Poisson process with rate function ftheta in a fixed interval (tbegin, tend].

Let λ(t) be the rate function and t� = tbegin and t� = tend. Routine
imsls_f_random_npp uses a method of thinning a nonhomogeneous Poisson
process {N�(t), t ≥ t�} with rate function λ�(t) ≥ λ(t) in (t�, t�], where the number
of events, N�, in the interval (t�, t�] has a Poisson distribution with parameter

Chapter 12: Random Number Generation random_npp •••• 617

µ λ0
0

1
= z t dt

t

t b g
The function

Λ t t dt
tb g b g=
′z λ0

is called the integrated rate function.) In imsls_f_random_npp, λ∗(t) is taken
to be a constant λ∗(= theta_max) so that at time ti, the time of the next event
ti + 1 is obtained by generating and cumulating exponential random numbers

* *
1, 2,, ,...,i iE E

with parameter λ∗, until for the first time

()* * *
, 1, , /...j i i i j iu t E E≤ + λ+ +

where the uj,i are independent uniform random numbers between 0 and 1. This
process is continued until the specified number of events, neub, is realized or
until the time, tend, is exceeded. This method is due to Lewis and Shedler
(1979), who also review other methods. The most straightforward (and most
efficient) method is by inverting the integrated rate function, but often this is not
possible.

If theta_max is actually greater than the maximum of λ(t) in (t�, t�], the routine
will work, but less efficiently. Also, if λ(t) varies greatly within the interval, the
efficiency is reduced. In that case, it may be desirable to divide the time interval
into subintervals within which the rate function is less variable. This is possible
because the process is without memory.

If no time horizon arises naturally, tend must be set large enough to allow for the
required number of events to be realized. Care must be taken, however, that
ftheta is defined over the entire interval.

After simulating a given number of events, the next event came be generated by
setting tbegin to the time of the last event (the sum of the elements in R) and
calling imsls_f_random_npp again. Cox and Lewis (1966) discuss modeling
applications of nonhomogeneous Poisson processes.

Example
In this example, imsls_f_random_npp is used to generate the first five events
in the time 0 to 20 (if that many events are realized) in a nonhomogeneous
process with rate function

λ(t) = 0.6342 e0.001427 t

for 0 < t ≤ 20.

618 •••• random_permutation IMSL C/Stat/Library

Since this is a monotonically increasing function of t, the minimum is at t = 0 and
is 0.6342, and the maximum is at t = 20 and is 0.6342 e�����	�
= 0.652561.

#include <stdio.h>
#include <imsls.h>

void main()
{

int i, neub = 5, ne;
float *r, tmax= .652561, tmin = .6342, tbeg=0., tend=20.;

imsls_random_seed_set(123457);

r = imsls_f_random_npp(tbeg, tend, ftheta, tmin, tmax, neub, &ne, 0);

printf("Inter-event times for the first %d events in the process:\n", ne);
for (i=0; i<ne; i++) printf("\t%f\n", r[i]);

}

Output
Inter-event times for the first 5 events in the process:

0.052660
0.407979
0.258399
0.019767
0.167641

random_permutation
Generates a pseudorandom permutation.

Synopsis
#include <imsls.h>

int *imsls_random_permutation (int k, ..., 0)

Required Arguments

int k (Input)
Number of integers to be permuted.

Return Value
An array of length k containing the random permutation of the integers from
1 to k. To release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>

Chapter 12: Random Number Generation random_sample_indices •••• 619

int *imsls_random_permutation (int k,
IMSLS_RETURN_USER, int ir[],

 0)

Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied array of length k containing the random permutation of
the integers from 1 to k.

Description
Routine imsls_random_permutation generates a pseudorandom permutation
of the integers from 1 to k. It begins by filling a vector of length k with the
consecutive integers 1 to k. Then, with M initially equal to k, a random index J
between 1 and M (inclusive) is generated. The element of the vector with the
index M and the element with index J swap places in the vector. M is then
decremented by 1 and the process repeated until M = 1.

Example
In this example, imsls_random_permutation is called to produce a
pseudorandom permutation of the integers from 1 to 10.

#include <stdio.h>
#include <imsls.h>

void main()
{

int *ir, k = 10;

imsls_random_seed_set(123457);

ir = imsls_random_permutation(k, 0);

printf("Random permutation of the integers from 1 to 10\n");
imsls_i_write_matrix("", 1, k, ir,

IMSLS_NO_COL_LABELS, 0);
}

Output
Random permutation of the integers from 1 to 10

5 9 2 8 1 6 4 7 3 10

random_sample_indices
Generates a simple pseudorandom sample of indices.

620 •••• random_sample_indices IMSL C/Stat/Library

Synopsis
#include <imsls.h>

int *imsls_random_sample_indices (int nsamp, int npop, ..., 0)

Required Arguments

int nsamp (Input)
Sample size desired.

int npop (Input)
Number of items in the population.

Return Value
An array of length nsamp containing the indices of the sample. To release this
space, use free.

Synopsis with Optional Arguments
#include <imsls.h>

int *imsls_random_sample_indices (int nsamp, int npop,
IMSLS_RETURN_USER, int ir[],

 0)

Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied array of length nsamp containing the indices of the
sample.

Description
Routine imsls_random_sample_indices generates the indices of a
pseudorandom sample,without replacement, of size nsamp numbers from a
population of size npop. If nsamp is greater than npop/2, the integers from 1 to
npop are selected sequentially with a probability conditional on the number
selected and the number remaining to be considered. If, when the i-th population
index is considered, j items have been included in the sample, then the index i is
included with probability (nsamp − j)/(npop + 1 − i).

If nsamp is not greater than npop/2, a O(nsamp) algorithm due to Ahrens and
Dieter (1985) is used. Of the methods discussed by Ahrens and Dieter, the one
called SG* is used in imsls_random_sample_indices. It involves a
preliminary selection of q indices using a geometric distribution for the distances
between each index and the next one. If the preliminary sample size q is less than
nsamp, a new preliminary sample is chosen, and this is continued until a
preliminary sample greater in size than nsamp is chosen. This preliminary sample
is then thinned using the same kind of sampling as described above for the case in
which the sample size is greater than half of the population size. Routine

Chapter 12: Random Number Generation random_sample •••• 621

imsls_random_sample_indices does not store the preliminary sample
indices, but rather restores the state of the generator used in selecting the sample
initially, and then passes through once again, making the final selection as the
preliminary sample indices are being generated.

Example
In this example, imsls_random_sample_indices is used to generate the
indices of a pseudorandom sample of size 5 from a population of size 100.

#include <stdio.h>
#include <imsls.h>

void main()
{

int *ir, nsamp = 5, npop = 100;

imsls_random_seed_set(123457);

ir = imsls_random_sample_indices(nsamp, npop, 0);

imsls_i_write_matrix("Random Sample", 1, nsamp, ir,
IMSLS_NO_COL_LABELS, 0);

}

Output

Random Sample

2 22 53 61 79

random_sample
Generates a simple pseudorandom sample from a finite population.

Synopsis
#include <imsls.h>

float *imsls_f_random_sample (int nrow, int nvar, float population[],
int nsamp,..., 0)

The type double function is imsls_d_random_sample.

Required Arguments

int nrow (Input)
Number of rows of data in population.

int nvar (Input)
Number of variables in the population and in the sample.

float population[] (Input)
nrow by nvar matrix containing the population to be sampled. If either

622 •••• random_sample IMSL C/Stat/Library

of the optional arguments IMSLS_FIRST_CALL or
IMSLS_ADDITIONAL_CALL are specified, then population contains a
different part of the population on each invocation, otherwise
population contains the entire population.

int nsamp (Input)
The sample size desired.

Return Value
nsamp by nvar matrix containing the sample. To release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_sample (int nrow, int nvar, float population[],
int nsamp,
IMSLS_FIRST_CALL, int **index, int *npop

IMSLS_FIRST_CALL_USER, int index[], int *npop

IMSLS_ADDITIONAL_CALL, int *index, int *npop, float *samp,
IMSLS_POPULATION_COL_DIM, int population_col_dim,
IMSLS_RETURN_USER, int samp[],
 0)

Optional Arguments
IMSLS_FIRST_CALL, int **index, int *npop (Output)

This is the first invocation with this data; additional calls to
imsls_f_random_sample may be made to add to the population.
Additional calls should be made using the optional argument
IMSLS_ADDITIONAL_CALL . Argument index is the address of a
pointer to an internally allocated array of length nsamp containing the
indices of the sample in the population. Argument npop returns the
number of items in the population. If the population is input a few items
at a time, the first call to imsls_f_random_sample should use
IMSLS_FIRST_CALL, and subsequent calls should use
IMSLS_ADDITIONAL_CALL. See example 2.

IMSLS_FIRST_CALL_USER, int index[], int *npop (Output)
Storage for index is provided by the user. See IMSLS_FIRST_CALL.

IMSLS_ADDITIONAL_CALL, int *index, int *npop, float *samp

(Input/Output)
This is an additional invocation of imsls_f_random_sample, and
updating for the subpopulation in population is performed. Argument
index is a pointer to an array of length nsamp containing the indices of
the sample in the population, as returned using optional argument
IMSLS_FIRST_CALL. Argument npop, also obtained using optional

Chapter 12: Random Number Generation random_sample •••• 623

argument IMSLS_FIRST_CALL, returns the number of items in the
population. It is not necessary to know the number of items in the
population in advance. npop is used to cumulate the population size and
should not be changed between calls to imsls_f_random_sample.
Argument samp is a pointer to the array of size nsamp by nvar
containing the sample. samp is the result of calling
imsls_f_random_sample with optional argument
IMSLS_FIRST_CALL. See example 2

IMSLS_POPULATION_COL_DIM, int population_col_dim (Input)
Column dimension of the matrix population.
Default: x_col_dim = nvar

IMSLS_RETURN_USER, int samp[] (Output)
User-supplied array of size nrow by nvar containing the sample. This
option should not be used if IMSLS_ADDITIONAL_CALL is used.

Description
Routine imsls_f_random_sample generates a pseudorandom sample from a
given population, without replacement, using an algorithm due to McLeod and
Bellhouse (1983).

The first nsamp items in the population are included in the sample. Then, for each
successive item from the population, a random item in the sample is replaced by
that item from the population with probability equal to the sample size divided by
the number of population items that have been encountered at that time.

Example 1
In this example, imsls_f_random_sample is used to generate a sample of size
5 from a population stored in the matrix population.

#include <stdio.h>
#include <imsls.h>

void main()
{

int nrow = 176, nvar = 2, nsamp = 5;
float *population;
float *sample;

population = imsls_f_data_sets(2, 0);

imsls_random_seed_set(123457);

sample = imsls_f_random_sample(nrow, nvar, population, nsamp, 0);

imsls_f_write_matrix("The sample", nsamp, nvar, sample,
IMSLS_NO_ROW_LABELS,
IMSLS_NO_COL_LABELS,
0);

}

624 •••• random_sample IMSL C/Stat/Library

Output
The sample
1764 36
1828 62
1923 6
1773 35
1769 106

Example 2
Routine imsls_f_random_sample is now used to generate a sample of size 5
from the same population as in the example above except the data are input to
RNSRS one observation at a time. This is the way imsls_f_random_sample
may be used to sample from a file on disk or tape. Notice that the number of
records need not be known in advance.

#include <stdio.h>
#include <imsls.h>

void main()
{

int i, nrow = 176, nvar = 2, nsamp = 5;
int *index, npop;
float *population;
float *sample;

population = imsls_f_data_sets(2, 0);

imsls_random_seed_set(123457);

sample = imsls_f_random_sample(1, 2, population, nsamp,
IMSLS_FIRST_CALL, &index, &npop,
0);

for (i = 1; i < 176; i++) {
imsls_f_random_sample(1, 2, &population[2*i], nsamp,

IMSLS_ADDITIONAL_CALL, index, &npop, sample,
0);

}
printf("The population size is %d\n", npop);
imsls_i_write_matrix("Indices of random sample", 5, 1, index, 0);

imsls_f_write_matrix("The sample", nsamp, nvar, sample,
IMSLS_NO_ROW_LABELS,
IMSLS_NO_COL_LABELS,
0);

}

Output
The population size is 176

Indices of random sample
1 16
2 80
3 175

Chapter 12: Random Number Generation random_option •••• 625

4 25
5 21

The sample
1764 36
1828 62
1923 6
1773 35
1769 106

random_option
Selects the uniform (0, 1) multiplicative congruential pseudorandom number
generator or a generalized feedback shuft register (GFSR) method.

Synopsis
#include <imsls.h>

void imsls_random_option (int generator_option)

Required Arguments

int generator_option (Input)
Indicator of the generator. Argument generator_option is used to
choose the multiplier and whether or not shuffling is done, or the GFSR
method.

generator_option Generator
1 The multiplier 16807 is used.
2 The multiplier 16807 is used with shuffling.
3 The multiplier 397204094 is used.
4 The multiplier 397204094 is used with shuffling.
5 The multiplier 950706376 is used.
6 The multiplier 950706376 is used with shuffling.
7 GFSR, with the recursion Xt = Xt-���� ⊕ Xt-�� is

used

Description
The uniform pseudorandom number generators use a multiplicative congruential
method, with or without shuffling. The value of the multiplier and whether or not
to use shuffling are determined by imsls_random_option. The description of
function imsls_f_random_uniform may provide some guidance in the choice
of the form of the generator. If no selection is made explicitly, the generators use
the multiplier 16807 without shuffling. This form of the generator has been in
use for some time (see Lewis et al. 1969).

626 •••• random_option_get IMSL C/Stat/Library

Example
See function imsls_random_GFSR_table_get (page 633).

random_option_get
Retrieves the uniform (0, 1) multiplicative congruential pseudorandom number
generator.

Synopsis
#include <imsls.h>

int imsls_random_option_get ()

Return Value
Indicator of the generator.

result Generator
1 The multiplier 16807 is used.
2 The multiplier 16807 is used with shuffling.
3 The multiplier 397204094 is used.
4 The multiplier 397204094 is used with shuffling.
5 The multiplier 950706376 is used.
6 The multiplier 950706376 is used with shuffling.
7 GFSR, with the recursion Xt = Xt-���� ⊕ Xt-�� is

used

Description
The routine imsls_random_option_get retrieves the uniform (0, 1)
multiplicative congruential pseudorandom number generator or the GRSR method.
The uniform pseudorandom number generators use a multiplicative congruential
method, with or without shuffling. The value of the multiplier
and whether or not to use shuffling are determined by imsls_random_option.

random_seed_get
Retrieves the current value of the seed used in the random number generators.

Synopsis
#include <imsls.h>

Chapter 12: Random Number Generation random_seed_get •••• 627

int imsls_random_seed_get ()

Return Value
The value of the seed.

Description
Function imsls_random_seed_get retrieves the current value of the �seed�
used in the random number generators. A reason for doing this would be to restart
a simulation, using function imsls_random_seed_set to reset the seed.

Example
This example illustrates the statements required to restart a simulation using
imsls_random_seed_get and imsls_random_seed_set. The example
shows that restarting the sequence of random numbers at the value of the seed last
generated is the same as generating the random numbers all at once.

#include <imsls.h>

#define N_RANDOM 5

main()
{

int seed = 123457;
float *r1, *r2, *r;

imsls_random_seed_set(seed);
r1 = imsls_f_random_uniform(N_RANDOM, 0);
imsls_f_write_matrix ("First Group of Random Numbers", 1,

N_RANDOM, r1, 0);
seed = imsls_random_seed_get();

imsls_random_seed_set(seed);
r2 = imsls_f_random_uniform(N_RANDOM, 0);
imsls_f_write_matrix ("Second Group of Random Numbers", 1,

N_RANDOM, r2, 0);

imsls_random_seed_set(123457);
r = imsls_f_random_uniform(2*N_RANDOM, 0);
imsls_f_write_matrix ("Both Groups of Random Numbers", 1,

2*N_RANDOM, r, 0);
}

Output

First Group of Random Numbers
1 2 3 4 5

0.9662 0.2607 0.7663 0.5693 0.8448

Second Group of Random Numbers
1 2 3 4 5

0.0443 0.9872 0.6014 0.8964 0.3809

Both Groups of Random Numbers

628 •••• random_substream_seed_get IMSL C/Stat/Library

1 2 3 4 5 6
0.9662 0.2607 0.7663 0.5693 0.8448 0.0443

7 8 9 10
0.9872 0.6014 0.8964 0.3809

random_substream_seed_get
Retrieves a seed for the congruential generators that do not do shuffling that will
generate random numbers beginning 100,000 numbers farther along.

Synopsis
#include <imsls.h>

int imsls_random_substream_seed_get (int iseed1)

Required Arguments

int iseed1 (Input)
The seed that yields the first stream.

Return Value
The seed that yields a stream beginning 100,000 numbers beyond the stream that
begins with iseed1.

Description
Given a seed, iseed1, imsls_random_substream_seed_get determines
another seed, such that if one of the IMSL multiplicative congruential generators,
using no shuffling, went through 100,000 generations starting with iseed1, the
next number in that sequence would be the first number in the sequence that
begins with the returned seed.

Note that imsls_random_substream_seed_get works only when a
multiplicative congruential generator without shuffling is used. This means that
either the routine imsls_random_option has not been called at all or that it has
been last called with generator_option taking a value of 1, 3, or 5.

For many of the IMSL generators for nonuniform distributions that do not use the
inverse CDF method, the distance between the sequences generated starting with
iseed1 and starting with the returned seed may be less than 100,000. This is
because the nonuniform generators that use other techniques may require more
than one uniform deviate for each output deviate.

The reason that one may want two seeds that generate sequences a known
distance apart is for blocking Monte Carlo experiments or for running parallel
streams

Chapter 12: Random Number Generation random_substream_seed_get •••• 629

Example
In this example, imsls_random_substream_seed_get is used to determine
seeds for 4 separate streams, each 200,000 numbers apart, for a multiplicative
congruential generator without shuffling. (Since imsls_random_option is not
invoked to select a generator, the multiplier is 16807.) Since the streams are
200,000 numbers apart, each seed requires two invocations of
imsls_random_substream_seed_get. All of the streams are non-
overlapping, since the period of the underlying generator is 2,147,483,646. The
resulting seed are then verified by checking the seed after generating random
sequences of length 200,000.

#include <imsls.h>

main()
{

int i, is1, is2, is3, is4;
float *r;

is1 = 123457;
is2 = imsls_random_substream_seed_get(is1);
is2 = imsls_random_substream_seed_get(is2);
is3 = imsls_random_substream_seed_get(is2);
is3 = imsls_random_substream_seed_get(is3);
is4 = imsls_random_substream_seed_get(is3);
is4 = imsls_random_substream_seed_get(is4);
printf("Seeds for four separate streams:\n");
printf("%d\t%d\t%d\t%d\n\n", is1, is2, is3, is4);

imsls_random_seed_set(is1);
for (i=0;i<3;i++) {

r = imsls_f_random_uniform(200000, 0);
printf("seed after %d random numbers: %d\n", (i+1)*200000,

imsls_random_seed_get());
if (r) free(r);

}
}

Output
Seeds for four separate streams:
123457 2016130173 85016329 979156171

seed after 200000 random numbers: 2016130173
seed after 400000 random numbers: 85016329
seed after 600000 random numbers: 979156171

630 •••• random_seed_set IMSL C/Stat/Library

random_seed_set
Initializes a random seed for use in the random number generators.

Synopsis
#include <imsls.h>

void imsls_random_seed_set (int seed)

Required Arguments

int seed (Input)
The seed of the random number generator. The argument seed must be
in the range (0, 2147483646). If seed is 0, a value is computed using
the system clock; hence, the results of programs using the random
number generators will be different at various times.

Description
Function imsls_random_seed_set is used to initialize the seed used in the
random number generators. The form of the generators is as follows:

xi ≡ cxi-1mod (231 − 1)

The value of x0 is the seed. If the seed is not initialized prior to invocation of any
of the functions for random number generation by calling
imsls_random_seed_set, the seed is initialized by the system clock. The seed
can be reinitialized to a clock-dependent value by calling
imsls_random_seed_set with seed set to 0.

The effect of imsls_random_seed_set is to set some global values used by the
random number generators. A common use of imsls_random_seed_set is in
conjunction with function imsls_random_seed_get to restart a simulation.

