
Angra Neutrino Project AngraNote 010-2009(Draft)

Water Cerenkov muon detector near the Angra-II reactor core:
the software.

A. F. Barbosa∗

Centro Brasileiro de Pesquisas Fsicas - CBPF

Abstract

In a previous note[reference], we reported the installation of a cosmic ray detector based on
the Cerenkov effect and described the hardware implemented on it for data acquisition. We here
present the corresponding software, with emphasis on the framework used to address the issues
imposed by the data acquisition requirements. The main tools adopted are theRootenvironment
for C++ object-oriented programming andLinux as the operational system. The essential ingre-
dients used in the code development are presented so that other applications may be built from
this one.

∗e-mail: laudo@cbpf.br



AngraNote 010-2009 1

1 TheRootenvironment

The high energy physics community using large experimental facilities such asCERN(European
Organization for Nuclear Research,www.cern.ch) has developed efficient programming tools to face
the challenges imposed by the huge amount of data generated at the experiments around particle ac-
celerators, especially after the two last decades. In parallel, computer sciences have also evolved
rapidly, making available new computer programming techniques, such as the object-oriented con-
cept. A combination of these developments led to the implementation of theRoot (root.cern.ch)
programming framework. This framework relies on a software package,CINT, which allows the in-
terpretation of theC++ programming language commands. In addition,Root is also based on (but
no limited to) the use and sharing of open libraries in an open-source free operational system:Linux
[reference]. As a consequence, the framework operation and development takes benefit on feedback
provided by its users, and it turns out to be of widespread use in most scientific collaborations involv-
ing physics research, as well as many other communities.

In the Angra Neutrino Project we have adoptedRootandLinuxas the platform for data acquisition
code development. This choice had to comply with two main requirements: the software has to be
able to interact with the hardware, acquiring data related to events randomly occurring in the detector;
it also has to be a self-contained package. The latter means that a compiled executable file has to be
provided, and the application must not run as a script dependent on the framework version.

Although the whole detector is not presently assembled, we may start to look at the possible
strategies to develop the main processes dealing with data acquisition. Some of these will require a
graphical user interface. The present note is a description of one such case. We report the production
of a complete software package featuring the required capabilities, with enough details for other
groups to use it as a startup for building their own applications.

2 Algorithm and program structure

The goal is to provide the software to acquire data from the water Cerenkov detector installed in
the container, as reported in [reference], where the Data Processing Module (DPM) was described.
Analog signals are driven to the DPM, inside which a Field Programmable Gate Array (FPGA) man-
ages to feed data to a computer via the Universal Serial Bus (USB) port. From the hardware side, the
software task is therefore to communicate with the USB port.

Two modes of operation are expected for data acquisition: either it is triggered externally (by a
coincidence digital signal, for example), or it is internally triggered whenever the amplitude of the
analog signal present at one of the four DPM channels exceeds a preset threshold. Both modes have
to be programmed and controlled at the software level, including the threshold adjustment.

Once an event is triggered, the algorithm has to read 541 bytes of information, corresponding to
the digitalization of the analog signals in the DPM channels. The first 270 bytes refer to the photo
multiplier tube (PMT) signal, sampled in channel 1. This actually corresponds to the waveform
produced by the detector when Cerenkov light is generated by an incident particle. The next 134
bytes are used to store the temperature, provided by the DC level output of a sensor which is input to
channel 2. The DC level is directly proportional to temperature. Another 134 bytes are read and refer
to the counting rate, which is also a DC level provided by a dedicated circuit and input to channel
3. DC levels are rather understood as slowly varying signals, the average of which is assigned to
the measured parameter. Two bytes are used to eventually read the counting rate as estimated by an



AngraNote 010-2009 2

Library Header files
StandardC, C++ stdlib.h, stdio.h, time.h, iostream.h, string.h

Root TROOT.h, TObject.h, TQObject.h, RQOBJECT.h, TObjString.h,
TApplication.h, TVirtualX.h, TGFrame.h, TGIcon.h, TGLabel.h

TGButton.h, TGTextEntry.h, TGNumberEntry.h, TGMsgBox.h, TGMenu.h
TGCanvas.h, TGComboBox.h, TGTab.h, TGFileDialog.h, TGTextEdit.h,

TGColorSelect.h, TRootEmbeddedCanvas.h, TCanvas.h, TColor.h,
TList.h, TGraph.h, TLine.h, TPolyLine.h, TRandom.h, TH1F.h,
TSystem.h, TSystemDirectory.h, TFile.h, TTimer.h, TThread.h

USB Driver ftd2xx.h, ftd2xx.cxx

Table 1: Libraries and header files used in the DAQ software.

algorithm running independently as an FPGA state machine. The first and the last two bytes carry
fixed information which delimits the data block, so that it is possible to make sure that the transferred
data is valid. Channel 4 of the DPM is not used.