Example
See function imsls_random_seed_get (page 626).

random_table_set
Sets the current table used in the shuffled generator.

Synopsis
#include <imsls.h>

void imsls_f_random_table_set (float table[])

The type double function is imsls_d_random_table_set.

Chapter 12: Random Number Generation random_table_get •••• 631

Required Arguments

float table[] (Input)
Array of length 128 used in the shuffled generators.

Description
The values in table are initialized by the IMSL random number generators. The
values are all positive except if the user wishes to reinitialize the array, in
which case the first element of the array is input as a nonpositive value. (Usually,
one should avoid reinitializing these arrays, but it might be necessary sometimes
in restarting a simulation.) If the first element of table is set to a nonpositive
value on the call to imsls_random_table_set, on the next invocation of a
routine to generate random numbers using a shuffled method , the appropriate
array will be reinitialized.

Example
See function imsls_random_GFSR_table_get (page 633).

random_table_get
Retrieves the current table used in the shuffled generator.

Synopsis
#include <imsls.h>

void imsls_f_random_table_get (float **table, ..., 0)

The type double function is imsls_d_random_table_get.

Required Arguments

float **table (Output)
Address of a pointer to an array of length 128 containing the table used
in the shuffled generators. Typically, float *table is declared and
&table is used as an argument.

Synopsis with Optional Arguments
#include <imsls.h>

void imsls_random_table_get (float **table,
IMSLS_RETURN_USER, float r[],
 0)

632 •••• random_GFSR_table_set IMSL C/Stat/Library

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length 1565 containing the table used in the
GFSR generators.

Description
The values in table are initialized by the IMSL random number generators. The
values are all positive except if the user wishes to reinitialize the array, in
which case the first element of the array is input as a nonpositive value. (Usually,
one should avoid reinitializing these arrays, but it might be necessary sometimes
in restarting a simulation.) If the first element of table is set to a nonpositive
value on the call to imsls_random_table_set, on the next invocation of a
routine to generate random numbers using a shuffled method , the appropriate
array will be reinitialized.

Example
See function imsls_random_GFSR_table_get (page 633).

random_GFSR_table_set
Sets the current table used in the GFSR generator.

Synopsis
#include <imsls.h>

void imsls_random_GFSR_table_set (int table[])

Required Arguments

int table [] (Input)
Array of length 1565 used in the GFSR generators.

Description
The values in table are initialized by the IMSL random number generators. The
values are all positive in except if the user wishes to reinitialize the array, in
which case the first element of the array is input as a nonpositive value. (Usually,
one should avoid reinitializing these arrays, but it might be necessary sometimes
in restarting a simulation.) If the first element of table is set to a nonpositive
value on the call to imsls_random_GFSR_table_set, on the next invocation
of a routine to generate random numbers using a GFSR method , the appropriate
array will be reinitialized.

Example
See function imsls_random_GFSR_table_get (page 633).

Chapter 12: Random Number Generation random_GFSR_table_get •••• 633

random_GFSR_table_get
Retrieves the current table used in the GFSR generator.

Synopsis
#include <imsls.h>

void imsls_random_GFSR_table_get (int **table, ..., 0)

Required Arguments

int **table (Output)
Address of a pointer to an array of length 1565 containing the table used
in the GFSR generators. Typically, int *table is declared and
&table is used as an argument.

Synopsis with Optional Arguments
#include <imsls.h>

void imsls_random_GFSR_table_get (int **table,
IMSLS_RETURN_USER, int r[],
 0)

Optional Arguments
IMSLS_RETURN_USER, int r[] (Output)

User-supplied array of length 1565 containing the table used in the
GFSR generators.

Description
The values in table are initialized by the IMSL random number generators. The
values are all positive except if the user wishes to reinitialize the array, in
which case the first element of the array is input as a nonpositive value. (Usually,
one should avoid reinitializing these arrays, but it might be necessary sometimes
in restarting a simulation.) If the first element of table is set to a nonpositive
value on the call to imsls_random_GFSR_table_set, on the next invocation
of a routine to generate random numbers using a GFSR method, the appropriate
array will be reinitialized.

Example
In this example, three separate simulation streams are used, each with a different
form of the generator. Each stream is stopped and restarted. (Although this
example is obviously an artificial one, there may be reasons for maintaining
separate streams and stopping and restarting them because of the nature of the
usage of the random numbers coming from the separate streams.)

#include <stdio.h>

634 •••• random_GFSR_table_get IMSL C/Stat/Library

#include <imsls.h>

void main()
{

float *r, *table;
int nr, iseed1, iseed2, iseed7;
int *itable;

nr = 5;
iseed1 = 123457;
iseed2 = 123457;
iseed7 = 123457;

/* Begin first stream, iopt = 1 (by default) */
imsls_random_seed_set (iseed1);
r = imsls_f_random_uniform (nr, 0);
iseed1 = imsls_random_seed_get ();
imsls_f_write_matrix ("First stream output", 1, 5, r,

IMSLS_NO_COL_LABELS,
IMSLS_NO_ROW_LABELS, 0);

printf(" Output seed\t%d\n\n", iseed1);
free(r);

/* Begin second stream, iopt = 2 */
imsls_random_option (2);
imsls_random_seed_set (iseed2);
r = imsls_f_random_uniform (nr, 0);
iseed2 = imsls_random_seed_get ();
imsls_f_random_table_get (&table, 0);
imsls_f_write_matrix ("Second stream output", 1, 5, r,

IMSLS_NO_COL_LABELS,
IMSLS_NO_ROW_LABELS, 0);

printf(" Output seed\t%d\n\n", iseed2);
free(r);

/* Begin third stream, iopt = 7 */
imsls_random_option (7);
imsls_random_seed_set (iseed7);
r = imsls_f_random_uniform (nr, 0);
iseed7 = imsls_random_seed_get ();
imsls_random_GFSR_table_get (&itable, 0);
imsls_f_write_matrix ("Third stream output", 1, 5, r,

IMSLS_NO_COL_LABELS,
IMSLS_NO_ROW_LABELS, 0);

printf(" Output seed\t%d\n\n", iseed7);
free(r);

/* Reinitialize seed and resume first stream */
imsls_random_option (1);
imsls_random_seed_set (iseed1);
r = imsls_f_random_uniform (nr, 0);
iseed1 = imsls_random_seed_get ();
imsls_f_write_matrix ("First stream output", 1, 5, r,

IMSLS_NO_COL_LABELS,
IMSLS_NO_ROW_LABELS, 0);

printf(" Output seed\t%d\n\n", iseed1);
free(r);

Chapter 12: Random Number Generation random_GFSR_table_get •••• 635

/*
* Reinitialize seed and table for shuffling and
* resume second stream
*/

imsls_random_option (2);
imsls_random_seed_set (iseed2);
imsls_f_random_table_set (table);
r = imsls_f_random_uniform (nr, 0);
iseed2 = imsls_random_seed_get ();
imsls_f_write_matrix ("Second stream output", 1, 5, r,

IMSLS_NO_COL_LABELS,
IMSLS_NO_ROW_LABELS, 0);

printf(" Output seed\t%d\n\n", iseed2);
free(r);

/*
* Reinitialize seed and table for GFSR and
* resume third stream.
*/

imsls_random_option (7);
imsls_random_seed_set (iseed7);
imsls_random_GFSR_table_set (itable);
r = imsls_f_random_uniform (nr, 0);
iseed7 = imsls_random_seed_get ();
imsls_f_write_matrix ("Third stream output", 1, 5, r,

IMSLS_NO_COL_LABELS,
IMSLS_NO_ROW_LABELS, 0);

printf(" Output seed\t%d\n\n", iseed7);
free(r);

}

Output

First stream output
0.9662 0.2607 0.7663 0.5693 0.8448
Output seed 1814256879

Second stream output
0.7095 0.1861 0.4794 0.6038 0.3790
Output seed 1965912801

Third stream output
0.3914 0.0263 0.7622 0.0281 0.8997
Output seed 1932158269

First stream output
0.0443 0.9872 0.6014 0.8964 0.3809
Output seed 817878095

Second stream output
0.2557 0.4788 0.2258 0.3455 0.5811
Output seed 2108806573

636 •••• faure_next_point IMSL C/Stat/Library

Third stream output
0.7519 0.5084 0.9070 0.0910 0.6917
Output seed 1485334679

faure_next_point
Computes a shuffled Faure sequence.

Synopsis
#include <imsls.h>

Imsls_faure* imsls_faure_sequence_init (int ndim, …, 0)
float* imsls_f_faure_next_point (Imsls_faure *state, …, 0)
void imsls_faure_sequence_free (Imsls_faure *state)

The type double function is imsls_d_faure_next_point. The functions
imsls_faure_sequence_init and imsls_faure_sequence_free
are precision independent.

Required Arguments for imsls_faure_sequence_init
int ndim (Input)

The dimension of the hyper-rectangle.

Return Value for imsls_faure_sequence_init
Returns a structure that contains information about the sequence. The structure
should be freed using imsls_faure_sequence_free after it is no longer
needed.

Required Arguments for imsls_faure_next_point
Imsls_faure *state (Input/Output)

Structure created by a call to imsls_faure_sequence_init.

Return Value for imsls_faure_next_point
Returns the next point in the shuffled Faure sequence. To release this space, use
free.

Required Arguments for imsls_faure_sequence_free
Imsls_faure *state (Input/Output)

Structure created by a call to imsls_faure_sequence_init.

Synopsis with Optional Arguments
#include <imsls.h>

Chapter 12: Random Number Generation faure_next_point •••• 637

float *imsls_faure_sequence_init (int ndim,
IMSLS_BASE, int base,
IMSLS_SKIP, int skip,
0)

float* imsls_f_faure_next_point (Imsls_faure *state,
IMSLS_RETURN_USER, float *user,
IMSLS_RETURN_SKIP, int *skip,
0)

Optional Arguments
IMSLS_BASE, int base (Input)

The base of the Faure sequence.
Default: The smallest prime greater than or equal to ndim.

IMSLS_SKIP, int *skip (Input)
The number of points to be skipped at the beginning of the Faure
sequence.
Default: basem/2 1� , where m � log / log B base and B is the largest
representable integer.

IMSLS_RETURN_USER, float *user (Output)
User-supplied array of length ndim containing the current point in the
sequence.

IMSLS_RETURN_SKIP, int *skip (Output)
The current point in the sequence. The sequence can be restarted by
initializing a new sequence using this value for IMSLS_SKIP, and using
the same dimension for ndim.

Description
Discrepancy measures the deviation from uniformity of a point set.

The discrepancy of the point set []1,..., 0,1 , 1d
nx x d∈ ≥ , is

Dn
d A E n

n
E

E

b g b g b g� �sup
;

,�

where the supremum is over all subsets of [0, 1]d of the form

))1
0, 0 0 1, 1... , ,

d jE t t t j d≤ ≤ ≤ ≤��= × ×� � ,

λ is the Lebesque measure, and A E n;b g is the number of the xj contained in E.

The sequence x1, x2, � of points [0,1]d is a low-discrepancy sequence if there
exists a constant c(d), depending only on d, such that

638 •••• faure_next_point IMSL C/Stat/Library

Dn
d c d

n d

n
b g b g b g�

log

for all n>1.

Generalized Faure sequences can be defined for any prime base b≥d. The lowest
bound for the discrepancy is obtained for the smallest prime b≥d, so the optional
argument IMSLS_BASE defaults to the smallest prime greater than or equal to the
dimension.

The generalized Faure sequence x1, x2, �, is computed as follows:

Write the positive integer n in its b-ary expansion,

n a n bi
i

i

�

�

�

� ()
0

where ai(n) are integers, 0 � �a n bi b g .

The j-th coordinate of xn is

x c a n b j dn
j

kd
j

dk
d

k() () () ,� � �

�

�

�

�

� ���
00

1 1

The generator matrix for the series, ck d
j() , is defined to be

c j ck d
j d k

k d
()

�
�

and ck d is an element of the Pascal matrix,

c
d

c d c
k d

k d
k d � �

�

�

R
S|
T|

!
! !b g

0

It is faster to compute a shuffled Faure sequence than to compute the Faure
sequence itself. It can be shown that this shuffling preserves the low-discrepancy
property.

The shuffling used is the b-ary Gray code. The function G(n) maps the positive
integer n into the integer given by its b-ary expansion.

The sequence computed by this function is x(G(n)), where x is the generalized
Faure sequence.

Example
In this example, five points in the Faure sequence are computed. The points are in
the three-dimensional unit cube.

Note that imsls_faure_sequence_init is used to create a structure that holds
the state of the sequence. Each call to imsls_f_faure_next_point returns the

Chapter 12: Random Number Generation faure_next_point •••• 639

next point in the sequence and updates the Imsls_faure structure. The final call to
imsls_faure_sequence_free frees data items, stored in the structure, that
were allocated by imsls_faure_sequence_init.

#include "stdio.h"
#include "imsl.h"

void main()
{

Imsl_faure *state;
float *x;
int ndim = 3;
int k;

state = imsl_faure_sequence_init(ndim, 0);

for (k = 0; k < 5; k++) {
x = imsl_f_faure_next_point(state, 0);
printf("%10.3f %10.3f %10.3f\n", x[0], x[1], x[2]);
free(x);

}

imsl_faure_sequence_free(state);
}

Output

0.334 0.493 0.064
0.667 0.826 0.397
0.778 0.270 0.175
0.111 0.604 0.509
0.445 0.937 0.842

Chapter 13: Printing Functions Routines •••• 641

Chapter 13: Printing Functions

Routines
Print a matrix or vector ... write_matrix 641
Set the page width and length..page 647
Set the printing options... write_options 648

write_matrix
Prints a rectangular matrix (or vector) stored in contiguous memory locations.

Synopsis
#include <imsls.h>

void imsls_f_write_matrix (char *title, int nra, int nca, float a[],
�, 0)

For int a[], use imsls_i_write_matrix.
For double a[], use imsls_d_write_matrix.

Required Arguments

char *title (Input)
Matrix title. Use \n within a title to create a new line. Long titles are
automatically wrapped.

int nra (Input)
Number of rows in the matrix.

int nca (Input)
Number of columns in the matrix.

float a[] (Input)
Array of size nra × nca containing the matrix to be printed.

642 •••• write_matrix IMSL C/Stat/Library

Synopsis with Optional Arguments
#include <imsls.h>

void imsls_f_write_matrix (char *title, int nra, int nca, float a[],
IMSLS_TRANSPOSE,
IMSLS_A_COL_DIM, int a_col_dim,
IMSLS_PRINT_ALL, or
IMSLS_PRINT_LOWER, or
IMSLS_PRINT_UPPER, or
IMSLS_PRINT_LOWER_NO_DIAG, or
IMSLS_PRINT_UPPER_NO_DIAG,
IMSLS_WRITE_FORMAT, char *fmt,
IMSLS_NO_ROW_LABELS, or
IMSLS_ROW_NUMBER, or
IMSLS_ROW_NUMBER_ZERO, or
IMSLS_ROW_LABELS, char *rlabel[],
IMSLS_NO_COL_LABELS, or
IMSLS_COL_NUMBER, or
IMSLS_COL_NUMBER_ZERO, or
IMSLS_COL_LABELS, char *clabel[],
0)

Optional Arguments
IMSLS_TRANSPOSE

Print aT.

IMSLS_A_COL_DIM, int a_col_dim (Input)
Column dimension of a.
Default: a_col_dim = nca

IMSLS_PRINT_ALL, or
IMSLS_PRINT_LOWER, or
IMSLS_PRINT_UPPER, or
IMSLS_PRINT_LOWER_NO_DIAG, or
IMSLS_PRINT_UPPER_NO_DIAG

Exactly one of these optional arguments can be specified to
indicate that either a triangular part of the matrix or the entire
matrix is to be printed. If omitted, the entire matrix is printed.

Keyword Action
IMSLS_PRINT_ALL Entire matrix is printed (the

default).
IMSLS_PRINT_LOWER Lower triangle of the matrix is

printed, including the diagonal.
IMSLS_PRINT_UPPER Upper triangle of the matrix is

printed, including the diagonal.

Chapter 13: Printing Functions write_matrix •••• 643

Keyword Action
IMSLS_PRINT_LOWER_NO_DIAG Lower triangle of the matrix is

printed, without the diagonal.
IMSLS_PRINT_UPPER_NO_DIAG Upper triangle of the matrix is

printed, without the diagonal.

IMSLS_WRITE_FORMAT, char *fmt (Input)
Character string containing a list of C conversion specifications
(formats) to be used when printing the matrix. Any list of C conversion
specifications suitable for the data type can be given. For example,
fmt = "%10.3f" specifies the conversion character f for the entire
matrix. For the conversion character f, the matrix must be of type float
or double. Alternatively,
fmt = "%10.3e%10.3e%10.3f%10.3f%10.3f" specifies the
conversion character e for columns 1 and 2 and the conversion character
f for columns 3, 4, and 5. If the end of fmt is encountered and if some
columns of the matrix remain, format control continues with the first
conversion specification in fmt.

Aside from restarting the format from the beginning, other exceptions to
the usual C formatting rules are as follows:

1. Characters not associated with a conversion specification are not
allowed. For example, in the format fmt = "1%d2%d", the characters
1 and 2 are not allowed and result in an error.

2. A conversion character d can be used for floating-point values (matrices
of type float or double). The integer part of the floating-point value is
printed.

3. For printing numbers whose magnitudes are unknown, the conversion
character g is useful; however, the decimal points will generally not be
aligned when printing a column of numbers. The w (or W) conversion
character is a special conversion character used by this function to select
a conversion specification so that the decimal points will be aligned. The
conversion specification ending with w is specified as "%n.dw". Here, n
is the field width and d is the number of significant digits generally
printed. Valid values for n are 3, 4, �, 40. Valid values for d are 1, 2,
�, n − 2. If fmt specifies one conversion specification ending with w,
all elements of a are examined to determine one conversion specification
for printing. If fmt specifies more than one conversion specification,
separate conversion specifications are generated for each conversion
specification ending with w. Set fmt = "10.4w" for a single conversion
specification selected automatically with field width 10 and with four
significant digits.

IMSLS_NO_ROW_LABELS, or
IMSLS_ROW_NUMBER, or

644 •••• write_matrix IMSL C/Stat/Library

IMSLS_ROW_NUMBER_ZERO, or
IMSLS_ROW_LABELS, char *rlabel[] (Input)

If IMSLS_ROW_LABELS is specified, rlabel is a vector of length nra
containing pointers to the character strings comprising the row labels.
Here, nra is the number of rows in the printed matrix. Use \n within a
label to create a new line. Long labels are automatically wrapped. If no
row labels are desired, use the IMSLS_NO_ROW_LABELS optional
argument. If the numbers 1, 2, �, nra are desired, use the
IMSLS_ROW_NUMBER optional argument. If the numbers 0, 1, 2, �,
nra − 1 are desired, use the IMSLS_ROW_NUMBER_ZERO optional
argument. If none of these optional arguments is used, the numbers 1, 2,
3, �, nra are used for the row labels by default whenever nra > 1.
If nra = 1, the default is no row labels.

IMSLS_NO_COL_LABELS, or
IMSLS_COL_NUMBER, or
IMSLS_COL_NUMBER_ZERO, or
IMSLS_COL_LABELS, char *clabel[] (Input)

If IMSLS_COL_LABELS is specified, clabel is a vector of length
nca + 1 containing pointers to the character strings comprising the
column headings. The heading for the row labels is clabel [0];
clabel [i], i = 1, �, nca, is the heading for the i-th column. Use \n
within a label to create a new line. Long labels are automatically
wrapped. If no column labels are desired, use the
IMSLS_NO_COL_LABELS optional argument. If the numbers 1, 2, �,
nca, are desired, use the IMSLS_COL_NUMBER optional argument. If the
numbers 0, 1, �, nca − 1 are desired, use the
IMSLS_COL_NUMBER_ZERO optional argument. If none of these optional
arguments is used, the numbers 1, 2, 3, �, nca are used for the column
labels by default whenever nca > 1. If nca = 1, the default is no column
labels.

Description
Function imsls_write_matrix prints a real rectangular matrix (stored in a)
with optional row and column labels (specified by rlabel and clabel,
respectively, regardless of whether a or aT is printed). An optional format, fmt,
can be used to specify a conversion specification for each column of the matrix.

In addition, the write matrix functions can restrict printing to the elements of the
upper or lower triangles of a matrix by using the IMSLS_PRINT_UPPER,
IMSLS_PRINT_LOWER, IMSLS_PRINT_UPPER_NO_DIAG, and
IMSLS_PRINT_LOWER_NO_DIAG options. Generally, these options are used with
symmetric matrices, but this is not required. Vectors can be printed by specifying
a row or column dimension of 1.

Output is written to the file specified by the function imsls_output_file
(Chapter 14). The default output file is standard output (corresponding to the file

Chapter 13: Printing Functions write_matrix •••• 645

pointer stdout). A page width of 78 characters is used. Page width and page
length can be reset by invoking function imsls_page (page 647).

Horizontal centering, the method for printing large matrices, paging, the method
for printing NaN (Not a Number), and whether or not a title is printed on each
page can be selected by invoking function imsls_write_options (page 648).

Examples

Example 1
This example is representative of the most common situation in which no optional
arguments are given.

#include <imsls.h>

#define NRA 3
#define NCA 4

main()
{

int i, j;
float a[NRA][NCA];

for (i = 0; i < NRA; i++) {
for (j = 0; j < NCA; j++) {

a[i][j] = (i+1+(j+1)*0.1);
}

}
/* Write matrix */

imsls_f_write_matrix ("matrix\na", NRA, NCA, (float*) a, 0);
}

Output

matrix
a

1 2 3 4
1 1.1 1.2 1.3 1.4
2 2.1 2.2 2.3 2.4
3 3.1 3.2 3.3 3.4

Example 2
In this example, some of the optional arguments available in the
imsls_write_matrix functions are demonstrated.

#include <imsls.h>

#define NRA 3
#define NCA 4

main()
{

int i, j;

646 •••• write_matrix IMSL C/Stat/Library

float a[NRA][NCA];
char *fmt = "%10.6W";
char *rlabel[] = {"row 1", "row 2", "row 3"};
char *clabel[] = {"", "col 1", "col 2", "col 3", "col 4"};

for (i = 0; i < NRA; i++) {
for (j = 0; j < NCA; j++) {

a[i][j] = (i+1+(j+1)*0.1);
}

}
/* Write matrix */

imsls_f_write_matrix ("matrix\na", NRA, NCA, (float *)a,
IMSLS_WRITE_FORMAT, fmt,
IMSLS_ROW_LABELS, rlabel,
IMSLS_COL_LABELS, clabel,
IMSLS_PRINT_UPPER_NO_DIAG,
0);

}

Output

matrix
a

col 2 col 3 col 4
row 1 1.2 1.3 1.4
row 2 2.3 2.4
row 3 3.4

Example 3
In this example, a row vector of length four is printed.

#include <imsls.h>

#define NRA 1
#define NCA 4

main()
{

int i;
float a[NCA];
char *clabel[] = {"", "col 1", "col 2", "col 3", "col 4"};

for (i = 0; i < NCA; i++) {
a[i] = i + 1;

}
/* Write matrix */

imsls_f_write_matrix ("matrix\na", NRA, NCA, a,
IMSLS_COL_LABELS, clabel,
0);

}

Output

matrix
a

Chapter 13: Printing Functions page •••• 647

col 1 col 2 col 3 col 4
1 2 3 4

page
Sets or retrieves the page width or length.

Synopsis
#include <imsls.h>

void imsls_page (Imsls_page_options option, int *page_attribute)

Required Arguments

Imsls_page_options option (Input)
Option giving which page attribute is to be set or retrieved. The possible
values are shown in the table below.

Keyword Description
IMSLS_SET_PAGE_WIDTH Sets the page width.
IMSLS_GET_PAGE_WIDTH Retrieves the page width.
IMSLS_SET_PAGE_LENGTH Sets the page length.
IMSLS_GET_PAGE_LENGTH Retrieves the page length.

int *page_attribute (Input, if the attribute is set; Output, otherwise.)
The value of the page attribute to be set or retrieved. The page width is
the number of characters per line of output (default 78), and the page
length is the number of lines of output per page (default 60). Ten or
more characters per line and 10 or more lines per page are required.

Example
The following example illustrates the use of imsls_page to set the page width to
40 characters. Function imsls_f_write_matrix is then used to print a
3 × 4 matrix A, where aij = i + j/10.

#include <imsls.h>

#define NRA 3
#define NCA 4
main()
{

int i, j, page_attribute;
float a[NRA][NCA];

for (i = 0; i < NRA; i++) {
for (j = 0; j < NCA; j++) {

a[i][j] = (i+1) + (j+1)/10.0;
}

}

648 •••• write_options IMSL C/Stat/Library

page_attribute = 40;
imsls_page(IMSLS_SET_PAGE_WIDTH, &page_attribute);
imsls_f_write_matrix("a", NRA, NCA, (float *)a, 0);

}

Output
a

1 2 3
1 1.1 1.2 1.3
2 2.1 2.2 2.3
3 3.1 3.2 3.3

4
1 1.4
2 2.4
3 3.4

write_options
Sets or retrieves an option for printing a matrix.

Synopsis
#include <imsls.h>

void imsls_write_options (Imsls_write_options option,
int *option_value)

Required Arguments

Imsls_write_options option (Input)
Option giving the type of the printing attribute to set or retrieve.

Keyword for Setting Keyword for Retrieving Attribute Description
IMSLS_SET_DEFAULTS uses the default settings

for all parameters
IMSLS_SET_CENTERING IMSLS_GET_CENTERING horizontal centering
IMSLS_SET_ROW_WRAP IMSLS_GET_ROW_WRAP row wrapping
IMSLS_SET_PAGING IMSLS_GET_PAGING paging
IMSLS_SET_NAN_CHAR IMSLS_GET_NAN_CHAR method for printing NaN
IMSLS_SET_TITLE_PAGE IMSLS_GET_TITLE_PAGE whether or not titles

appear on each page
IMSLS_SET_FORMAT IMSLS_GET_FORMAT default format for real

and complex numbers

int *option_value (Input, if option is to be set; Output, otherwise)
Value of the option attribute selected by option. The values to be used
when setting attributes are described in a table in the description section.

Chapter 13: Printing Functions write_options •••• 649

Description
Function imsls_write_options allows the user to set or retrieve an option for
printing a matrix. Options controlled by imsls_write_options are horizontal
centering, method for printing large matrices, paging, method for printing NaN,
method for printing titles, and the default format for real and complex numbers.
(NaN can be retrieved by functions imsls_f_machine and imsls_d_machine
(Chapter 14).

The following values can be used for the attributes.

Keyword Value Meaning
CENTERING 0

1
Matrix is left justified.
Matrix is centered.

ROW_WRAP 0

m

Complete row is printed before the next
row is printed. Wrapping is used if
necessary.
Here, m is a positive integer. Let n1 be
the maximum number of columns that fit
across the page, as determined by the
widths in the conversion specifications
starting with column 1. First, columns 1
through n1 are printed for rows 1 through
m. Let n2 be the maximum number of
columns that fit across the page, starting
with column n1+1. Second, columns n1+1
through n1+n2 are printed for rows 1
through m. This continues until the last
columns are printed for rows 1 through
m. Printing continues in this fashion for
the next m rows, etc.

650 •••• write_options IMSL C/Stat/Library

Keyword Value Meaning
PAGING −2

−1

0

k

No paging occurs.
Paging is on. Every invocation of an
function imsls_write_matrix begins
on a new page, and paging occurs within
each invocation as is needed.
Paging is on. The first invocation of an
imsls_f_write_f_matrix function
begins on a new page, and subsequent
paging occurs as is needed. Paging
occurs in the second and all subsequent
calls to an imsls_f_write_matrix
function only as needed.
Turn paging on and set the number of
lines printed on the current page to k
lines. If k is greater than or equal to the
page length, then the first invocation of
an imsls_write_matrix function
begins on a new page. In any case,
subsequent paging occurs as is needed.

NAN_CHAR 0
1

. is printed for NaN.
A blank field is printed for NaN.

Keyword Value Meaning
TITLE_PAGE 0

1
Title appears only on first page.
Title appears on the first page and all
continuation pages.

FORMAT 0
1
2

Format is "%10.4x".
Format is "%12.6w".
Format is "%22.5e".

The w conversion character used by the FORMAT option is a special conversion
character that can be used to automatically select a pretty C conversion
specification ending in either e, f, or d. The conversion specification ending with
w is specified as "%n.dw". Here, n is the field width, and d is the number of
significant digits generally printed.

Function imsls_write_options can be invoked repeatedly before using a
function imsls_f_write_matrix to print a matrix. The matrix printing
functions retrieve the values set by imsls_write_options to determine the
printing options. It is not necessary to call imsls_write_options if a default

Chapter 13: Printing Functions write_options •••• 651

value of a printing option is desired. The defaults are as follows:

Keyword Default Value Meaning

CENTERING 0 left justified
ROW_WRAP 1000 lines before wrapping
PAGING −2 no paging
NAN_CHAR 0
TITLE_PAGE 0 title appears only on the

first page
FORMAT 0 %10.4w

Example
The following example illustrates the effect of imsls_write_options when
printing a 3 × 4 real matrix A with function imsls_f_write_matrix, where
aij = i + j/10. The first call to imsls_f_write_options sets horizontal
centering so that the matrix is printed centered horizontally on the page. In the
next invocation of imsls_f_write_matrix, the left-justification option has
been set by function imsls_write_options so the matrix is left justified when
printed.

#include <imsls.h>

#define NRA 4
#define NCA 3

main()
{

int i, j, option_value;
float a[NRA][NCA];

for (i = 0; i < NRA; i++) {
for (j = 0; j < NCA; j++) {

a[i][j] = (i+1) + (j+1)/10.0;
}

}
/* Activate centering option */

option_value = 1;
imsls_write_options (IMSLS_SET_CENTERING, &option_value);

/* Write a matrix */
imsls_f_write_matrix ("a", NRA, NCA, (float*) a, 0);

/* Activate left justification */
option_value = 0;
imsls_write_options (IMSLS_SET_CENTERING, &option_value);
imsls_f_write_matrix ("a", NRA, NCA, (float*) a, 0);

}

652 •••• write_options IMSL C/Stat/Library

Output

a
1 2 3

1 1.1 1.2 1.3
2 2.1 2.2 2.3
3 3.1 3.2 3.3
4 4.1 4.2 4.3

a
1 2 3

1 1.1 1.2 1.3
2 2.1 2.2 2.3
3 3.1 3.2 3.3
4 4.1 4.2 4.3

Chapter 14: Utilities Routines •••• 653

Chapter 14: Utilities

Routines
14.1 Set Output Files

Sets output files... output_file 654
Gets library version and license number................................ version 658

14.2 Error Handling
Error message options ... error_options 659
Gets error code .. error_code 665

14.3 Constants
Integer machine constantsmachine (integer) 666
Float machine constants ..machine (float) 668
Common data sets ... data_sets 670

14.4 Mathematical Support
Matrix-vector, matrix-matrix,
vector-vector products..mat_mul_rect 673
Rearranges elements of vectorpermute_vector 676
Interchange rows and columns of matrices permute_matrix 678
Evaluates the binomial coeficient.......................binomial_coefficient 680
Evaluates the complete beta function ...beta 681
Evaluates the real incomplete beta function beta_incomplete 682
Evaluates the log of the real beta function........................... log_beta 683
Evaluates the real gamma function....................................... gamma 685
Evaluates the incomplete gamma function gamma_incomplete 687
Evaluates the logarithm of the absolute value
of the gamma function...log_gamma 689
Returns the number of CPU seconds used ctime 691

654 •••• output_file IMSL C/Stat/Library

output_file
Sets the output file or the error message output file.

Synopsis with Optional Arguments
#include <imsls.h>

void imsls_output_file (
IMSLS_SET_OUTPUT_FILE, FILE *ofile,
IMSLS_GET_OUTPUT_FILE, FILE **pofile,
IMSLS_SET_ERROR_FILE, FILE *efile,
IMSLS_GET_ERROR_FILE, FILE **pefile,
0)

Optional Arguments
IMSLS_SET_OUTPUT_FILE, FILE *ofile (Input)

Sets the output file to ofile.
Default: ofile = stdout

IMSLS_GET_OUTPUT_FILE, FILE **pofile (Output)
Sets the FILE pointed to by pofile to the current output file.

IMSLS_SET_ERROR_FILE, FILE *efile (Input)
Sets the error message output file to efile.
Default: efile = stderr

IMSLS_GET_ERROR_FILE, FILE **pefile (Output)
Sets the FILE pointed to by pefile to the error message output file.

Description
This function allows the file used for printing by IMSL functions to be changed.

If multiple threads are used then default settings are valid for each thread. When
using threads it is possible to set different output files for each thread by calling
imsls_output_file from within each thread. See Example 2 for more details.

Examples

Example 1
This example opens the file myfile and sets the output file to this new file.
Function imsls_f_write_matrix then writes to this file.

#include <stdio.h>
#include <imsls.h>

main()
{

FILE *ofile;
float x[] = {3.0, 2.0, 1.0};

Chapter 14: Utilities output_file •••• 655

imsls_f_write_matrix ("x (default file)", 1, 3, x, 0);

ofile = fopen("myfile", "w");
imsls_output_file(IMSLS_SET_OUTPUT_FILE, ofile,

0);
imsls_f_write_matrix ("x (myfile)", 1, 3, x, 0);

}

Output

x (default file)
1 2 3
3 2 1

File myfile
x (myfile)
1 2 3
3 2 1

Example 2
The following example illustrates how to direct output from IMSL routines that
run in separate threads to different files. First, two threads are created, each
calling a different IMSL function, then the results are printed by calling
imsls_f_write_matrix from within each thread. Note that
imsls_output_file is called from within each thread to change the default
output file.

#include <pthread.h>

#include <stdio.h>

#include "imsls.h"

void *ex1(void* arg);

void *ex2(void* arg);

void main()

{

pthread_t thread1;

pthread_t thread2;

/* Disable IMSL signal trapping. */

imsls_error_options(IMSLS_SET_SIGNAL_TRAPPING, 0, 0);

/* Create two threads. */

656 •••• output_file IMSL C/Stat/Library

if (pthread_create(&thread1, NULL ,ex1, (void *)NULL) != 0)

perror("pthread_create"), exit(1);

if (pthread_create(&thread2, NULL ,ex2, (void *)NULL) != 0)

perror("pthread_create"), exit(1);

/* Wait for threads to finish. */

if (pthread_join(thread1, NULL) != 0)

perror("pthread_join"),exit(1);

if (pthread_join(thread2, NULL) != 0)

perror("pthread_join"),exit(1);

}

void *ex1(void* arg)

{

float *rand_nums = NULL;

FILE *file_ptr;

/* Open a file to write the result in. */

file_ptr = fopen("ex1.out", "w");

/* Set the output file for this thread. */

imsls_output_file(IMSLS_SET_OUTPUT_FILE, file_ptr, 0);

/* Compute 5 random numbers. */

imsls_random_seed_set(12345);

rand_nums = imsls_f_random_uniform(5, 0);

/* Output random numbers. */

imsls_f_write_matrix("Random Numbers", 5, 1, rand_nums, 0);

if (rand_nums) free(rand_nums);

fclose(file_ptr);

}

void *ex2(void* arg)

{

int n_intervals=10;

int n_observations=30;

Chapter 14: Utilities output_file •••• 657

float *table;

float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,

2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,

0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,

1.89, 0.90, 2.05};

FILE *file_ptr;

/* Open a file to write the result in. */

file_ptr = fopen("ex2.out", "w");

/* Set the output file for this thread. */

imsls_output_file(IMSLS_SET_OUTPUT_FILE, file_ptr, 0);

table = imsls_f_table_oneway (n_observations, x, n_intervals, 0);

imsls_f_write_matrix("counts", 1, n_intervals, table, 0);

if (table) free(table);

fclose(file_ptr);

}

ex1.out

Random Numbers

1 0.4919

2 0.3909

3 0.2645

4 0.1814

5 0.7546

ex2.out

counts

1 2 3 4 5 6

4 8 5 5 3 1

7 8 9 10

3 0 0 1

658 •••• version IMSL C/Stat/Library

version
Returns information describing the version of the library, serial number, operating
system, and compiler.

Synopsis

#include <imsls.h>

char *imsls_version (Imsls_keyword code)

Required Arguments

Imsls_keyword code (Input)
Index indicating which value is to be returned. It must be
IMSLS_LIBRARY_VERSION, IMSLS_OS_VERSION,
IMSLS_COMPILER_VERSION, or IMSLS_LICENSE_NUMBER.

Return Value
The requested value is returned. If code is out of range, then NULL is returned.
Use free to release the returned string.

Description
Function imsls_version returns information describing the version of the
library, the version of the operating system under which it was compiled, the
compiler used, and the IMSL serial number.

Example
This example prints all the values returned by imsls_version on a particular
machine. The output is omitted because the results are system dependent.

#include <imsls.h>

main()
{

char *library_version, *os_version;
char *compiler_version, *license_number;

library_version = imsls_version(IMSLS_LIBRARY_VERSION);
os_version = imsls_version(IMSLS_OS_VERSION);
compiler_version = imsls_version(IMSLS_COMPILER_VERSION);
license_number = imsls_version(IMSLS_LICENSE_NUMBER);

printf("Library version = %s\n", library_version);
printf("OS version = %s\n", os_version);
printf("Compiler version = %s\n", compiler_version);
printf("Serial number = %s\n", license_number);

}

Chapter 14: Utilities error_options •••• 659

error_options
Sets various error handling options.

Synopsis with Optional Arguments
#include <imsls.h>

void imsls_error_options (
IMSLS_SET_PRINT, Imsls_error type, int setting,
IMSLS_SET_STOP, Imsls_error type, int setting,
IMSLS_SET_TRACEBACK, Imsls_error type, int setting,
IMSLS_FULL_TRACEBACK, int setting,
IMSLS_GET_PRINT, Imsls_error type, int *psetting,
IMSLS_GET_STOP, Imsls_error type, int *psetting,
IMSLS_GET_TRACEBACK, Imsls_error type, int *psetting,
IMSLS_SET_ERROR_FILE, FILE *file,
IMSLS_GET_ERROR_FILE, FILE **pfile,
IMSLS_ERROR_MSG_PATH, char *path,
IMSLS_ERROR_MSG_NAME, char *name,
IMSLS_ERROR_PRINT_PROC, Imsls_error_print_proc print_proc,
IMSLS_SET_SIGNAL_TRAPPING, int setting,
 0)

Optional Arguments
IMSLS_SET_PRINT, Imsls_error type, int setting (Output)

Printing of type type error messages is turned off if setting is 0;
otherwise, printing is turned on.
Default: Printing turned on for IMSLS_WARNING, IMSLS_FATAL,
IMSLS_TERMINAL, IMSLS_FATAL_IMMEDIATE, and
IMSLS_WARNING_IMMEDIATE messages

IMSLS_SET_STOP, Imsls_error type, int setting (Input)
Stopping on type type error messages is turned off if setting is 0;
otherwise, stopping is turned on.
Default: Stopping turned on for IMSLS_FATAL and IMSLS_TERMINAL
and IMSLS_FATAL_IMMEDIATE messages

IMSLS_SET_TRACEBACK, Imsls_error type, int setting (Input)
Printing of a traceback on type type error messages is turned off if
setting is 0; otherwise, printing of the traceback turned on.
Default: Traceback turned off for all message types

IMSLS_FULL_TRACEBACK, int setting (Input)
Only documented functions are listed in the traceback if setting is 0;
otherwise, internal function names also are listed.
Default: Full traceback turned off

660 •••• error_options IMSL C/Stat/Library

IMSLS_GET_PRINT, Imsls_error type, int *psetting (Output)
Sets the integer pointed to by psetting to the current setting for
printing of type type error messages.

IMSLS_GET_STOP, Imsls_error type, int *psetting (Output)
Sets the integer pointed to by psetting to the current setting for
stopping on type type error messages.

IMSLS_GET_TRACEBACK, Imsls_error type, int *psetting (Output)
Sets the integer pointed to by psetting to the current setting for
printing of a traceback for type type error messages.