From the user side, the software has to be able to display the raw data (in a graph and on tables)
and to provide the communication with the hardware. Some pre-processing of data may be done, for
example to compute the charge absorbed by the detector, the signal amplitude etc. The user may as
well enable or disable features like data saving, graphics update and other facilities.

2.1 Libraries and header files

TheC andC++ programming languages allow the programmer to have access to lots of functions
(functions are here understood as subroutines, methods, classes of objects etc.) which are organized
in libraries. In order to do so, it is only required that a header file defining the functions is included in
the source code, with the#includecommand. This command is a preprocessor directive, indicating
that the functions listed in the header file will be compiled with the source code. The included func-
tions, which have to be found by the compiler, are stored in standard directories (typically/usr/lib,
/usr/local/lib).

The libraries and header files used in the application here described are listed in Table1. For
simplicity, all these files are included in a single header file calledDAQ Tank.h, which also contains
the declarations of other functions and classes required in the code, as shown in Table2 and described
in the next section.

The final code is, therefore, composed by the included functions and the functions developed
for the particular application. The latter have to be locally implemented and compiled. In a special
function, called the main one and referred to asmain(), the others are eventually called and used
as necessary in the algorithm. All the implementation is concentrated in a source file (here called
DAQ Tank.cxx) in which the main header file is included as mentioned above. It must be emphasized
that many powerful programming tools are developed and made available to programmers for inclu-
sion in their own applications under a given programming framework. Programmers take great benefit
on using these tools, and have to take a framework that matches the expected code performance.



AngraNote 010-2009 3

/* List of used header files */
...
/* List of command identifiers */
enumComandIdentifiers{
... };
/* List of classes */
classTGMainFrame;
classTTHread;
classTestMainFrame: publicTGMainFrame{
... };
classSetupMPDBox: publicTGTransientFrame{
... };
classDAQThread: TObject{
... }
/* List of local functions */
floatget baseline(float y[]);
floatget amplitude(int size, float base, float y[]);
floatget charge(int size, float base, float y[]);
floatget average(float y[]);
void Draw Pulse();
void ShowData();
void Draw Grid();
void Draw Text();

Table 2:DAQ Tank.h: the main header file structure.

3 Implementation as a graphical user interface

Taking the point of view of the user who will need to interact with the hardware and plan data
acquisition runs, what is required is preferably a graphical interface from which he may easily find
the way through the program facilities. We describe the code implementation from this point of view.

Once the program is launched, the user is prompted to the application main window, as shown in
Figure 1. From this, all the planned facilities are provided, making use of the objects available in the
framework.

Figure 1:The main window prompted to the user.

Two kinds of objects are readily identified in the main window. The first one is the window itself.
It is an object of theRootclassTGMainFrame. As such, it allows the programmer to add several



AngraNote 010-2009 4

WriteFtd(channel, register); (enablesregisterin channel)
gSystem->Sleep(n); (waitsn milliseconds)

WriteFtd(channel, data);(writesdatato registerin channel.

Table 3: Sequence of commands to write data to the USB port

other objects to it, as necessary in the application. The second kind already represents objects added
to the main window: the two menus labeled asFile andRun.

Before any data acquisition is executed, the DPM must be properly powered and connected to
the USB port in the computer. All program facilities are therefore disabled before this connection is
checked. This directive is followed along the whole implementation: the objects and their availability
are arranged in such a way that the data acquisition steps and possibilities are correctly followed, and
no particular expertise is expected from the user. As shown in Figure 2, submenus pop up in the main
window but they are not enabled before the required DPM configuration is accomplished. The menus,
submenus and cascaded menus shown in the picture are obtained from the classTGPopUpMenu.

Figure 2:Submenus related to data saving and MPD configuration

The DPM configuration is done after the user clicks on theSetup MPDfile menu item. This brings
up another object, belonging to theTGTransientFrameclass, which is just another window, or sub-
window, where actions are taken and then it disappears from the screen. TheSetup MPDsub-window
is shown in Figure 3. Notice that all the data acquisition parameters related to the hardware are set in
this transient window: the triggering mode (internal or external), the signal slope, the channel where
the analog signal is sampled, the threshold level (used if internal trigger is chosen). Default para-
meters are provided, and may of course be modified by the user. Once he clicks on theGO button,
the configuration is written to the DPM FPGA registers via the USB communication port. In case
the communication is not available (either the DPM is not powered or not physically connected to
the computer) a third sub-window appears and reports the failure. Notice as well that several objects
are used in theSetup MPDsub-window:TGCompositeFrame, TGTextButton, TGRadioButton, TG-
GroupFrame, TGTextEntry, TGTextBuffer, TGLabel, TGComboBox. The organization of the objects
inside a frame is managed by an object of theTGLayoutHintsclass.