IMSLS_SET_ERROR_FILE, FILE *file (Input)
Sets the error output file.
Default: file = stderr

IMSLS_GET_ERROR_FILE, FILE **pfile (Output)
Sets the FILE * pointed to by pfile to the error output file.

IMSLS_ERROR_MSG_PATH, char *path (Input)
Sets the error message file path. On UNIX systems, this is a colon-
separated list of directories to be searched for the file containing the
error messages.
Default: system dependent

IMSLS_ERROR_MSG_NAME, char *name (Input)
Sets the name of the file containing the error messages.
Default: file = "imsls_e.bin"

IMSLS_ERROR_PRINT_PROC, Imsls_error_print_proc print_proc (Input)
Sets the error printing function. The procedure print_proc has the
form void print_proc (Imsls_error type, long code,
char *function_name, char *message).

In this case, type is the error message type number (IMSLS_FATAL,
etc.), code is the error message code number
(IMSLS_MAJOR_VIOLATION, etc.), function_name is the name of the
function setting the error, and message is the error message to be printed.
If print_proc is NULL, then the default error printing function is used.

IMSLS_SET_SIGNAL_TRAPPING, int setting (Input)
C/Stat/Library will use its own signal handler if setting is 1; otherwise
the C/Stat/Library signal handler is not used. If C/Stat/Library is called
from a multi-threaded application, signal handling by C/Stat/Library
must be turned off. See example 3 for details.

Default: setting = 1

Return Value
The return value is void.

Chapter 14: Utilities error_options •••• 661

Description
This function allows the error handling system to be customized.

If multiple threads are used then default settings are valid for each thread but can
be altered for each individual thread. When using threads it is necessary to set
options (excluding IMSLS_SET_SIGNAL_TRAPPING) for each thread by calling
imsls_error_options from within each thread.

The IMSL signal-trapping mechanism must be disabled when multiple threads are
used. The IMSL signal-trapping mechanism can be disabled by making the
following call before any threads are created:

imsls_error_options(IMSLS_SET_SIGNAL_TRAPPING, 0, 0);

 See Examples 3 and 4 for multithreaded examples.

Examples

Example 1
In this example, the IMSLS_TERMINAL print setting is retrieved. Next, stopping
on IMSLS_TERMINAL errors is turned off, output to standard output is redirected,
and an error is deliberately caused by calling imsls_error_options with an
illegal value.

#include <imsls.h>
#include <stdio.h>

main()
{

int setting;
/* Turn off stopping on IMSLS_TERMINAL */
/* error messages and write error */
/* messages to standard output */

imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
IMSLS_SET_ERROR_FILE, stdout,
0);

/* Call imsls_error_options() with */
/* an illegal value */

imsls_error_options(-1);
/* Get setting for IMSLS_TERMINAL */

imsls_error_options(IMSLS_GET_PRINT, IMSLS_TERMINAL, &setting,
0);

printf("IMSLS_TERMINAL error print setting = %d\n", setting);
}

Output
*** TERMINAL Error from imsls_error_options. There is an error with
*** argument number 1. This may be caused by an incorrect number of
*** values following a previous optional argument name.

IMSLS_TERMINAL error print setting = 1

662 •••• error_options IMSL C/Stat/Library

Example 2
In this example, IMSL�s error printing function has been substituted for the
standard function. Only the first four lines are printed below.

#include <imsls.h>
#include <stdio.h>

void print_proc(Imsls_error, long, char*, char*);

main()
{

/* Turn off tracebacks on IMSLS_TERMINAL */
/* error messages and use a custom */
/* print function */

imsls_error_options(IMSLS_ERROR_PRINT_PROC, print_proc,
0);

/* Call imsls_error_options() with an */
/* illegal value */

imsls_error_options(-1);
}

void print_proc(Imsls_error type, long code, char *function_name,
char *message)

{
printf("Error message type %d\n", type);
printf("Error code %d\n", code);
printf("From function %s\n", function_name);
printf("%s\n", message);

}

Output

Error message type 5
Error code 103
From function imsls_error_options
There is an error with argument number 1. This may be caused by an
incorrect number of values following a previous optional argument name.

Example 3
In this example, two threads are created and error options is called within each
thread to set the error handling options slightly different for each thread. Since
we expect to generate terminal errors in each thread, we must turn off stopping on
terminal errors for each thread. Also notice that imsls_error_options is
called from main to disable the IMSL signal-trapping mechanism.
See Example 4 for a similar example, using WIN32 threads. Note since multiple
threads are executing, the order of the errors output may differ on some systems.

#include <pthread.h>
#include <stdio.h>
#include "imsls.h"

void *ex1(void* arg);
void *ex2(void* arg);
void main()

Chapter 14: Utilities error_options •••• 663

{
pthread_t thread1;
pthread_t thread2;

/* Disable IMSL signal trapping. */
imsls_error_options(IMSLS_SET_SIGNAL_TRAPPING, 0, 0);

/* Create two threads. */
if (pthread_create(&thread1, NULL ,ex1, (void *)NULL) != 0)

perror("pthread_create"), exit(1);
if (pthread_create(&thread2, NULL ,ex2, (void *)NULL) != 0)

perror("pthread_create"), exit(1);

/* Wait for threads to finish. */
if (pthread_join(thread1, NULL) != 0)

perror("pthread_join"),exit(1);
if (pthread_join(thread2, NULL) != 0)

perror("pthread_join"),exit(1);

}

void *ex1(void* arg)
{

float res;
/*
* Call imsls_error_options to set the error handling
* options for this thread.
*/

imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0, 0);
res = imsls_f_beta(-1.0, .5);

}
void *ex2(void* arg)
{

float res;
/*
* Call imsls_error_options to set the error handling
* options for this thread. Notice that tracebacks are
* turned on for IMSLS_TERMINAL errors.
*/

imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
IMSLS_SET_TRACEBACK, IMSLS_TERMINAL, 1, 0);

res = imsls_f_gamma(-1.0);
}

Output

*** TERMINAL Error from imsls_f_beta. Both "x" = -1.000000e+00 and "y" =
*** 5.000000e-01 must be greater than zero.

*** TERMINAL Error from imsls_f_gamma. The argument for the function can
*** not be a negative integer. Argument "x" = -1.000000e+00.

Here is a traceback of the calls in reverse order.
Error Type Error Code Routine
---------- ---------- -------

IMSLS_TERMINAL IMSLS_NEGATIVE_INTEGER imsls_f_gamma

664 •••• error_options IMSL C/Stat/Library

Example 4
In this example the WIN32 API is used to demonstrate the same functionality as
shown in Example 3 above. Note since multiple threads are executing, the order
of the errors output may differ on some systems.

#include <windows.h>
#include <stdio.h>
#include "imsls.h"

DWORD WINAPI ex1(void *arg);
DWORD WINAPI ex2(void *arg);

int main(int argc, char* argv[])
{

HANDLE thread[2];

imsls_error_options(IMSLS_SET_SIGNAL_TRAPPING, 0, 0);

thread[0] = CreateThread(NULL, 0, ex1, NULL, 0, NULL);
thread[1] = CreateThread(NULL, 0, ex2, NULL, 0, NULL);

WaitForMultipleObjects(2, thread, TRUE, INFINITE);

}
DWORD WINAPI ex1(void *arg)
{

float res;
/*
* Call imsls_error_options to set the error handling
* options for this thread.
*/

imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
0);

res = imsls_f_beta(-1.0, .5);
return(0);

}
DWORD WINAPI ex2(void *arg)
{

float res;
/*
* Call imsls_error_options to set the error handling
* options for this thread. Notice that tracebacks are
* turned on for IMSLS_TERMINAL errors.
*/

imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
IMSLS_SET_TRACEBACK, IMSLS_TERMINAL, 1,
0);

res = imsls_f_gamma(-1.0);
return(0);

}

Output

*** TERMINAL Error from imsls_f_beta. Both "x" = -1.000000e+000 and "y" =

Chapter 14: Utilities error_code •••• 665

*** 5.000000e-001 must be greater than zero.

*** TERMINAL Error from imsls_f_gamma. The argument for the function can
*** not be a negative integer. Argument "x" = -1.000000e+000.

Here is a traceback of the calls in reverse order.
Error Type Error Code Routine
---------- ---------- -------

IMSLS_TERMINAL IMSLS_NEGATIVE_INTEGER imsls_f_gamma
USER

error_code
Gets the code corresponding to the error message from the last function called.

Synopsis

#include <imsls.h>

long imsls_error_code ()

Return Value
This function returns the error message code from the last function called. The
include file imsls.h defines a name for each error code.

Example
In this example, stopping on IMSLS_TERMINAL error messages is turned off and
an error is then generated by calling function imsls_error_options with an
illegal value for IMSLS_SET_PRINT. The error message code number is then
retrieved and printed. In imsls.h, IMSLS_INTEGER_OUT_OF_RANGE is defined to
be 132.

#include <imsls.h>
#include <stdio.h>

main()
{

long code;
/* Turn off stopping IMSLS_TERMINAL */
/* messages and print error messages */
/* on standard output */

imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
IMSLS_SET_ERROR_FILE, stdout,
0);

/* Call imsls_error_options() with */
/* an illegal value */

imsls_error_options(IMSLS_SET_PRINT, 100, 0,
0);

/* Get the error message code */
code = imsls_error_code();
printf("error code = %d\n", code);

}

666 •••• machine (integer) IMSL C/Stat/Library

Output

*** 5, but "type" = 100.

error code = 132

machine (integer)
Returns integer information describing the computer�s arithmetic.

Synopsis

#include <imsls.h>

int imsls_i_machine (int n)

Required Arguments

int n (Input)
Index indicating which value is to be returned. It must be between 0 and
12.

Return Value
The requested value is returned. If n is out of range, NaN is returned.

Description
Function imsls_i_machine returns information describing the computer�s
arithmetic. This can be used to make programs machine independent.

imsls_i_machine(0) = Number of bits per byte

Assume that integers are represented in M-digit, base-A form as

σ x Ak
k

M
k

=
�

0

where σ is the sign and 0 ≤ xk < A for k = 0, …, M. Then,

n Definition
0 C, bits per character
1 A, the base
2 Ms, the number of base-A digits in a short int

3 AMs −1, the largest short int

4 Ml, the number of base-A digits in a long int

5 AMl −1, the largest long int

Carol Hayes

Chapter 14: Utilities machine (integer) •••• 667

Assume that floating-point numbers are represented in N-digit, base B form as

σB x BE
k

k

N
k

−

−
�

1

where σ is the sign and 0 ≤ xk < B for k = 1, …, N and E$ ≤ E ≤ E". Then

n Definition
6 B, the base
7 Nf, the number of base-B digits in float

8 E
fmin , the smallest exponentfloat

9 E
fmax , the largest exponentfloat

10 Nd, the number of base-B digits in double

11 E
dmin , the largest long int

12 E B
dmax , the number of base - digits in double

Example
In this example, all the values returned by imsls_i_machine on a machine with
IEEE (Institute for Electrical and Electronics Engineer) arithmetic are printed.

#include <imsls.h>

main()
{

int n, ans;

for (n = 0; n <= 12; n++) {
ans = imsls_i_machine(n);
printf("imsls_i_machine(%d) = %d\n", n, ans);

}
}

Output

imsls_i_machine(0) = 8
imsls_i_machine(1) = 2
imsls_i_machine(2) = 15
imsls_i_machine(3) = 32767
imsls_i_machine(4) = 31
imsls_i_machine(5) = 2147483647
imsls_i_machine(6) = 2
imsls_i_machine(7) = 24
imsls_i_machine(8) = -125
imsls_i_machine(9) = 128
imsls_i_machine(10) = 53
imsls_i_machine(11) = -1021
imsls_i_machine(12) = 1024

668 •••• machine (float) IMSL C/Stat/Library

machine (float)

Synopsis

#include <imsls.h>

float imsls_f_machine (int n)

The type double function is imsls_d_machine.

Required Arguments

int n (Input)
Index indicating which value is to be returned. The index must be
between 1 and 8.

Return Value
The requested value is returned. If n is out of range, NaN is returned.

Description
Function imsls_f_machine returns information describing the computer�s
floating-point arithmetic. This can be used to make programs machine
independent. In addition, some of the functions are also important in setting
missing values.

Assume that float numbers are represented in Nf-digit, base B form as

σB x BE
k

k

N
k

f

=

−
�

1

where σ is the sign; 0 ≤ xk < B for k = 1, 2, …, Nf; and

E E E
f fmin max≤ ≤

Note that B = imsls_i_machine(6); Nf = imsls_i_machine(7);

E
fmin =imsls_i_ machine(8)

and

E
fmax = imsls_i_ machine(9)

The ANSI/IEEE 754-1985 standard for binary arithmetic uses NaN as the result
of various otherwise illegal operations, such as computing 0/0. On computers that
do not support NaN, a value larger than imsls_d_machine(2) is returned for
imsls_f_machine(6). On computers that do not have a special representation
for infinity, imsls_f_machine(2) returns the same value as
imsls_f_machine(7).

Chapter 14: Utilities machine (float) •••• 669

Function imsls_f_machine is defined by the following table:

n Definition
1 B

E fmin ,
−1

 the smallest positive number

2 B B
E Nf fmax (),1− − the largest number

3 B N f− , the smallest relative spacing

4 B N f1− , the largest relative spacing

5 log10(B)

6 NaN
7 positive machine infinity
8 negative machine infinity

Function imsls_d_machine retrieves machine constants that define the
computer�s double arithmetic. Note that for double B = imsls_i_machine(6),
Nd = imsls_i_machine(10),

E
dmin =imsls_i_ machine(11)

and

E
dmax =imsls_i_ machine(12)

Missing values in functions are always indicated by NaN. This is
imsls_f_machine(6) in single precision and imsls_d_machine(6) in double
precision. There is no missing-value indicator for integers. Users will almost
always have to convert from their missing value indicators to NaN.

Example
In this example, all eight values returned by imsls_f_machine and by
imsls_d_machine on a machine with IEEE arithmetic are printed.

#include <imsls.h>

main()
{

int n;
float fans;
double dans;

for (n = 1; n <= 8; n++) {
fans = imsls_f_machine(n);
printf("imsls_f_machine(%d) = %g\n", n, fans);

}

for (n = 1; n <= 8; n++) {
dans = imsls_d_machine(n);
printf("imsls_d_machine(%d) = %g\n", n, dans);

670 •••• data_sets IMSL C/Stat/Library

}
}

Output

imsls_f_machine(1) = 1.17549e-38
imsls_f_machine(2) = 3.40282e+38
imsls_f_machine(3) = 5.96046e-08
imsls_f_machine(4) = 1.19209e-07
imsls_f_machine(5) = 0.30103
imsls_f_machine(6) = NaN
imsls_f_machine(7) = Inf
imsls_f_machine(8) = -Inf
imsls_d_machine(1) = 2.22507e-308
imsls_d_machine(2) = 1.79769e+308
imsls_d_machine(3) = 1.11022e-16
imsls_d_machine(4) = 2.22045e-16
imsls_d_machine(5) = 0.30103
imsls_d_machine(6) = NaN
imsls_d_machine(7) = Inf
imsls_d_machine(8) = -Inf

data_sets
Retrieves a commonly analyzed data set.

Synopsis

#include <imsls.h>

float *imsls_f_data_sets (int data_set_choice, ..., 0)

The type double function is imsls_d_data_sets.

Required Arguments

int data_set_choice (Input)
Data set indicator. Set data_set_choice = 0 to print a description of
all nine data sets. In this case, any optional arguments are ignored.

data_set_choice n_observations n_variables Description of
Data Set

1 16 7 Longley
2 176 2 Wolfer sunspot

3 150 5 Fisher iris
4 144 1 Box and Jenkins

Series G
5 13 5 Draper and Smith

Appendix B

Carol Hayes

Carol Hayes

Chapter 14: Utilities data_sets •••• 671

data_set_choice n_observations n_variables Description of
Data Set

6 197 1 Box and Jenkins
Series A

7 296 2 Box and Jenkins
Series J

8 100 4 Robinson
Multichannel
Time Series

9 113 34 Afifi and Azen
Data Set A

Return Value
If data_set_choice ≠ 0, the requested data set is returned. If
data_set_choice = 0 or an error occurs, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_data_sets (int data_set_choice,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_N_OBSERVATIONS, int *n_observations,
IMSLS_N_VARIABLES, int *n_variables,
IMSLS_PRINT_NONE,
IMSLS_PRINT_BRIEF,
IMSLS_PRINT_ALL,
IMSLS_RETURN_USER, float x[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of user allocated space.

IMSLS_N_OBSERVATIONS, int *n_observations (Output)
Number of observations or rows in the output matrix.

IMSLS_N_VARIABLES, int *n_variables (Output)
Number of variables or columns in the output matrix.

IMSLS_PRINT_NONE

No printing is performed. This option is the default.

IMSLS_PRINT_BRIEF

Rows 1 through 10 of the data set are printed.

IMSLS_PRINT_ALL

All rows of the data set are printed.

672 •••• data_sets IMSL C/Stat/Library

IMSLS_RETURN_USER, float x[] (Output)
User-supplied array containing the data set.

Description
Function imsls_f_data_sets retrieves a standard data set frequently cited in
statistics text books or in this manual. The following tables gives the references
for each data set:

data_set_choice Reference
1 Longley (1967)
2 Anderson (1971, p.660)
3 Fisher (1936); Mardia et al. (1979, Table 1.2.2)
4 Box and Jenkins (1976, p. 531)
5 Draper and Smith (1981, pp. 629-630)
6 Box and Jenkins (1976, p. 525)
7 Box and Jenkins (1976, pp. 532-533)
8 Robinson (1976, p. 204)
9 Afifi and Azen (1979, pp. 16-22)

Example
In this example, imsls_f_data_sets is used to copy the Draper and Smith
(1981, Appendix B) data set into x.

#include <imsls.h>

main()
{

float *x;

x = imsls_f_data_sets (5, 0);

imsls_f_write_matrix("Draper and Smith, Appendix B", 13, 5, x, 0);
}

Output

Draper and Smith, Appendix B
1 2 3 4 5

1 7.0 26.0 6.0 60.0 78.5
2 1.0 29.0 15.0 52.0 74.3
3 11.0 56.0 8.0 20.0 104.3
4 11.0 31.0 8.0 47.0 87.6
5 7.0 52.0 6.0 33.0 95.9
6 11.0 55.0 9.0 22.0 109.2
7 3.0 71.0 17.0 6.0 102.7
8 1.0 31.0 22.0 44.0 72.5
9 2.0 54.0 18.0 22.0 93.1
10 21.0 47.0 4.0 26.0 115.9

Chapter 14: Utilities mat_mul_rect •••• 673

11 1.0 40.0 23.0 34.0 83.8
12 11.0 66.0 9.0 12.0 113.3
13 10.0 68.0 8.0 12.0 109.4

mat_mul_rect
Computes the transpose of a matrix, a matrix-vector product, a matrix-matrix
product, a bilinear form, or any triple product.

Synopsis

#include <imsls.h>

float *imsls_f_mat_mul_rect (char *string, ..., 0)

The type double function is imsls_d_mat_mul_rect.

Required Arguments

char *string (Input)
String indicating operation to be performed. See �Description.�

Return Value
The result of the operation. This is always a pointer to a float, even if the result is
a single number. If no answer was computed, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_mat_mul_rect (char *string,
IMSLS_A_MATRIX, int nrowa, int ncola, float a[],
IMSLS_A_COL_DIM, int a_col_dim,
IMSLS_B_MATRIX, int nrowb, int ncolb, float b[],
IMSLS_B_COL_DIM, int b_col_dim,
IMSLS_X_VECTOR, int nx, float *x,
IMSLS_Y_VECTOR, int ny, float *y,
IMSLS_RETURN_USER, float ans[],
IMSLS_RETURN_COL_DIM, int return_col_dim,
0)

Optional Arguments
IMSLS_A_MATRIX, int nrowa, int ncola, float a[] (Input)

The nrowa × ncola matrix A.

IMSLS_A_COL_DIM, int a_col_dim (Input)
Column dimension of A.
Default: a_col_dim = ncola

674 •••• mat_mul_rect IMSL C/Stat/Library

IMSLS_B_MATRIX, int nrowb, int ncolb, float b[] (Input)
The nrowb × ncolb matrix A.