After the DPM is configured, the user may start data acquisition by clicking on theStart item of
theRunmenu, shown in Figure 4. In order to implement the configuration, the software makes use of
the USB driver library functions, provided by the USB interface circuit manufacturer. Writing data to
the USB port is done with a sequence of commands, as listed in Table 3.



AngraNote 010-2009 5

Figure 3:Sub-window for DPM configuration

Several USB ports may be available in the computer. The variable namedchannelrefers to the
one connected to the DPM. For each of them,registersare associated. If only one USB port is used
in the computer, then we havechannel = 0. The first command line in Table 3 activates oneregister
in onechannel. The next command should be writingdata to the activatedregister in the available
channel. However, it is recommended to introduce a time interval between these two commands, to
make sure that the first one has been executed. This is done with thegSystem->Sleep(n)instruction,
wheren is given in milliseconds. For every register configuration, one sequence of the commands
listed in Table 3 is executed.

Figure 4:TheRunmenu, with the option to start data acquisition

When the user starts data acquisition, other objects composing the main window are made visible,
as illustrated in Figure 5. The waveforms corresponding to the electric signals input to channel 1 in the
DPM are shown in a graphic area. Other relevant information related to each acquired signal is also
displayed in specific areas in the window. The objects related to data acquisition remain visible, until
the user clicks on theQuit button. Then the main window is prompted again as it is when the program
is launched (Figure 1), and the user may change acquisition parameters, re-start data acquisition, or
exit the application.

Under theSaveitem of theFile menu some options for data saving are accessible. Three kinds of
files are prepared:

• The .txt file: An ASCII table with 8 columns, one line per detected event. The following
information is written in each column: event number, time in seconds (since data acquisition



AngraNote 010-2009 6

start), the waveform baseline in millivolts, the amplitude in millivolts, the signal charge in
pico-coulombs, the count rate inHz (measured in a rate-meter circuit), the temperature inC,
the count rate inHz (measured inside the FPGA);

• The .dat file: An ASCII table with three columns, containing the waveform raw data. The
first column indexes the sample number, the second and the third are respectively the time (in
nanoseconds) and the amplitude (in millivolts). Each event fills 134 lines in the file, associated
to a signal duration of 2.235µs in steps of 16.67 nanoseconds. Given the time when the signal
is triggered, the transferred data contains one quarter of total number of samples before the
trigger and the remaining three quarters after the trigger;

• The.root file. For each waveform a graphic object is created using theRootframework facility.
These graphics are copied into a file that has the structure of aRootfile [reference]. It may
therefore be easily analyzed with the file management tools available in theRootframework.

Files may be continuously saved while data acquisition is going on, or they may be saved period-
ically. In the latter case,.txt files are saved every hour during a time interval of approximately five
minutes;.datand.root files are saved once a day, also for approximately 5 minutes. This is the current
implementation, for taking data in the water Cerenkov detector at the container. It may of course be
modified as necessary. The user only has to enable which kind of file has to be saved, by selecting it
in a cascaded menu (see Figure 2). When this is done, a standardRootbrowser is prompted before
data acquisition starts, so the file name and directory are specified.

Figure 5:The data acquisition window



AngraNote 010-2009 7

A button (seen in Figure 5) is provided in the data acquisition active window to toggle between
three pulse display modes: pulse is shown with a grid and units; pulse is shown with a grid without
units; pulse is not shown. The choice made by the user has impact on the dead time between acquired
pulses. If the pulse is shown with the grid and units, some processing is required before the next
pulse is accepted from the hardware, imposing a dead time between acquired events. The dead time
is minimum when the pulse is not shown at all. Even though, in order to minimize the dead time, the
pulse display is mostly done locally in the developed code (theRootgraphic object is not used), still
the display routine is time consuming. If maximum data transfer rate is required (≈ 102 pulses per
second), the pulse should not be displayed. The local functions implemented for pulse display are
listed in Table 2:Draw Pulse(), Draw Grid(), Draw Text(). All the other listed local functions are
executed for every acquired pulse. The data transfer rate capability may be improved by reducing the
processing. For example, only the function to get the pulse amplitude could be executed. However,
the data transfer rate would still be limited to≈ 103 pulses per second due to the maximum transfer
rate allowed by the used USB version (1.0). This is why the detector counting rate information is
stored independently by an analog rate-meter circuit and by an FPGA state machine. These two
counting rate measurements are recorded in the.txt files.