IMSLS_B_COL_DIM, int b_col_dim (Input)
Column dimension of B.
Default: b_col_dim = ncolb

IMSLS_X_VECTOR, int nx, float *x (Input)
Vector x of size nx.

IMSLS_Y_VECTOR, int ny, float *y (Input)
Vector y of size ny.

IMSLS_RETURN_USER, float ans[] (Output)
User-allocated array containing the result.

IMSLS_RETURN_COL_DIM, int return_col_dim (Input)
Column dimension of the answer.
Default: return_col_dim = the number of columns in the answer

Description
This function computes a matrix-vector product, a matrix-matrix product, a
bilinear form of a matrix, or a triple product according to the specification given
by string. For example, if �A*x� is given, Ax is computed. In string, the
matrices A and B and the vectors x and y can be used. Any of these four names
can be used with trans, indicating transpose. The vectors x and y are treated as
n × 1 matrices.

If string contains only one item, such as �x� or �trans(A)�, then a copy of the
array, or its transpose, is returned. If string contains one multiplication, such as
�A*x� or �B*A�, then the indicated product is returned. Some other legal values
for string are �trans(y)*A�, �A*trans(B)�, �x*trans(y)�, or
�trans(x)*y�.

The matrices and/or vectors referred to in string must be given as optional
arguments. If string is �B*x�, then IMSLS_B_MATRIX and IMSLS_X_VECTOR
must be given.

Example
Let A, B, x, and y equal the following matrices:

A B x y=
L
NM

O
QP =
L

N
MMM

O

Q
PPP

=
L

N
MMM

O

Q
PPP

=
L

N
MMM

O

Q
PPP

1 2 9
5 4 7

3 2
7 4
9 1

7
2
1

3
4
2

The arrays AT, Ax, xTAT, AB, BTAT, xTy, xyT and xTAy are computed and
printed.

#include <imsls.h>

main()
{

Chapter 14: Utilities mat_mul_rect •••• 675

float A[] = {1, 2, 9,
5, 4, 7};

float B[] = {3, 2,
7, 4,
9, 1};

float x[] = {7, 2, 1};
float y[] = {3, 4, 2};
float *ans;

ans = imsls_f_mat_mul_rect("trans(A)",
IMSLS_A_MATRIX, 2, 3, A,
0);

imsls_f_write_matrix("trans(A)", 3, 2, ans, 0);

ans = imsls_f_mat_mul_rect("A*x",
IMSLS_A_MATRIX, 2, 3, A,
IMSLS_X_VECTOR, 3, x,
0);

imsls_f_write_matrix("A*x", 1, 2, ans, 0);

ans = imsls_f_mat_mul_rect("trans(x)*trans(A)",
IMSLS_A_MATRIX, 2, 3, A,
IMSLS_X_VECTOR, 3, x,
0);

imsls_f_write_matrix("trans(x)*trans(A)", 1, 2, ans, 0);

ans = imsls_f_mat_mul_rect("A*B",
IMSLS_A_MATRIX, 2, 3, A,
IMSLS_B_MATRIX, 3, 2, B,
0);

imsls_f_write_matrix("A*B", 2, 2, ans, 0);

ans = imsls_f_mat_mul_rect("trans(B)*trans(A)",
IMSLS_A_MATRIX, 2, 3, A,
IMSLS_B_MATRIX, 3, 2, B,
0);

imsls_f_write_matrix("trans(B)*trans(A)", 2, 2, ans, 0);

ans = imsls_f_mat_mul_rect("trans(x)*y",
IMSLS_X_VECTOR, 3, x,
IMSLS_Y_VECTOR, 3, y,
0);

imsls_f_write_matrix("trans(x)*y", 1, 1, ans, 0);

ans = imsls_f_mat_mul_rect("x*trans(y)",
IMSLS_X_VECTOR, 3, x,
IMSLS_Y_VECTOR, 3, y,
0);

imsls_f_write_matrix("x*trans(y)", 3, 3, ans, 0);

ans = imsls_f_mat_mul_rect("trans(x)*A*y",
IMSLS_A_MATRIX, 2, 3, A,

/* use only the first 2 components of x */
IMSLS_X_VECTOR, 2, x,
IMSLS_Y_VECTOR, 3, y,
0);

imsls_f_write_matrix("trans(x)*A*y", 1, 1, ans, 0);
}

676 •••• permute_vector IMSL C/Stat/Library

Output

trans(A)
1 2

1 1 5
2 2 4
3 9 7

A*x
1 2
20 50

trans(x)*trans(A)
1 2
20 50

A*B
1 2

1 98 19
2 106 33

trans(B)*trans(A)
1 2

1 98 106
2 19 33

trans(x)*y
31

x*trans(y)
1 2 3

1 21 28 14
2 6 8 4
3 3 4 2

trans(x)*A*y
293

permute_vector
Rearranges the elements of a vector as specified by a permutation.

Synopsis

#include <imsls.h>

float *imsls_f_permute_vector (int n_elements, float x[],
int permutation[], Imsls_permute permute, ..., 0)

The type double function is imsls_d_permute_vector.

Required Arguments

int n_elements (Input)
Number of elements in the input vector x.

Chapter 14: Utilities permute_vector •••• 677

float x[] (Input)
Array of length n_elements to be permuted.

int permutation[] (Input)
Array of length n_elements containing the permutation.

Imsls_permute permute (Input)
Keyword of type Imsls_permute. Argument permute must be either
IMSLS_FORWARD_PERMUTATION or IMSLS_BACKWARD_PERMUTATION.
If IMSLS_FORWARD_PERMUTATION is specified, then a forward
permutation is performed, i.e., x(permutation[i]) is moved to
location i in the return vector. If IMSLS_BACKWARD_PERMUTATION is
specified, then a backward permutation is performed, i.e., x[i] is
moved to location permutation[i] in the return vector.

Return Value
An array of length n_elements containing the input vector x permuted.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_permute_vector (int n_elements, float x[],
int permutation[], Imsls_permute permute,
IMSLS_RETURN_USER, float permuted_result[],
0)

Optional Arguments
IMSLS_RETURN_USER, float permuted_result[](Output)

User-allocated array containing the result of the permutation.

Description
Function imsls_f_permute_vector rearranges the elements of a vector
according to a permutation vector. The function can perform both forward and
backward permutation.

Example
This example rearranges the vector x using permutation. A forward
permutation is performed.

#include <imsls.h>

void main()
{

float x[] = {5.0, 6.0, 1.0, 4.0};
int permutation[] = {2, 0, 3, 1};
float *output;
int n_elements = 4;

output = imsls_f_permute_vector (n_elements, x, permutation,

678 •••• permute_matrix IMSL C/Stat/Library

IMSLS_FORWARD_PERMUTATION, 0);

imsls_f_write_matrix ("permuted result", 1, n_elements, output,
IMSLS_COL_NUMBER_ZERO, 0);

}

Output

permuted result
0 1 2 3
1 5 4 6

permute_matrix
Permutes the rows or columns of a matrix.

Synopsis

#include <imsls.h>

float *imsls_f_permute_matrix (int n_rows, int n_columns, float a[],
int permutation[], Imsls_permute permute, ..., 0)

The type double function is imsls_d_permute_matrix.

Required Arguments

int n_rows (Input)
Number of rows in the input matrix a.

int n_columns (Input)
Number of columns in the input matrix a.

float a[] (Input)
Matrix of size n_rows × n_columns to be permuted.

int permutation[] (Input)
Array of length n_elements containing the permutation.

Imsls_permute permute (Input)
Keyword of type Imsls_permute. Argument permute must be either
IMSLS_PERMUTE_ROWS, if the rows of a are to be interchanged, or
IMSLS_PERMUTE_COLUMNS, if the columns of a are to be interchanged.

Return Value
Array of size n_rows × n_columns containing the permuted input matrix a.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_permute_matrix (int n_rows, int n_columns,
float a[],

Chapter 14: Utilities permute_matrix •••• 679

int permutation[], Imsls_permute permute,
IMSLS_RETURN_USER, float permuted_result[],
0)

Optional Arguments
IMSLS_RETURN_USER, float permuted_result[] (Output)

User-allocated array of size n_rows × n_columns containing the result
of the permutation.

Description
Function imsls_f_permute_matrix interchanges the rows or columns of a
matrix using a permutation vector. The function permutes a column (row) at a
time using function imsls_f_permute_vector. This process is continued until
all the columns (rows) are permuted. On completion, let B = result and
pi = permutation [i], then Bij = Apij for all i, j.

Example
This example permutes the columns of a matrix a.

#include <imsls.h>

void main()
{

float a[] = {3.0, 5.0, 1.0, 2.0, 4.0,
3.0, 5.0, 1.0, 2.0, 4.0,
3.0, 5.0, 1.0, 2.0, 4.0};

int permutation[] = {2, 3, 0, 4, 1};
float *output;
int n_rows = 3;
int n_columns = 5;

output = imsls_f_permute_matrix (n_rows, n_columns, a, permutation,
IMSLS_PERMUTE_COLUMNS,
0);

imsls_f_write_matrix ("permuted matrix", n_rows, n_columns, output,
IMSLS_ROW_NUMBER_ZERO,
IMSLS_COL_NUMBER_ZERO,
0);

}

Output

permuted matrix
0 1 2 3 4

0 1 2 3 4 5
1 1 2 3 4 5
2 1 2 3 4 5

680 •••• binomial_coefficient IMSL C/Stat/Library

binomial_coefficient
Evaluates the binomial coefficient.

Synopsis

#include <imsls.h>

int imsls_f_binomial_coefficient (int n, int m)

The type double procedure is imsls_d_binomial_coefficient.

Required Arguments

int n (Input)
First parameter of the binomial coefficient. Argument n must be
nonnegative.

int m (Input)
Second parameter of the binomial coefficient. Argument m must be
nonnegative.

Return Value
The binomial coefficient

n
m
F
HG
I
KJ

is returned.

Description
The binomial function is defined to be

n
m

n
m n m

F
HG
I
KJ = −

!
! !b g

with n ≥ m ≥ 0. Also, n must not be so large that the function overflows.

Example

In this example, 5
9e j is computed and printed.

#include <stdio.h>
#include <imsls.h>

main()
{

int n = 9;
int m = 5;
int ans;

Chapter 14: Utilities beta •••• 681

ans = imsls_f_binomial_coefficient(n, m);
printf("binomial coefficient = %d\n", ans);

}

Output

binomial coefficient = 126

beta
Evaluates the complete beta function.

Synopsis

#include <imsls.h>

float imsls_f_beta (float a, float b)

The type double procedure is imsls_d_beta.

Required Arguments

float a (Input)
First beta parameter. It must be positive.

float b (Input)
Second beta parameter. It must be positive.

Return Value
The value of the beta function β(a, b). If no result can be computed, then NaN is
returned.

Description
The beta function, β(a, b), is defined to be

β a b
a b
a b

t t dta b,b g b g b gb g b g=
+

= −− −zΓ Γ
Γ

1

0

1 11

Example
Evaluate the beta function β(0.5, 0.2).

#include <imsls.h>

main()
{

float x = 0.5;
float y = 0.2;
float ans;

ans = imsls_f_beta(x, y);

682 •••• beta_incomplete IMSL C/Stat/Library

printf("beta(%f,%f) = %f\n", x, y, ans);
}

Output

beta(0.500000,0.200000) = 6.268653

Figure 14−1 Plot of β (x, b)

The beta function requires that a > 0 and b > 0. It underflows for large arguments.

Alert Errors
IMSLS_BETA_UNDERFLOW The arguments must not be so large that the

result underflows.

Fatal Errors
IMSLS_ZERO_ARG_OVERFLOW One of the arguments is so close to zero

that the result overflows.

beta_incomplete
Evaluates the real incomplete beta function Ix = βx (a, b)/β(a, b).

Synopsis

#include <imsls.h>

float imsls_f_beta_incomplete (float x, float a, float b)

The type double procedure is imsls_d_beta_incomplete.

Chapter 14: Utilities log_beta •••• 683

Required Arguments

float x (Input)
Point at which the incomplete beta function is to be evaluated.

float a (Input)
Point at which the incomplete beta function is to be evaluated.

float b (Input)
Point at which the incomplete beta function is to be evaluated.

Return Value
The value of the incomplete beta function.

Description
The incomplete beta function is defined to be

I a b
a b

a b a b
t t dtx

x ax b,
,

, ,
b g b g

b g b g b g= = −− −zβ
β β

1 11

0

1

The incomplete beta function requires that 0 ≤ x ≤ 1, a > 0, and b > 0. It
underflows for sufficiently small x and large a. This underflow is not reported as
an error. Instead, the value zero is returned.

Example
Evaluate the log of the incomplete beta function I0.61 =β0.61 (2.2,3.7)/β(2.2,3.7).

#include <imsls.h>

main()
{

float x = 0.61;
float a = 2.2;
float b = 3.7;
float ans;

ans = imsls_f_beta_incomplete(x, a, b);
printf("beta incomplete = %f\n", ans);

}
beta incomplete = 0.8822;

log_beta
Evaluates the logarithm of the real beta function ln β(x, y).

Synopsis

#include <imsls.h>

684 •••• log_beta IMSL C/Stat/Library

float imsls_f_log_beta (float x, float y)

The type double procedure is imsls_d_log_beta.

Required Arguments

float x (Input)
Point at which the logarithm of the beta function is to be evaluated. It
must be positive.

float y (Input)
Point at which the logarithm of the beta function is to be evaluated. It
must be positive.

Return Value
The value of the logarithm of the beta function β(x, y).

Description
The beta function, β(x, y), is defined to be

β x y
x y
x y

t t dtx y,b g b g b gb g b g=
+

= −− −zΓ Γ
Γ

1

0

1 11

and imsls_f_log_beta returns ln β(x, y).

The logarithm of the beta function requires that x > 0 and y > 0. It can overflow
for very large arguments.

Warning Errors
IMSLS_X_IS_TOO_CLOSE_TO_NEG_1 The result is accurate to less than

one precision because the
expression −x/(x + y) is too close
to −1.

Example
Evaluate the log of the beta function ln β(0.5, 0.2).

#include <imsls.h>

main()
{

float x = 0.5;
float y = 0.2;
float ans;

ans = imsls_f_log_beta(x, y);
printf("log beta(%f,%f) = %f\n", x, y, ans);

}

Chapter 14: Utilities gamma •••• 685

Output

log beta(0.500000,0.200000) = 1.835562

gamma
Evaluates the real gamma function.

Synopsis

#include <imsls.h>

float imsls_f_gamma (float x)

The type double procedure is imsls_d_gamma.

Required Arguments

float x (Input)
Point at which the gamma function is to be evaluated.

Return Value
The value of the gamma function Γ(x).

Description
The gamma function, Γ(x), is defined to be

Γ x t e dtx tb g = − −∞z 1

0

For x < 0, the above definition is extended by analytic continuation.

The gamma function is not defined for integers less than or equal to zero. It
underflows for x << 0 and overflows for large x. It also overflows for values near
negative integers.

686 •••• gamma IMSL C/Stat/Library

Figure 14-2 Plot of Γ(x) and 1/Γ(x)

Alert Errors
IMSLS_SMALL_ARG_UNDERFLOW The argument x must be large

enough that Γ(x) does not
underflow. The underflow limit
occurs first for arguments close to
large negative half integers. Even
though other arguments away from
these half integers may yield
machine-representable values of
Γ(x), such arguments are
considered illegal.

Warning Errors
IMSLS_NEAR_NEG_INT_WARN The result is accurate to less than

one-half precision because x is too
close to a negative integer.

Example
In this example, Γ(1.5) is computed and printed.

#include <stdio.h>

Chapter 14: Utilities gamma_incomplete •••• 687

#include <imsls.h>

main()
{

float x = 1.5;
float ans;

ans = imsls_f_gamma(x);
printf("Gamma(%f) = %f\n", x, ans);

}

Output

Gamma(1.500000) = 0.886227

Fatal Errors
IMSLS_ZERO_ARG_OVERFLOW The argument for the gamma function is too

close to zero.

IMSLS_NEAR_NEG_INT_FATAL The argument for the function is too close
to a negative integer.

IMSLS_LARGE_ARG_OVERFLOW The function overflows because x is too
large.

IMSLS_CANNOT_FIND_XMIN The algorithm used to find x$ failed. This
error should never occur.

IMSLS_CANNOT_FIND_XMAX The algorithm used to find x" failed. This
error should never occur.

gamma_incomplete
Evaluates the incomplete gamma function γ(a, x).

Synopsis

#include <imsls.h>

float imsls_f_gamma_incomplete (float a, float x)

The type double procedure is imsls_d_gamma_incomplete.

Required Arguments

float a (Input)
Parameter of the incomplete gamma function is to be evaluated. It must
be positive.

float x (Input)
Point at which the incomplete gamma function is to be evaluated. It must
be nonnegative.

688 •••• gamma_incomplete IMSL C/Stat/Library

Return Value
The value of the incomplete gamma function γ(a, x).

Description
The incomplete gamma function, γ(a, x), is defined to be

γ a x t e dtax t,b g = − −z 1

0

for x > 0. The incomplete gamma function is defined only for a > 0. Although
γ(a, x) is well defined for x > −∞, this algorithm does not calculate γ(a, x) for
negative x. For large a and sufficiently large x, γ(a, x) may overflow. γ(a, x) is
bounded by Γ(a), and users may find this bound a useful guide in determining
legal values for a.

Figure 14-3 Contour Plot of γ(a, x)

Example
Evaluates the incomplete gamma function at a = 1 and x = 3.

#include <stdio.h>
#include <imsls.h>

main()
{

float x = 3.0;

Chapter 14: Utilities log_gamma •••• 689

float a = 1.0;
float ans;

ans = imsls_f_gamma_incomplete(a, x);
printf("incomplete gamma(%f,%f) = %f\n", a, x, ans);

}

Output
incomplete gamma(1.000000,3.000000) = 0.950213

Fatal Errors
IMSLS_NO_CONV_200_TS_TERMS The function did not converge in

200 terms of Taylor series.

IMSLS_NO_CONV_200_CF_TERMS The function did not converge in
200 terms of the continued
fraction.

log_gamma
Evaluates the logarithm of the absolute value of the gamma function log |Γ(x)|.

Synopsis

#include <imsls.h>

float imsls_f_log_gamma (float x)

The type double procedure is imsls_d_log_gamma.

Required Arguments

float x (Input)
Point at which the logarithm of the absolute value of the gamma function
is to be evaluated.

Return Value
The value of the logarithm of gamma function log |Γ(x)|.

Description
The logarithm of the absolute value of the gamma function log |Γ(x)| is computed.

690 •••• log_gamma IMSL C/Stat/Library

Figure 14-4 Plot of log|Γ(x)|

Example
In this example, log |Γ(3.5)| is computed and printed.

#include <stdio.h>
#include <imsls.h>

main()
{

float x = 3.5;
float ans;
ans = imsls_f_log_gamma(x);
printf("log gamma(%f) = %f\n", x, ans);

}

Output

log gamma(3.500000) = 1.200974

Warning Errors
IMSLS_NEAR_NEG_INT_WARN The result is accurate to less than

one-half precision because x is too
close to a negative integer.

Chapter 14: Utilities ctime •••• 691

Fatal Errors
IMSLS_NEGATIVE_INTEGER The argument for the function

cannot be a negative integer.

IMSLS_NEAR_NEG_INT_FATAL The argument for the function is
too close to a negative integer.

IMSLS_LARGE_ABS_ARG_OVERFLOW |x| must not be so large that the
result overflows.

ctime
Returns the number of CPU seconds used.

Synopsis

#include <imsls.h>

double imsls_ctime ()

Return Value
The number of CPU seconds used by the program.

Example
The CPU time needed to compute

k
k=
�

0

1 000 000, ,

is obtained and printed. The time needed is machine dependent. The CPU time
needed will varies slightly from run to run on the same machine.

#include <imsls.h>

main()
{

int k;
double sum, time;

/* Sum 1 million values */
for (sum=0, k=1; k<=1000000; k++)

sum += k;
/* Get amount of CPU time used */

time = imsls_ctime();
printf("sum = %f\n", sum);
printf("time = %f\n", time);

}

Output

sum = 500000500000.000000
time = 0.820000

Reference Material User Errors •••• 693

Reference Material

User Errors
IMSL functions attempt to detect user errors and handle them in a way that
provides as much information to the user as possible. To do this, various levels of
severity of errors are recognized, and the extent of the error in the context of the
purpose of the function also is considered; a trivial error in one situation can be
serious in another. IMSL attempts to report as many errors as can reasonably be
detected. Multiple errors present a difficult problem in error detection because
input is interpreted in an uncertain context after the first error is detected.

What Determines Error Severity
In some cases, the user�s input may be mathematically correct, but because of
limitations of the computer arithmetic and of the algorithm used, it is not possible
to compute an answer accurately. In this case, the assessed degree of accuracy
determines the severity of the error. In cases where the function computes several
output quantities, some are not computable but most are, an error condition exists.
The severity of the error depends on an assessment of the overall impact of the
error.

Kinds of Errors and Default Actions
Five levels of severity of errors are defined in IMSL C/Stat/Library. Each level
has an associated PRINT attribute and a STOP attribute. These attributes have
default settings (YES or NO), but they may also be set by the user. The purpose
of having multiple error types is to provide independent control of actions to be
taken for errors of different levels of severity. Upon return from an IMSL
function, exactly one error state exists. (A code 0 �error� is no error.) Even if
more than one informational error occurs, only one message is printed (if the
PRINT attribute is YES). Multiple errors for which no corrective action within
the calling program is reasonable or necessary result in the printing of multiple
messages (if the PRINT attribute for their severity level is YES). Errors of any of
the severity levels except IMSLS_TERMINAL may be informational errors. The
include file, imsls.h, defines each of IMSLS_NOTE, IMSLS_ALERT,
IMSLS_WARNING, IMSLS_FATAL, IMSLS_TERMINAL,

694 •••• User Errors IMSL C/Stat/Library

IMSLS_WARNING_IMMEDIATE, and IMSLS_FATAL_IMMEDIATE as enumerated
data type Imsls_error.

IMSLS_NOTE. A note is issued to indicate the possibility of a trivial error or
simply to provide information about the computations.
Default attributes: PRINT=NO, STOP=NO

IMSLS_ALERT. An alert indicates that a function value has been set to 0 due to
underflow.
Default attributes: PRINT=NO, STOP=NO

IMSLS_WARNING. A warning indicates the existence of a condition that may
require corrective action by the user or calling function. A warning error may be
issued because the results are accurate to only a few decimal places; because
some of the output may be erroneous, but most of the output is correct; or because
some assumptions underlying the analysis technique are violated. Usually no
corrective action is necessary, and the condition can be ignored.
Default attributes: PRINT=YES, STOP=NO

IMSLS_FATAL. A fatal error indicates the existence of a condition that may be
serious. In most cases, the user or calling function must take corrective action to
recover.
Default attributes: PRINT=YES, STOP=YES

IMSLS_TERMINAL. A terminal error is serious. It usually is the result of an
incorrect specification, such as specifying a negative number as the number of
equations. These errors can also be caused by various programming errors
impossible to diagnose correctly in C. The resulting error message may be
perplexing to the user. In such cases, the user is advised to compare carefully the
actual arguments passed to the function with the dummy argument descriptions
given in the documentation. Special attention should be given to checking
argument order and data types.

A terminal error is not an informational error, because corrective action within
the program is generally not reasonable. In normal use, execution is terminated
immediately when a terminal error occurs. Messages relating to more than one
terminal error are printed if they occur.
Default attributes: PRINT=YES, STOP=YES

IMSLS_WARNING_IMMEDIATE. An immediate warning error is identical to a
warning error, except it is printed immediately.
Default attributes: PRINT=YES, STOP=NO

IMSLS_FATAL_IMMEDIATE. An immediate fatal error is identical to a fatal error,
except it is printed immediately.
Default attributes: PRINT=YES, STOP=YES

The user can set PRINT and STOP attributes by calling function
imsls_error_options as described in Chapter 14.

Reference Material User Errors •••• 695

Errors in Lower-level Functions
It is possible that a user�s program may call an IMSL function that in turn calls a
nested sequence of lower-level IMSL functions. If an error occurs at a lower level
in such a nest of functions and if the lower-level function cannot pass the
information up to the original user-called function, then a traceback of the
functions is produced. The only common situation in which this can occur is
when an IMSL function calls a user-supplied routine that in turn calls another
IMSL function.

Functions for Error Handling
The user may interact in two ways with the IMSL error-handling system: (1) to
change the default actions and (2) to determine the code of an informational error
so as to take corrective action. The IMSL functions to use are
imsls_error_options and imsls_error_code. Function
imsls_error_options sets the actions to be taken when errors occur. Function
imsls_error_code retrieves the integer code for an informational error. These
functions are documented in Chapter 14, "Utilities."

Threads and Error Handling
If multiple threads are used then default settings are valid for each thread
but can be altered for each individual thread. When using threads it is
necessary to set options using imsls_error_options (excluding
IMSLS_SET_SIGNAL_TRAPPING) for each thread by calling
imsls_error_options from within each thread.

The IMSL signal-trapping mechanism must be disabled when multiple threads
are used. The IMSL signal-trapping mechanism can be disabled by making the
following call before any threads are created:

imsls_error_options(IMSLS_SET_SIGNAL_TRAPPING, 0, 0);

 See Examples 3 and 4 of imsls_error_options for multithreaded examples.

Use of Informational Error to Determine Program Action
In the program segment below, a factor analysis is to be performed on the matrix
covariances. If it is determined that the matrix is singular (and often this is not
immediately obvious), the program is to take a different branch.

x = imsls_f_factor_analysis (nobs, covariances,
n_factors, 0);

if (imsls_error_code() == IMSLS_COV_IS_SINGULAR) {
/* Handle a singular matrix */

}

Additional Examples
See functions imsls_error_options and imsls_error_code in Chapter 14
for additional examples.

IMSL C/Stat/Library Product Support •••• 697

Product Support

Contacting Visual Numerics Support
Users within support warranty may contact Visual Numerics regarding the use of
the IMSL C Numerical Libraries. Visual Numerics can consult on the following
topics:

• Clarity of documentation

• Possible Visual Numerics-related programming problems

• Choice of IMSL Libraries functions or procedures for a particular problem

• Evolution of the IMSL Libraries

Not included in these consultation topics are mathematical/statistical consulting
and debugging of your program.

Consultation
Contact Visual Numerics Product Support by faxing 713/781-9260 or by
emailing:

• support@houston.vni.com

Electronic addresses are not handled uniformly across the major networks, and
some local conventions for specifying electronic addresses might cause further
variations to occur; contact your E-mail postmaster for further details.

The following describes the procedure for consultation with Visual Numerics:

1. Include license number

2. Include the product name and version number: IMSL C/Stat/Library
Version 5.0

698 •••• Product Support IMSL C/Stat/Library

3. Include compiler and operating system version numbers

4. Include the name of the routine for which assistance is needed and a
description of the problem

IMSL C/Stat Library Appendix A: References •••• A-1

Appendix A: References

Abramowitz and Stegun

Abramowitz, Milton and Irene A. Stegun (editors) (1964), Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical Tables ,
National Bureau of Standards, Washington.

Afifi and Azen

Afifi, A.A. and S.P. Azen (1979), Statistical Analysis: A Computer Oriented
Approach, 2d ed., Academic Press, New York.

Agresti, Wackerly, and Boyette

Agresti, Alan, Dennis Wackerly, and James M. Boyette (1979), Exact conditional
tests for cross-classifications: Approximation of attained significance levels,
Psychometrika, 44, 75-83.

Ahrens and Dieter

Ahrens, J.H. and U. Dieter (1974), Computer methods for sampling from gamma,
beta, Poisson, and binomial distributions, Computing, 12, 223−246.

Ahrens, J.H., and U. Dieter (1985), Sequential random sampling, ACM
Transactions on Mathematical Software, 11, 157−169.

Anderson

Anderson, T.W. (1971), The Statistical Analysis of Time Series, John Wiley &
Sons, New York.

Anderson and Bancroft

Anderson, R.L. and T.A. Bancroft (1952), Statistical Theory in Research,
McGraw-Hill Book Company, New York.

Atkinson

Atkinson, A.C. (1979), A family of switching algorithms for the computer
generation of beta random variates, Biometrika, 66, 141−145.

A-2 •••• Appendix A: References IMSL C/Stat Library

Atkinson, A.C. (1985), Plots, Transformations, and Regression, Claredon Press,
Oxford.

Barrodale and Roberts

Barrodale, I., and F.D.K. Roberts (1973), An improved algorithm for discrete L�
approximation, SIAM Journal on Numerical Analysis, 10, 839−848.

Barrodale, I., and F.D.K. Roberts (1974), Solution of an overdetermined system
of equations in the l� norm, Communications of the ACM, 17, 319−320.

Barrodale, I., and C. Phillips (1975), Algorithm 495. Solution of an
overdetermined system of linear equations in the Chebyshev norm, ACM
Transactions on Mathematical Software, 1, 264−270.

Bartlett

Bartlett, M.S. (1946), On the theoretical specification and sampling properties of
autocorrelated time series, Supplement to the Journal of the Royal Statistical
Society, 8, 27−41.

Bays and Durham

Bays, Carter and S.D. Durham (1976), Improving a poor random number
generator, ACM Transactions on Mathematical Software, 2, 59−64.

Bendel and Mickey

Bendel, Robert B., and M. Ray Mickey (1978), Population correlation matrices
for sampling experiments, Communications in Statistics, B7, 163−182.

Best and Fisher

Best, D.J., and N.I. Fisher (1979), Efficient simulation of the von Mises
distribution, Applied Statistics, 28, 152−157.

Bishop et al

Bishop, Yvonne M.M., Stephen E. Feinberg, and Paul W. Holland (1975),
Discrete Multivariate Analysis: Theory and Practice , MIT Press, Cambridge,
Mass.

Bjorck and Golub

Bjorck, Ake, and Gene H. Golub (1973), Numerical Methods for Computing
Angles Between Subspaces, Mathematics of Computation, 27, 579−594.

Blom

Blom, Gunnar (1958), Statistical Estimates and Transformed Beta-Variables ,
John Wiley & Sons, New York.

IMSL C/Stat Library Appendix A: References •••• A-3

Bosten and Battiste

Bosten, Nancy E. and E.L. Battiste (1974), Incomplete beta ratio,
Communications of the ACM, 17, 156s−157.

Box and Jenkins

Box, George E.P. and Gwilym M. Jenkins (1976), Time Series Analysis:
Forecasting and Control, revised ed., Holden-Day, Oakland.

Box and Pierce

Box, G.E.P., and David A. Pierce (1970), Distribution of residual
autocorrelations in autoregressive-integrated moving average time series models,
Journal of the American Statistical Association , 65, 1509�1526.

Box and Tidwell

Box, G.E.P. and P.W. Tidwell (1962), Transformation of the independent
variables, Technometrics, 4, 531−550.

Boyette

Boyette, James M. (1979), Random RC tables with given row and column totals,
Applied Statistics, 28, 329−332.

Bradley

Bradley, J.V. (1968), Distribution-Free Statistical Tests, Prentice-Hall, New
Jersey.

Brown

Brown, Morton E. (1983), MCDP4F, two-way and multiway frequency tables-
measures of association and the log-linear model (complete and incomplete
tables), in BMDP Statistical Software, 1983 Printing with Additions , (edited by
W.J. Dixon), University of California Press, Berkeley.

Brown and Benedetti

Brown, Morton B. and Jacqualine K. Benedetti (1977), Sampling behavior and
tests for correlation in two-way contingency tables, Journal of the American
Statistical Association, 42, 309−315.

Cheng

Cheng, R.C.H. (1978), Generating beta variates with nonintegral shape
parameters, Communications of the ACM, 21, 317−322.

A-4 •••• Appendix A: References IMSL C/Stat Library

Chiang

Chiang, Chin Long (1968), Introduction to Stochastic Processes in Statistics ,
John Wiley & Sons, New York.

Conover

Conover, W.J. (1980), Practical Nonparametric Statistics, 2d ed., John Wiley &
Sons, New York.

Conover and Iman

Conover, W.J. and Ronald L. Iman (1983), Introduction to Modern Business
Statistics, John Wiley & Sons, New York.

Cook and Weisberg

Cook, R. Dennis and Sanford Weisberg (1982), Residuals and Influence in
Regression, Chapman and Hall, New York.

Cooper

Cooper, B.E. (1968), Algorithm AS4, An auxiliary function for distribution
integrals, Applied Statistics, 17, 190−192.

Cox and Stuart

Cox, D.R., and A. Stuart (1955), Some quick sign tests for trend in location and
dispersion, Biometrika, 42, 80−95.

D'Agostino and Stevens

D'Agostino, Ralph B. and Michael A. Stevens (1986), Goodness-of-Fit
Techniques, Marcel Dekker, New York.

Dallal and Wilkinson

Dallal, Gerald E. and Leland Wilkinson (1986), An analytic approximation to the
distribution of Lilliefor's test statistic for normality, The American Statistician,
40, 294−296.

Dennis and Schnabel

Dennis, J.E., Jr. and Robert B. Schnabel (1983), Numerical Methods for
Unconstrained Optimization and Nonlinear Equations , Prentice-Hall, Englewood
Cliffs, New Jersey.

Devore

Devore, Jay L (1982), Probability and Statistics for Engineering and Sciences ,
Brooks/Cole Publishing Company, Monterey, Calif.

IMSL C/Stat Library Appendix A: References •••• A-5

Draper and Smith

Draper, N.R. and H. Smith (1981), Applied Regression Analysis, 2d ed., John
Wiley & Sons, New York.

Durbin

Durbin, J. (1960), The fitting of time series models, Revue Institute
Internationale de Statistics, 28, 233�243.

Efroymson

Efroymson, M.A. (1960), Multiple regression analysis, Mathematical Methods
for Digital Computers, Volume 1, (edited by A. Ralston and H. Wilf), John Wiley
& Sons, New York, 191−203.

Ekblom

Ekblom, Hakan (1973), Calculation of linear best Lp-approximations, BIT, 13,
292−300.

Ekblom, Hakan (1987), The L�-estimate as limiting case of an Lp or Huber-
estimate, in Statistical Data Analysis Based on the L�-Norm and Related Methods
(edited by Yadolah Dodge), North-Holland, Amsterdam, 109−116.

Elandt-Johnson and Johnson

Elandt-Johnson, Regina C., and Norman L. Johnson (1980), Survival Models and
Data Analysis, John Wiley & Sons, New York, 172−173.

Emmett

Emmett, W.G. (1949), Factor analysis by Lawless method of maximum
likelihood, British Journal of Psychology, Statistical Section , 2, 90−97.

Engle

Engle, C. (1982), Autoregressive conditional heteroskedasticity with estimates of
the variance of U.K. inflation, Econometrica , 50, 987−1008.

Fisher

Fisher, R.A. (1936), The use of multiple measurements in taxonomic problems,
The Annals of Eugenics, 7, 179−188.

Fishman

Fishman, George S. (1978), Principles of Discrete Event Simulation, John Wiley
& Sons, New York.

A-6 •••• Appendix A: References IMSL C/Stat Library

Fishman and Moore

Fishman, George S. and Louis R. Moore (1982), A statistical evaluation of
multiplicative congruential random number generators with modulus , Journal of
the American Statistical Association, 77, 129−136.

Forsythe

Forsythe, G.E. (1957), Generation and use of orthogonal polynomials for fitting
data with a digital computer, SIAM Journal on Applied Mathematics , 5, 74−88.

Furnival and Wilson

Furnival, G.M. and R.W. Wilson, Jr. (1974), Regressions by leaps and bounds,
Technometrics, 16, 499−511.

Gentleman

Gentleman, W. Morven (1974), Basic procedures for large, sparse or weighted
linear least squares problems, Applied Statistics, 23, 448−454.

Gibbons

Gibbons, J.D. (1971), Nonparametric Statistical Inference, McGraw-Hill, New
York.

Girschick

Girschick, M.A. (1939), On the sampling theory of roots of determinantal
equations, Annals of Mathematical Statistics, 10, 203−224.

Golub and Van Loan

Golub, Gene H. and Charles F. Van Loan (1983), Matrix Computations, Johns
Hopkins University Press, Baltimore, Md.

Gonin and Money

Gonin, Rene, and Arthur H. Money (1989), Nonlinear Lp-Norm Estimation,
Marcel Dekker, New York.

Goodnight

Goodnight, James H. (1979), A tutorial on the SWEEP operator, The American
Statistician, 33, 149−158.

Graybill

Graybill, Franklin A. (1976), Theory and Application of the Linear Model ,
Duxbury Press, North Scituate, Mass.

IMSL C/Stat Library Appendix A: References •••• A-7

Griffin and Redish

Griffin, R. and K.A. Redish (1970), Remark on Algorithm 347: An efficient
algorithm for sorting with minimal storage, Communications of the ACM,
13, 54.

Gross and Clark

Gross, Alan J., and Virginia A. Clark (1975), Survival Distributions: Reliability
Applications in the Biomedical Sciences , John Wiley & Sons, New York.

Gruenberger and Mark

Gruenberger, F., and A.M. Mark (1951), The d� test of random digits,
Mathematical Tables and Other Aids in Computation , 5, 109−110.

Guerra et al.

Guerra, Victor O., Richard A. Tapia, and James R. Thompson (1976), A random
number generator for continuous random variables based on an interpolation
procedure of Akima, in Proceedings of the Ninth Interface Symposium on
Computer Science and Statistics, (edited by David C. Hoaglin and Roy E.
Welsch), Prindle, Weber & Schmidt, Boston, 228−230.

Haldane

Haldane, J.B.S. (1939), The mean and variance of when used as a test of
homogeneity, when expectations are small, Biometrika, 31, 346.

Harman

Harman, Harry H. (1976), Modern Factor Analysis, 3d ed. revised, University of
Chicago Press, Chicago.

Hart et al

Hart, John F., E.W. Cheney, Charles L. Lawson, Hans J. Maehly, Charles K.
Mesztenyi, John R. Rice, Henry G. Thacher, Jr., and Christoph Witzgall (1968),
Computer Approximations, John Wiley & Sons, New York.

Hartigan

Hartigan, John A. (1975), Clustering Algorithms, John Wiley & Sons, New York.

Hartigan and Wong

Hartigan, J.A. and M.A. Wong (1979), Algorithm AS 136: A K-means clustering
algorithm, Applied Statistics, 28, 100−108.

A-8 •••• Appendix A: References IMSL C/Stat Library

Hayter

Hayter, Anthony J. (1984), A proof of the conjecture that the Tukey-Kramer
multiple comparisons procedure is conservative, Annals of Statistics, 12, 61−75.

Heiberger

Heiberger, Richard M. (1978), Generation of random orthogonal matrices,
Applied Statistics, 27, 199−206.

Hemmerle.

Hemmerle, William J. (1967), Statistical Computations on a Digital Computer ,
Blaisdell Publishing Company, Waltham, Mass.

Herraman

Herraman, C. (1968), Sums of squares and products matrix, Applied Statistics,
17, 289−292.

Hill

Hill, G.W. (1970), Student's t-distribution, Communications of the ACM, 13,
617−619.

Hill, G.W. (1970), Student's t-quantiles, Communications of the ACM, 13,
619−620.

Hinkley

Hinkley, David (1977), On quick choice of power transformation, Applied
Statistics, 26, 67−69.

Hoaglin and Welsch

Hoaglin, David C. and Roy E. Welsch (1978), The hat matrix in regression and
ANOVA, The American Statistician, 32, 17−22.

Hocking

Hocking, R.R. (1972), Criteria for selection of a subset regression: Which one
should be used?, Technometrics, 14, 967−970.

Hocking, R.R. (1973), A discussion of the two-way mixed model, The American
Statistician, 27, 148−152.

Hocking, R.R. (1985), The Analysis of Linear Models, Brooks/Cole Publishing
Company, Monterey, California.

IMSL C/Stat Library Appendix A: References •••• A-9

Huber

Huber, Peter J. (1981), Robust Statistics, John Wiley & Sons, New York.

Hughes and Saw

Hughes, David T., and John G. Saw (1972), Approximating the percentage points
of Hotelling�s generalized T0

2 statistic, Biometrika, 59, 224−226.