3.1 Software events handling: the DAQ classes coding

Two different kinds of events have to be dealt with in the data acquisition software. One of these
refers to actions taken by the user in the graphical interface level. We here call them software events.
The other kind includes the events occurring in the detector, mainly originated by the detected parti-
cles. It could also be physical events such as an alarming power supply condition, an electronic failure,
high temperature etc. We here call them hardware events, and describe their handling procedure in
the next subsection.

Concerning the software events, their handling techniques are well developed in the programming
framework. Starting from the main window shown in Figure 1, for example, the user may decide
to click on different objects. Depending on his decision, the software has to provide the expected
action, and each action is implemented in the code according to the object present in the clicked
window area. In order to direct the program execution flow, command identifiers are established
and listed in the main header file (DAQ Tank.h). In the present application the command identifiers
are defined as:M FILE SETUP, MFILE OPEN, MFILE SAVE, MFILE SAVEAS, MFILE EXIT,
ASCIIDATA, WAVEFORM, ROOTFILE, PERIODICASCII, PERIODICWAVE, PERIODICROOT,
M RUN START. These correspond to the possible items clicked in the menus, and they are identified
under theRootvariablekCM MENU. In addition, other objects in the window, such as buttons, may
also be clicked. To each of them is assigned a parameter (a number) in the declaration, so it is possible
to identify which are clicked. The information provided by the user as text entries and others (e.g.
TGTextEntry, TGComboBoxitem etc.) is, of course, used in the code implementation. In the present
application main window, only menu and button objects trigger events in the software. To the latter
is assigned theRootvariablekCM BUTTON. In theSetupMPD transient window, another event is
used, when the user clicks on the radio button, and this is associated to theRoot kCMRADIOBUTTON
variable.

In the code implementation, the windows are declared and the objects contained in it are organized
as desired. Then a special method (subroutine) calledProcessMessagehas to be implemented for each
window, in which the actions are programmed according to the expected events. The general structure
of this special subroutine is shown in Figure 6.



AngraNote 010-2009 8

Figure 6:Scheme for software events handling using theswitch & casetool

As seen in Figure 6, the software events are finally handled by use of theC languageswitch &
casetool. It must be noticed, however, that this is not the only possible approach. Alternatively, the
C++ slot & sockettechnique may as well be applied. In this case the code is distributed in several
subroutines, instead of being concentrated as in theProcessMessagemethod.

3.2 Hardware events handling: the DAQ thread

3.3 Compilation

4 Conclusion

The first experimental setup for taking data - in the context of the Angra Neutrino Project - from a
detector placed near an Angra nuclear reactor has been completed. Although this will not be exactly
the one used in the neutrino detector, it represents an important prototype from which much will be
learnt and developed. The system will acquire relevant data concerning the local background and may
as well be used in other applications - as, for example, cosmic rays measurements - not necessarily in
the reactor area.



AngraNote 010-2009 9

5 Acknowledgements

We are thankful to Thaynea Blanche and Leandro Amaral for their technical support, respectively
on mounting the circuits and on the preliminary characterization data analysis. We also acknowledge
invaluable support from Eletronuclear administration (in particular from Antônio Carlos Ḿazzaro,
head of Angra-II) and technical staff (in particular Ilson Soares, Lenildo Domingues de Souza and
Alu ízio Mendes Santos Filho). This work has had financial support from FAPERJ and CAPES,
brazilian agencies assisting scientific and technological research activities.



AngraNote 010-2009 10

References

[1] I. Frank, I. Tamm. Doklady Akademii Nauk SSSR, Vol. 14, 109-14, Seriya A (1937).

[2] R. Machado. Centro Brasileiro de Pesquisas Fsicas, Msc. Thesis (2005).

[3] D. Alexander, K. M. Pathak, M. G. Thompson. J. Phys. A (Proc. Phys. Soc.), Vol. 1, Ser. 2,
578-583 (1968).

[4] I. Alekotte et al. Nucl. Instrum. and Meth. in Phys. Res., A, 586, 409-420 (2008).

[5] P. S. Allison, D. Barnhill. The Auger Project, GAP Note 2004-046 (2004).

[6] A. F. Barbosa. The Angra Neutrino Project, AngraNote 001-2007 (2007).