Iman and Davenport

Iman, R.L., and J.M. Davenport (1980), Approximations of the critical region of
the Friedman statistic, Communications in Statistics, A9(6),
571−595.

Jennrich and Robinson

Jennrich, R.I. and S.M. Robinson (1969), A Newton-Raphson algorithm for
maximum likelihood factor analysis, Psychometrika, 34, 111−123.

John

John, Peter W.M. (1971), Statistical Design and Analysis of Experiments,
Macmillan Company, New York.

Jöhnk

Jöhnk, M.D. (1964), Erzeugung von Betaverteilten und Gammaverteilten
Zufallszahlen, Metrika, 8, 5−15.

Johnson and Kotz

Johnson, Norman L., and Samuel Kotz (1969), Discrete Distributions, Houghton
Mifflin Company, Boston.

Johnson, Norman L., and Samuel Kotz (1970a), Continuous Univariate
Distributions-1, John Wiley & Sons, New York.

Johnson, Norman L., and Samuel Kotz (1970b), Continuous Univariate
Distributions-2, John Wiley & Sons, New York.

Johnson and Welch

Johnson, D.G., and W.J. Welch (1980), The generation of pseudo-random
correlation matrices, Journal of Statistical Computation and Simulation, 11,
55−69.

Jonckheere

Jonckheere, A.R. (1954), A distribution-free k-sample test against ordered
alternatives, Biometrika, 41, 133−143.

A-10 •••• Appendix A: References IMSL C/Stat Library

Jöreskog

Jöreskog, K.G. (1977), Factor analysis by least squares and maximum-likelihood
methods, Statistical Methods for Digital Computers, (edited by Kurt Enslein,
Anthony Ralston, and Herbert S. Wilf), John Wiley & Sons, New York,
125−153.

Kachitvichyanukul

Kachitvichyanukul, Voratas (1982), Computer generation of Poisson, binomial,
and hypergeometric random variates, Ph.D. dissertation, Purdue University,
West Lafayette, Indiana.

Kaiser

Kaiser, H.F. (1963), Image analysis, Problems in Measuring Change, (edited by
C. Harris), University of Wisconsin Press, Madison, Wis.

Kaiser and Caffrey

Kaiser, H.F. and J. Caffrey (1965), Alpha factor analysis, Psychometrika, 30,
1−14.

Kalbfleisch and Prentice

Kalbfleisch, John D., and Ross L. Prentice (1980), The Statistical Analysis of
Failure Time Data, John Wiley & Sons, New York.

Kemp

Kemp, A.W., (1981), Efficient generation of logarithmically distributed pseudo-
random variables, Applied Statistics, 30, 249−253.

Kendall and Stuart

Kendall, Maurice G. and Alan Stuart (1973), The Advanced Theory of Statistics,
Volume 2: Inference and Relationship, 3d ed., Charles Griffin & Company,
London.

Kendall, Maurice G. and Alan Stuart (1979), The Advanced Theory of Statistics,
Volume 2: Inference and Relationship, 4th ed., Oxford University Press, New
York.

Kendall et al.

Kendall, Maurice G., Alan Stuart, and J. Keith Ord (1983), The Advanced Theory
of Statistics, Volume 3: Design and Analysis, and Time Series, 4th. ed., Oxford
University Press, New York.

IMSL C/Stat Library Appendix A: References •••• A-11

Kennedy and Gentle

Kennedy, William J., Jr. and James E. Gentle (1980), Statistical Computing,
Marcel Dekker, New York.

Kim and Jennrich

Kim, P.J., and R.I. Jennrich (1973), Tables of the exact sampling distribution of
the two sample Kolmogorov-Smirnov criterion Dmn (m < n), in Selected Tables in
Mathematical Statistics, Volume 1, (edited by H. L. Harter and D.B. Owen),
American Mathematical Society, Providence, Rhode Island.

Kinderman and Ramage

Kinderman, A.J., and J.G. Ramage (1976), Computer generation of normal
random variables, Journal of the American Statistical Association, 71, 893−896.

Kinderman et al.

Kinderman, A.J., J.F. Monahan, and J.G. Ramage (1977), Computer methods for
sampling from Student�s t distribution, Mathematics of Computation 31,
1009−1018.

Kinnucan and Kuki

Kinnucan, P. and H. Kuki (1968), A Single Precision INVERSE Error Function
Subroutine, Computation Center, University of Chicago.

Kirk

Kirk, Roger E. (1982), Experimental Design: Procedures for the Behavioral
Sciences, 2d ed., Brooks/Cole Publishing Company, Monterey, Calif.

Knuth

Knuth, Donald E. (1981), The Art of Computer Programming, Volume 2:
Seminumerical Algorithms, 2d ed., Addison-Wesley, Reading, Mass.

Kshirsagar

Kshirsagar, Anant M. (1972), Multivariate Analysis, Marcel Dekker, New York.

Lachenbruch

Lachenbruch, Peter A. (1975), Discriminant Analysis, Hafner Press, London.

Lai

Lai, D. (1998a), Local asymptotic normality for location-scale type processes.
Far East Journal of Theorectical Statistics, (in press).

A-12 •••• Appendix A: References IMSL C/Stat Library

Lai, D. (1998b), Asymptotic distributions of the correlation integral based
statistics. Journal of Nonparametric Statistics, (in press).

Lai, D. (1998c), Asymptotic distributions of the estimated BDS statistic and
residual analysis of AR Models on the Canadian lynx data. Journal
of Biological Systems, (in press).

Laird and Oliver

Laird, N.M., and D. Fisher (1981), Covariance analysis of censored survival data
using log-linear analysis techniques, JASA 76, 1231−1240.

Lawless

Lawless, J.F. (1982), Statistical Models and Methods for Lifetime Data, John
Wiley & Sons, New York.

Lawley and Maxwell

Lawley, D.N. and A.E. Maxwell (1971), Factor Analysis as a Statistical Method,
2d ed., Butterworth, London.

Learmonth and Lewis

Learmonth, G.P. and P.A.W. Lewis (1973), Naval Postgraduate School Random
Number Generator Package LLRANDOM, NPS55LW73061A, Naval
Postgraduate School, Monterey, Calif.

Lee

Lee, Elisa T. (1980), Statistical Methods for Survival Data Analysis, Lifetime
Learning Publications, Belmont, Calif.

Lehmann

Lehmann, E.L. (1975), Nonparametrics: Statistical Methods Based on Ranks,
Holden-Day, San Francisco.

Levenberg

Levenberg, K. (1944), A method for the solution of certain problems in least
squares, Quarterly of Applied Mathematics, 2, 164−168.

Lewis et al.

Lewis, P.A.W., A.S. Goodman, and J.M. Miller (1969), A pseudorandom number
generator for the System/360, IBM Systems Journal, 8, 136−146.

IMSL C/Stat Library Appendix A: References •••• A-13

Liffiefors

Lilliefors, H.W. (1967), On the Kolmogorov-Smirnov test for normality with
mean and variance unknown, Journal of the American Statistical Association, 62,
534−544.

Ljung and Box

Ljung, G.M., and G.E.P. Box (1978), On a measure of lack of fit in time series
models, Biometrika, 65, 297�303.

Longley

Longley, James W. (1967), An appraisal of least-squares programs for the
electronic computer from the point of view of the user, Journal of the American
Statistical Association, 62, 819−841.

Marsaglia

Marsaglia, George (1964), Generating a variable from the tail of a normal
distribution, Technometrics, 6, 101−102.

Marsaglia, G. (1968), Random numbers fall mainly in the planes, Proceedings of
the National Academy of Sciences, 61, 25−28.

Marsaglia, G. (1972), The structure of linear congruential sequences, in
Applications of Number Theory to Numerical Analysis, (edited by S. K.
Zaremba), Academic Press, New York, 249−286.

Marsaglia, George (1972), Choosing a point from the surface of a sphere,
The Annals of Mathematical Statistics, 43, 645−646.

McKean and Schrader

McKean, Joseph W., and Ronald M. Schrader (1987), Least absolute errors
analysis of variance, in Statistical Data Analysis Based on the L�-Norm and
Related Methods (edited by Yadolah Dodge), North-Holland, Amsterdam,
297−305.

McKeon

McKeon, James J. (1974), F approximations to the distribution of Hotelling�s
T0

2 , Biometrika, 61, 381−383.

McCullagh and Nelder

McCullagh, P., and J.A. Nelder, (1983), Generalized Linear Models, Chapman
and Hall, London.

A-14 •••• Appendix A: References IMSL C/Stat Library

Maindonald

Maindonald, J.H. (1984), Statistical Computation, John Wiley & Sons, New
York.

Marazzi

Marazzi, Alfio (1985), Robust affine invariant covariances in ROBETH,
ROBETH-85 document No. 6, Division de Statistique et Informatique, Institut
Universitaire de Medecine Sociale et Preventive, Laussanne.

Mardia et al.

Mardia, K.V. (1970), Measures of multivariate skewness and kurtosis with
applications, Biometrics, 57, 519−530.

Mardia, K.V., J.T. Kent, J.M. Bibby (1979), Multivariate Analysis, Academic
Press, New York.

Mardia and Foster

Mardia, K.V. and K. Foster (1983), Omnibus tests of multinormality based on
skewness and kurtosis, Communications in Statistics A, Theory and Methods, 12,
207−221.

Marquardt

Marquardt, D. (1963), An algorithm for least-squares estimation of nonlinear
parameters, SIAM Journal on Applied Mathematics, 11, 431−441.

Marsaglia

Marsaglia, George (1964), Generating a variable from the tail of a normal
distribution, Technometrics, 6, 101−102.

Marsaglia and Bray

Marsaglia, G. and T.A. Bray (1964), A convenient method for generating normal
variables, SIAM Review, 6, 260−264.

Marsaglia et al.

Marsaglia, G., M.D. MacLaren, and T.A. Bray (1964), A fast procedure for
generating normal random variables, Communications of the ACM, 7, 4−10.

Merle and Spath

Merle, G., and H. Spath (1974), Computational experiences with discrete Lp
approximation, Computing, 12, 315−321.

IMSL C/Stat Library Appendix A: References •••• A-15

Miller

Miller, Rupert G., Jr. (1980), Simultaneous Statistical Inference, 2d ed.,
Springer-Verlag, New York.

Milliken and Johnson

Milliken, George A. and Dallas E. Johnson (1984), Analysis of Messy Data,
Volume 1: Designed Experiments, Van Nostrand Reinhold, New York.

Moran

Moran, P.A.P. (1947), Some theorems on time series I, Biometrika, 34,
281−291.

Moré et al.

Moré, Jorge, Burton Garbow, and Kenneth Hillstrom (1980), User Guide for [4]
MINPACK-1, Argonne National Laboratory Report ANL-80�74, Argonne, Ill.

Morrison

Morrison, Donald F. (1976), Multivariate Statistical Methods, 2nd. ed. McGraw-
Hill Book Company, New York.

Muller

Muller, M.E. (1959), A note on a method for generating points uniformly on
N-dimensional spheres, Communications of the ACM, 2, 19−20.

Nelson

Nelson, D. B. (1991), Conditional heteroskedasticity in asset returns: A new
approach. Econometrica, , 59, 347−370.

Nelson

Nelson, Peter (1989), Multiple Comparisons of Means Using Simultaneous
Confidence Intervals, Journal of Quality Technology, 21, 232−241.

Neter

Neter, John (1983), Applied Linear Regression Models, Richard D. Irwin,
Homewood, Ill.

Neter and Wasserman

Neter, John and William Wasserman (1974), Applied Linear Statistical Models,
Richard D. Irwin, Homewood, Ill.

A-16 •••• Appendix A: References IMSL C/Stat Library

Noether

Noether, G.E. (1956), Two sequential tests against trend, Journal of the American
Statistical Association, 51, 440−450.

Owen

Owen, D.B. (1962), Handbook of Statistical Tables, Addison-Wesley Publishing
Company, Reading, Mass.

Owen, D.B. (1965), A special case of the bivariate non-central t distribution,
Biometrika, 52, 437−446.

Palm

Palm, F. C. (1996), GARCH models of volatility. In Handbook of Statistics,
Vol. 14, 209-240. Eds: Maddala and Rao. Elsevier,New York.

Patefield

Patefield, W.M. (1981), An efficient method of generating R × C tables with
given row and column totals, Applied Statistics, 30, 91−97.

Peixoto

Peixoto, Julio L. (1986), Testable hypotheses in singular fixed linear models,
Communications in Statistics: Theory and Methods, 15,
1957−1973.

Petro

Petro, R. (1970), Remark on Algorithm 347: An efficient algorithm for sorting
with minimal storage, Communications of the ACM, 13, 624.

Pillai

Pillai, K.C.S. (1985), Pillai�s trace, in Encyclopedia of Statistical Sciences,
Volume 6, (edited by Samuel Kotz and Norman L. Johnson), John Wiley & Sons,
New York, 725−729.

Pregibon

Pregibon, Daryl (1981), Logistic regression diagnostics, The Annals of Statistics,
9, 705−724.

Prentice

Prentice, Ross L. (1976), A generalization of the probit and logit methods for
dose response curves, Biometrics, 32, 761−768.

IMSL C/Stat Library Appendix A: References •••• A-17

Rao

Rao, C. Radhakrishna (1973), Linear Statistical Inference and Its Applications,
2d ed., John Wiley & Sons, New York.

Robinson

Robinson, Enders A. (1967), Multichannel Time Series Analysis with Digital
Computer Programs, Holden-Day, San Francisco.

Royston

Royston, J.P. (1982a), An extension of Shapiro and Wilk's W test for normality to
large samples, Applied Statistics, 31, 115−124.

Royston, J.P. (1982b), The W test for normality, Applied Statistics, 31, 176−180.

Royston, J.P. (1982c), Expected normal order statistics (exact and approximate),
Applied Statistics, 31, 161−165.

Sallas

Sallas, William M. (1990), An algorithm for an Lp norm fit of a multiple linear
regression model, American Statistical Association 1990 Proceedings of the
Statistical Computing Section, 131−136.

Sallas and Lionti

Sallas, William M. and Abby M. Lionti (1988), Some useful computing formulas
for the nonfull rank linear model with linear equality restrictions, IMSL
Technical Report 8805, IMSL, Houston.

Savage

Savage, I. Richard (1956), Contributions to the theory of rank order statistics-the
two-sample case, Annals of Mathematical Statistics, 27, 590−615.

Scheffe

Scheffe, Henry (1959), The Analysis of Variance, John Wiley & Sons, New York.

Schmeiser

Schmeiser, Bruce (1983), Recent advances in generating observations from
discrete random variates, Computer Science and Statistics: Proceedings of the
Fifteenth Symposium on the Interface, (edited by James E. Gentle), North-
Holland Publishing Company, Amsterdam, 154−160.

A-18 •••• Appendix A: References IMSL C/Stat Library

Schmeiser and Babu

Schmeiser, Bruce W. and A.J.G. Babu (1980), Beta variate generation via
exponential majorizing functions, Operations Research, 28, 917−926.

Schmeiser and Kachitvichyanukul

Schmeiser, Bruce and Voratas Kachitvichyanukul (1981), Poisson Random
Variate Generation, Research Memorandum 81−4, School of Industrial
Engineering, Purdue University, West Lafayette, Ind.

Schmeiser and Lal

Schmeiser, Bruce W. and Ram Lal (1980), Squeeze methods for generating
gamma variates, Journal of the American Statistical Association, 75, 679−682.

Searle

Searle, S.R. (1971), Linear Models, John Wiley & Sons, New York.

Seber

Seber, G.A.F. (1984), Multivariate Observations, John Wiley & Sons, New York.

Shampine

Shampine, L.F. (1975), Discrete least-squares polynomial fits, Communications
of the ACM, 18, 179−180.

Siegal

Siegal, Sidney (1956), Nonparametric Statistics for the Behavioral Sciences,
McGraw-Hill, New York.

Singleton

Singleton, R.C. (1969), Algorithm 347: An efficient algorithm for sorting with
minimal storage, Communications of the ACM, 12, 185−187.

Smirnov

Smirnov, N.V. (1939), Estimate of deviation between empirical distribution
functions in two independent samples (in Russian), Bulletin of Moscow
University, 2, 3−16.

Smith and Dubey

Smith, H., and S. D. Dubey (1964), "Some reliability problems in the chemical
industry", Industrial Quality Control, 21 (2), 1964, 64-70.

IMSL C/Stat Library Appendix A: References •••• A-19

Snedecor and Cochran

Snedecor, George W. and William G. Cochran (1967), Statistical Methods, 6th
ed., Iowa State University Press, Ames, Iowa.

Sposito

Sposito, Vincent A. (1989), Some properties of Lp-estimators, in Robust
Regression: Analysis and Applications (edited by Kenneth D. Lawrence and
Jeffrey L. Arthur), Marcel Dekker, New York, 23−58.

Spurrier and Isham

Spurrier, John D. and Steven P. Isham (1985), Exact simultaneous confidence
intervals for pairwise comparisons of three normal means, Journal of the
American Statistical Association, 80, 438−442.

Stahel

Stahel, W. (1981), Robuste Schatzugen: Infinitesimale Opimalitat und
Schatzugen von Kovarianzmatrizen, Dissertation no. 6881, ETH, Zurich.

Stephens

Stephens, M.A. (1974), EDF statistics for goodness of fit and some comparisons,
Journal of the American Statistical Association, 69, 730−737.

Stirling

Stirling, W.D. (1981), Least squares subject to linear constraints, Applied
Statistics, 30, 204−212. (See correction, p. 357.)

Stoline

Stoline, Michael R. (1981), The status of multiple comparisons: simultaneous
estimation of all pairwise comparisons in one-way ANOVA designs,
The American Statistician, 35, 134−141.

Strecok

Strecok, Anthony J. (1968), On the calculation of the inverse of the error
function, Mathematics of Computation, 22, 144−158.

Taylor and Thompson

Taylor, Malcolm S., and James R. Thompson (1986), Data based random number
generation for a multivariate distribution via stochastic simulation,
Computational Statistics & Data Analysis, 4, 93−101.

A-20 •••• Appendix A: References IMSL C/Stat Library

Tezuka

Tezuka, S. (1995), Uniform Random Numbers: Theory and Practice. Academic
Publishers, Boston.

Thompson

Thompson, James R, (1989), Empirical Model Building, John Wiley & Sons,
New York.

Tucker and Lewis

Tucker, Ledyard and Charles Lewis (1973), A reliability coefficient for maximum
likelihood factor analysis, Psychometrika, 38, 1−10.

Tukey

Tukey, John W. (1962), The future of data analysis, Annals of Mathematical
Statistics, 33, 1−67.

Velleman and Hoaglin

Velleman, Paul F. and David C. Hoaglin (1981), Applications, Basics, and
Computing of Exploratory Data Analysis, Duxbury Press, Boston.

Verdooren

Verdooren, L. R. (1963), Extended tables of critical values for Wilcoxon's test
statistic, Biometrika, 50, 177−186.

Wallace

Wallace, D.L. (1959), Simplified Beta-approximations to the Kruskal-Wallis H-
test, Journal of the American Statistical Association, 54, 225−230.

Weisberg

Weisberg, S. (1985), Applied Linear Regression, 2d ed., John Wiley & Sons,
New York.

Woodfield

Woodfield, Terry J. (1990), Some notes on the Ljung-Box portmanteau statistic,
American Statistical Association 1990 Proceedings of the Statistical Computing
Section, 155�160.

Appendix B: Alphabetical Summary of Routines IMSL C/Stat Library •••• B- 1

Appendix B: Alphabetical Summary
of Routines

Function Purpose Statement
anova_balanced Analyzes a balanced complete experimental design for a fixed,

random, or mixed model.

anova_nested Analyzes a completely nested random model with possibly
unequal numbers in the subgroups.

anova_factorial Analyzes a balanced factorial design with fixed effects.

anova_oneway Analyzes a one-way classification model.

arma Computes least-square estimates of parameters for an ARMA
model.

arma_forecast Computes forecasts and their associated probability limits for an
ARMA model.

autocorrelation Computes the sample autocorrelation function of a stationary
time series.

beta Evaluates the complete beta function.

beta_incomplete Evaluates the real incomplete beta function.

beta_cdf Evaluates the beta probability distribution function.

beta_inverse_cdf Evaluates the inverse of the beta distribution function.

binomial_cdf Evaluates the binomial distribution function.

binomial_coefficient Evaluates the binomial coefficient.

binomial_pdf Evaluates the binomial probability function.

bivariate_normal_cdf Evaluates the bivariate normal distribution function.

box_cox_transform Performs a Box-Cox transformation.

categorical_glm Analyzes categorical data using logistic, Probit, Poisson, and
other generalized linear models.

chi_squared_cdf Evaluates the chi-squared distribution function.

B-2 •••• Appendix B: Alphabetical Summary of Routines IMSL C/Stat Library

Function Purpose Statement
chi_squared_inverse_cdf Evaluates the inverse of the chi-squared distribution function.

chi_squared_test Performs a chi-squared goodness-of-fit test.

cluster_k_means Performs a K-means (centroid) cluster analysis.

cochran_q_test Performs a Cochran Q test for related observations.

contingency_table Performs a chi-squared analysis of a two-way contingency table.

continuous_table_setup Sets up table to generate pseudorandom numbers from a general
continuous distribution.

covariances Computes the sample variance-covariance or correlation matrix.

cox_stuart_trends_test Performs the Cox and Stuart� sign test for trends in location and
dispersion.

ctime Returns the number of CPU seconds used.

data_sets Retrieves a commonly analyzed data set.

difference Differences a seasonal or nonseasonal time series.

discrete_table_setup Sets up a table to generate pseudorandom numbers from a
general discrete distribution.

discriminant_analysis Performs discriminant function analysis.

error_code Returns the code corresponding to the error message from the
last function called.

error_options Sets various error handling options.

exact_enumeration Computes exact probabilities in a two-way contingency table,
using the total enumeration method.

exact_network Computes exact probabilities in a two-way contingency table
using the network algorithm.

F_cdf Evaluates the F distribution function.

F_inverse_cdf Evaluates the inverse of the F distribution function.

factor_analysis Extracts initial factor-loading estimates in factor analysis.

friedmans_test Performs Friedman�s test for a randomized complete block
design.

faure_next_point Computes a shuffled Faure sequence

gamma Evaluates the real gamma functions.

gamma_cdf Evaluates the gamma distribution function.

gamma_incomplete Evaluates the incomplete gamma function.

garch Computes estimates of the parameters of
a GARCH(p, q) model

hypergeometric_cdf Evaluates the hypergeometric distribution function.

Appendix B: Alphabetical Summary of Routines IMSL C/Stat Library •••• B- 3

Function Purpose Statement
hypothesis_partial Constructs a completely testable hypothesis.

hypothesis_scph Sums of cross products for a multivariate hypothesis.

hypothesis_test Tests for the multivariate linear hypothesis.

kalman Performs Kalman filtering and evaluates the likelihood function
for the state-space model.

k_trends_test Performs k-sample trends test against ordered alternatives.

kolmogorov_one Performs a Kolmogorov-Smirnov�s one-sample test for
continuos distributions.

kolmogorov_two Performs a Kolmogorov-Smirnov�s two-sample test

kruskal_wallis_test Performs a Kruskal-Wallis�s test for identical population
medians.

lack_of_fit Performs lack-of-fit test for an univariate time series or transfer
function given the appropriate correlation function.

Lnorm_regression Fits a multiple linear regression model using criteria other than
least squares.

log_beta Evaluates the log of the real beta function.

log_gamma Evaluates the logarithm of the absolute value of the gamma
function.

machine (float) Returns information describing the computer's floating-point
arithmetic.

machine (integer) Returns integer information describing the computer's
arithmetic.

mat_mul_rect Computes the transpose of a matrix, a matrix-vector product, a
matrix-matrix product, a bilinear form, or any triple product.

multiple_comparisons Performs Student-Newman-Keuls multiple comparisons test.

multivar_normality_test Computes Mardia�s multivariate measures of skewness and
kurtosis and tests for multivariate normality.

noether_cyclical_trend Performs the Noether�s test for cyclical trend.

non_central_chi_sq Evaluates the noncentral chi-squared distribution function.

non_central_chi_sq_inv Evaluates the inverse of the noncentral chi-squared function.

non_central_t_cdf Evaluates the noncentral Student�s t distribution function.

non_central_t_inv_cdf Evaluates the inverse of the noncentral Student�s t distribution
function.

nonlinear_optimization Fits a nonlinear regression model using Powell's algorithm.

nonlinear_regression Fits a nonlinear regression model.

B-4 •••• Appendix B: Alphabetical Summary of Routines IMSL C/Stat Library

Function Purpose Statement
normal_cdf Evaluates the standard normal (Gaussian) distribution function.

normal_inverse_cdf Evaluates the inverse of the standard normal (Gaussian)
distribution function.

normal_one_sample Computes statistics for mean and variance inferences using a
sample from a normal population.

normal_two_sample Computes statistics for mean and variance inferences using
samples from two normal population.

normality_test Performs a test for normality.

output_file Sets the output file or the error message output file.

page Sets or retrieves the page width or length.

partial_autocorrelation Computes the sample partial autocorrelation function of a
stationary time series.

partial_covariances Computes partial covariances or partial correlations from the
covariance or correlation matrix.

permute_matrix Permutes the rows or columns of a matrix.

permute_vector Rearranges the elements of a vector as specified by a
permutation.

poisson_cdf Evaluates the Poisson distribution function.

pooled_covariances Computes a pooled variance-covariance from the observations.

poly_prediction Computes predicted values, confidence intervals, and
diagnostics after fitting a polynomial regression model.

poly_regression Performs a polynomial least-squares regression.

principal_components Computes principal components.

random_arma Generates pseudorandom ARMA process numbers.

random_beta Generates pseudorandom numbers from a beta distribution.

random_binomial Generates pseudorandom binomial numbers.

random_cauchy Generates pseudorandom numbers from a Cauchy distribution.

random_chi_squared Generates pseudorandom numbers from a chi-squared
distribution.

random_exponential Generates pseudorandom numbers from a standard exponential
distribution.

random_exponential_mix Generates pseudorandom mixed numbers from a standard
exponential distribution.

random_gamma Generates pseudorandom numbers from a standard gamma
distribution.

Appendix B: Alphabetical Summary of Routines IMSL C/Stat Library •••• B- 5

Function Purpose Statement
random_general_continuous Generates pseudorandom numbers from a general

continuous distribution.

random_general_discrete Generates pseudorandom numbers from a general discrete
distribution using an alias method or optionally a table lookup
method.

random_geometric Generates pseudorandom numbers from a geometric
distribution.

random_GFSR_table_get Retrieves the current table used in the GFSR generator.

random_GFSR_table_set Sets the current table used in the GFSR generator.

random_hypergeometric Generates pseudorandom numbers from a hypergeometric
distribution.

random_logarithmic Generates pseudorandom numbers from a logarithmic
distribution.

random_lognormal Generates pseudorandom numbers from a lognormal
distribution.

random_multinomial Generates pseudorandom numbers from a multinomial
distribution.

random_mvar_from_data Generates pseudorandom numbers from a multivariate
distribution determined from a given sample.

random_neg_binomial Generates pseudorandom numbers from a negative binomial
distribution.

random_normal Generates pseudorandom numbers from a standard normal
distribution using an inverse CDF method.

random_normal_multivariate Generates pseudorandom numbers from a multivariate normal
distribution.

random_npp Generates pseudorandom numbers from a nonhomogeneous
Poisson process.

random_option Selects the uniform (0, 1) multiplicative congruential
pseudorandom number generator.

random_option_get Retrieves the uniform (0, 1) multiplicative congruential
pseudorandom number generator.

random_order_normal Generates pseudorandom order statistics from a standard normal
distribution.

random_order_uniform Generates pseudorandom order statistics from a uniform (0, 1)
distribution

random_orthogonal_matrix Generates a pseudorandom orthogonal matrix
or a correlation matrix.

B-6 •••• Appendix B: Alphabetical Summary of Routines IMSL C/Stat Library

Function Purpose Statement
random_permutation Generates a pseudorandom permutation.

random_poisson Generates pseudorandom numbers from a Poisson distribution.

random_sample Generates a simple pseudorandom sample from a finite
population.

random_sample_indices Generates a simple pseudorandom sample of indices.

random_seed_get Retrieves the current value of the seed used in the IMSL random
number generators.

random_seed_set Initializes a random seed for use in the IMSL random number
generators.

random_sphere Generates pseudorandom points on a unit circle or K-
dimensional sphere.

random_stable Sets up a table to generate pseudorandom numbers from a
general discrete distribution.

random_student_t Generates pseudorandom Student's t.

random_substream_seed_get Retrieves a seed for the congruential generators that do not do
shuffling that will generate random numbers beginning 100,000
numbers farther along.

random_table_get Retrieves the current table used in the shuffled generator.

random_table_set Sets the current table used in the shuffled generator.

random_table_twoway Generates a pseudorandom two-way table.

random_triangular Generates pseudorandom numbers from a triangular
distribution.

random_uniform Generates pseudorandom numbers from a uniform (0, 1)
distribution.

random_uniform_discrete Generates pseudorandom numbers from a discrete uniform
distribution.

random_von_mises Generates pseudorandom numbers from a von Mises
distribution.

random_weibull Generates pseudorandom numbers from a Weibull distribution.

randomness_test Performs a test for randomness.

ranks Computes the ranks, normal scores, or exponential scores for a
vector of observations.

regression Fits a multiple linear regression model using least squares.

regression_prediction Computes predicted values, confidence intervals, and
diagnostics after fitting a regression model.

regression_selection Selects the best multiple linear regression models.

Appendix B: Alphabetical Summary of Routines IMSL C/Stat Library •••• B- 7

Function Purpose Statement
regression_stepwise Builds multiple linear regression models using forward

selection, backward selection or stepwise selection.

regression_summary Produces summary statistics for a regression model given the
information from the fit.

regressors_for_glm Generates regressors for a general linear model.

robust_covariances Computes a robust estimate of a covariance matrix and mean
vector.

sign_test Performs a sign test.

simple_statistics Computes basic univariate statistics.

sort_data Sorts observations by specified keys, with option to tally cases
into a multi-way frequency table.

survival_glm Analyzes survival data using a generalized linear model.

survival_estimates Estimates using various parametric models.

t_cdf Evaluates the Student's t distribution function.

t_inverse_cdf Evaluates the inverse of the Student's t distribution function.

table_oneway Tallies observations into one-way frequency table.

table_twoway Tallies observations into a two-way frequency table.

tie_statistics Computes tie statistics for a sample of observations.

version Returns integer information describing the version of the library,
license number, operating system, and compiler.

wilcoxon_sign_rank Performs a Wilcoxon sign rank test.

wilcoxon_rank_sum Performs a Wilcoxon rank sum test.

write_matrix Prints a rectangular matrix (or vector) stored in contiguous
memory locations.

write_options Sets or retrieves an option for printing a matrix.

IMSL C/Stat Library Index •••• i

Index

A
alpha factor analysis 440
ANOVA

balanced 245
factorial 225
multiple comparisons 234
nested 237
oneway 216

ANSI C vii
ARIMA models

forecasts 381
least-square estimates 371

association, measures of 266
Autoregressive Moving Average

Model 370

B
backward selection 123
balanced 245
balanced experimental design 245
beta distribution function 511

inverse 512
beta distribution, simulation 565
beta functions 681, 683, 684
binomial coefficient 680
binomial distribution 504
binomial distributions 540, 544, 552,

561, 592, 1, 5, 6
binomial probability 506
bivariate normal distribution

function 513
Bonferroni method 220
Box-Cox transformation 390

C
Cartesian coordinates 603
cauchy distributions 567
chi-squared analysis 260

chi-squared distribution function
515, 516

chi-squared distributions 569
chi-squared goodness-of-fit test 336
chi-squared statistics 259, 264
chi-squared test 335
classification model

one-way 216
cluster analysis 421, 422
Cochran Q test 326
coefficient

excess (kurtosis) 2
skewness 2
variation 6

compiler 658
computer constants 666, 668
confidence intervals 140

mean 3
constants 666, 668
contingency coefficient 264
contingency tables 273, 275

two-way 260
correlation matrix 185, 596, 5, 6
correlations 193
counts 2, 28
covariances 204
Cox and Stuart sign test 306
CPU 691
Cramer�s V 264

D
data sets 670
deviation, standard 2
diagnostic checking 370
diagnostics 140
discrete uniform distributions 555
discriminant function analysis 444
distribution functions

beta 511
inverse 512

bivariate normal 513
chi-squared 515

inverse 516
chi-squared, noncentral 518, 521

inverse 521
F_cdf

inverse 522
F_inverse_cdf 525
gamma 526
Gaussian 528
hypergeometric 507
inverse 530

ii •••• Index IMSL C/Stat Library

normal 528
Poisson 509
Student�s t 531

inverse 532
Student�s t, noncentral 534

inverse 536
Dunn-Sidák method 220

E
eigensystem analysis 422
empirical tests 544
error handling xiii, 659, 665, 693
error messages 654
estimate of scale

simple robust 6
excess 5
exponential distribution, simulation

571
exponential scores 36

F
F statistic 16
factor analysis 422, 433
factorial 225
factorial design

analysis 225
Faure 638
Faure sequence 636

faure_next_point 636
finite difference gradient 158
finite population 621
Fisher�s LSD 221
forecasting 370
forecasts

ARMA models 381
GARCH 405

forward selection 123
frequency tables 18, 23

multi-way 28
Friedman�s test 321

G
gamma distribution function 526
gamma distribution, simulation 574
gamma functions 685, 687, 689
GARCH

(Generalized Autoregressive
Conditional Heteroskedastic)
405

Gaussian distribution functions 528

inverse 530
general continuous distribution 589
general discrete distribution 557,

558, 561, 592, 1, 2, 6
general distributions 335
general linear models 56
Generalized Feedback Shift Register

542
generalized feedback shift register

method 541
generalized linear models 259
geometric distributions 546
GFSR 625
GFSR generator 542, 632, 633
goodness-of-fit tests 335
Gray code 638

H
Haar measure 597
hypergeometric distribution function

507
hypergeometric distributions 548
hyper-rectangle 636
hypothesis 96, 101, 106

I
image analysis 439
integrated rate function 617

K
Kalman filtering 410
Kappa analysis 259
K-dimensional sphere 603
K-means analysis 422
Kolmogorov one-sample test 348
Kolmogorov two-sample test 351
Kruskal-Wallis test 318
k-sample trends test 328
kurtosis 2, 5

L
lack-of-fit test 402
lack-of-fit tests 52
Least Absolute Value 55, 168, 171,

179
Least Maximum Value 55, 168, 183
Least Squares

Alternatives
Least Absolute Value 55

IMSL C/Stat Library Index •••• iii

Least Maximum Value 55
Lp Norm 55

least-squares fit 64, 168, 237, 245,
299, 303, 306, 311, 321, 348,
351, 399

Lebesque measure 637
library version 658
linear dependence 48
linear discriminant function analysis

444
linear regression

multiple 44
simple 44

logarithmic distributions 550
low-discrepancy 638
Lp Norm 55, 172

M
MAD (Median Absolute Deviation)

6
Mardia�s multivariate measures 356
Mardia�s multivariate tests 354
matrices 673
matrix storage modes ix
maximum 2, 5
maximum likelihood estimates 416
mean 2, 5, 7, 9

for two normal populations 11
normal population 7

measures of association 259, 265
measures of prediction 266
measures of uncertainty 266
median 6

absolute deviation 6
memory allocation x
minimum 2, 5
missing values 55
models 149

general linear 56
multiple linear regression 112
nonlinear regression 50
polynomial 45
polynomial regression 140

Monte Carlo applications 544
multinomial distribution 601
multiple comparisons 234
multiple comparisons test

Student-Newman-Keuls 234
multiple linear regression models 64,

112, 123, 168, 237, 245, 299,
303, 306, 311, 321, 348, 351,
399

multiplicative congruential generator
542

multiplicative generator 542
multiplying matrices 673
multivariate distribution 540, 598, 5
multivariate general linear

hypothesis 101, 106
multivariate normal distribution,

simulation 594

N
nested 237
nested random model 215, 237, 241
Noether test 303
non-ANSI C vii
noncentral chi-squared distribution

function 518
inverse 521

noncentral Student�s t distribution
function 534, 536

nonhomogeneous Poisson process
615

nonlinear model 158
nonlinear regression 149
nonlinear regression models 50, 149
nonuniform generators 544
normal distribution function 530
normal distribution, simulation 577
normal populations

mean 7
variance 7

normal scores 36
normality test 344

O
observations

number of 2
oneway 216
one-way classification model 216
one-way frequency table 18
operating system 658
order statistics 607, 608
orthogonal matrix 596
output files 654
overflow xiii

P
parameter estimation 370
partial correlations 193
partial covariances 193

iv •••• Index IMSL C/Stat Library

partially tested hypothesis 96
permutations 677, 678
phi 264
Poisson distribution function 509
Poisson distribution, simulation 554
polynomial models 45
polynomial regression 132
polynomial regression models 140
pooled variance-covariance 198
predicted values 140
prediction coefficient 266
principal components 427
printing

matrices 641
options 648
retrieving page size 647
setting paper size 647
vectors 641

probability limits
ARMA models 381

pseudorandom number generators
335

pseudorandom numbers 540, 558,
561, 576, 581, 586, 587, 592,
2, 5, 6

pseudorandom order statistics 540, 6
pseudorandom orthogonal matrix

540, 6
pseudorandom permutation 618
pseudorandom points 540, 6
pseudorandom sample 540, 619, 6
p-values 265

Q
quadratic discriminant function

analysis 444

R
random numbers

beta distribution 565
exponential distribution 571
gamma distribution 574
Poisson distribution 554
seed

current value 626, 6
initializing 630

selecting generator 625, 626
random numbers generators 577
randomness test 358
range 2, 6
ranks 36

regression models 44, 77, 85
regressors 56
robust covariances 204

S
sample autocorrelation function 395
sample correlation function 369
sample partial autocorrelation

function 399
Scheffé method 220
scores

exponential 36
normal 36

Seed 543, 628
serial number 658
shuffled generator 630, 631
sign test 296
simulation of random variables 541
skewness 2, 5
stable distribution 579
standard deviation 2, 9
standard errors 265
state vector 410
statespace model 410
stepwise selection 123
Student�s t distribution function 531

inverse 532
Student-Newman-Keuls multiple

comparisons test 234
summary statistics 50

T
t statistic 15
tests for randomness 335
Thread Safe viii

multithreaded application viii
single-threaded application ix
threads and error handling 695

tie statistics 311
time domain methodology 370
time series 369, 370, 610

difference 386
transformation 370
transformations 54
transposing matrices 673
triangular distributions 583
Tukey method 219
Tukey-Kramer method 220
two-way contingency table 606
two-way frequency tables 23
two-way table 605

IMSL C/Stat Library Index •••• v

U
uncertainty, measures of 266
underflow xiii
uniform distribution, simulation 584
unit circle 540, 6
unit sphere 604
univariate statistics 2, 281, 469, 493,

572
update equations 411
user-supplied gradient 158

V
variable selection 45
variance 2, 5, 7

for two normal populations 11
normal population 7

variance-covariance matrix 185
variation, coefficient of 6

W
weighted least squares 50
Wilcoxon rank sum test 313
Wilcoxon signed rank test 299
Wilcoxon two-sample test 320

	C/Stat/Library
	Quick Tips on How to Use this Online Manual
	Copyright
	Contents
	Introduction
	Chapter 1: Basic Statistics
	Chapter 2: Regression
	Chapter 3: Correlation and Covariance
	Chapter 4: Analysis of Variance
	Chapter 5: Categorical and Discrete Data Analysis
	Chapter 6: Nonparametric Statistics
	Chapter 7: Tests of Goodness of Fit
	Chapter 8: Time Series and Forecasting
	Chapter 9: Multivariate Analysis
	Chapter 10: Survival Analysis
	Chapter 11: Probability Distribution Functions and Inverses
	Chapter 12: Random Number Generation
	Chapter 13: Printing Functions
	Chapter 14: Utilities
	Reference Material
	Product Support
	Appendix A: References
	Appendix B: Alphabetical Summary of Routines
	Index

	C/Math/Library:

