IWARA 2013, Rio de Janeiro

Exotic Matter in Compact Stars Limits and Consequences

OUTLINE

- observational constraints
- some remarks on nuclear structure
- hadrons and quarks
- susceptibilities
- adding magnetic fields
- to-do list

V. Dexheimer, B. Franzon, R. Mallick, R. Negreiros, T. Schürhoff, J. Steinheimer, SWS FIAS Frankfurt, Kent State, Fluminense

neutron stars are remnants of Type II supernovae

1 to 2 solar masses, radii around 10 - 15 km maximum central densities 4 to 10 ρ_0

about 2000 known neutron stars

Lattimer, Prakash, astro-ph:1012.3208

Masses of Neutron Stars

Masses of radio pulsars

Kiziltan, Kottas, Thorsett, astro-ph:1011.4291

no signature for mass cut off

M = (2.4 +- 0.12) M_s ? van Kerkwijk et al., ApJ 728, 95 (2011)

current benchmark for NS models $M = (1.97 + .04) M_0$ Demorest et al. Nature 467, 1081 (2010)

new observation PSR J0348+0432 M = (2.01 +- .04) M₀ Antoniadis et al. Science 340, 448 (2013)

well established - heavy neutron stars

the usual phase diagram (sketch) of strong interactions

Practical model useful for heavy-ion simulations and compact star physics

correct asymptotic degrees of freedom reasonable description on a quantitative level for high T down to nuclei possibility of studying first-order as well as cross-over transitions hadronic SU(3) approach based on non-linear realization of extended $\sigma\omega$ model

Lowest multiplets

B = { p , n , Λ , $\Sigma^{\pm/0}$, X^{-/0} } baryons

diag (V) = { $(\omega + \rho) / \sqrt{2}$, $(\omega - \rho) / \sqrt{2}$, ϕ } vector mesons

diag (X) = { $(\sigma + \delta) / \sqrt{2}$, $(\sigma - \delta) / \sqrt{2}$, ς } scalar mesons

Mean fields generate scalar attaction and vector repulsion

Scalar self interaction $L_0 = -\frac{1}{2} k_0 l_2 + k_1 (l_2)^2 + k_2 l_4 + 2 k_3 l_3 + L_{ESB}$

invariants $I_1 = Tr(X)$ $I_2 = Tr(X)^2$ $I_3 = det(X)$

+ dilaton field $L_{\chi} = -k_4 \chi^4 - \frac{1}{4} \chi^4 \ln (\chi^4/\chi_0^4) + \delta/3 \chi^4 \ln (I_3/<X>)$

hadronic SU(3) approach ... continued

$$L_{BW} = -\sqrt{2} g_8^{W} (\alpha_W [BOBW]_F + (1 - \alpha_W) [BOBW]_D)$$
$$- g_1^{W} / \sqrt{3} Tr(BOB) Tr (W)$$

SU(3) interaction

 $V(M) \qquad <\sigma > = \sigma_0 \neq 0 \qquad <\zeta > = \zeta_0 \neq 0$

$$\sigma \sim \langle \overline{u} u + \overline{d} d \rangle \quad \zeta \sim \langle \overline{s} s \rangle \quad \delta^0 \sim \langle \overline{u} u - \overline{d} d \rangle$$

 $explicit \ breaking \ \ \sim \ Tr \left[\ c \ \sigma \ \right] \quad (\sim m_q \ \overline{q} \ q \)$

fix scalar parameters to

baryon masses, decay constants, meson masses

New Fit - Nuclear Matter and Nuclei

deformation properties work out well

Nobelium (Z=102) isotopes experiment - $\beta_2 \sim 0.32 \pm 0.02$ (A=254) 0.31 ± 0.02 (A=252)

medium-heavy nucleus ⁶⁸Se

experiment - oblate groundstate around $\beta_2 \sim -0.3$ + strongly prolate excited band

Sulfur isotopes

measured deformations Compared to calculation

Neutron star masses including different sets of particles

Tolman-Oppenheimer-Volkov equations, static spherical star

changing masses with degrees of freedom

large star masses even with spin 3/2 resonances

Dexheimer, SWS ApJ 683, 943 (2008)

hadrons, quarks, Polyakov loop and excluded volume

Include modified distribution functions for quarks/antiquarks

$$\Omega_q = -T \sum_{j \in Q} \frac{\gamma_i}{(2\pi)^3} \int d^3k \ln\left(1 + \Phi \exp\frac{E_i^* - \mu_i}{T}\right)^*$$

Φ confinement order parameter^{*}

Following the parametrization used in PNJL calculations

$$U = -\frac{1}{2} a(T) \Phi \Phi^* + b(T) \ln[1 - 6 \Phi \Phi^* + 4 (\Phi \Phi^*)^3 - 3 (\Phi \Phi^*)^2]$$

$$a(T) = a_0T^4 + a_1T_0T^3 + a_2T_0^2T^2$$
, $b(T) = b_3T_0^3T$

The switch between the degrees of freedom is triggered by excluded volume corrections

thermodynamically consistent -

× /

no reconfinement!

$$\begin{array}{l} v_{q} &= 0 \\ V_{h} &= v \end{array} \qquad \widetilde{\mu_{i}} = \mu_{i} - v_{i} P \qquad e = \widetilde{e} / (1 + \Sigma v_{i} \widetilde{\rho_{i}} \\ V_{m} &= v / 8 \end{array}$$

Steinheimer, SWS, Stöcker JPG 38, 035001 (2011)

equation of state stays causal!

Order parameters for chiral symmetry and confinement in $\boldsymbol{\mu}$ and T

except for liquid-gas no first-order transition

results for hot matter at vanishing chemical potential

points are various lattice results

part of UrQMD hybrid transport code

Initial transverse distributions of the deconfined fraction for central Au+Au collisions at different beam energies.

simple time evolution of f_s including π , K evaporation (E/A = 40 GeV)

 $f_s = n_s / n_B$

C. Greiner et al., PRD38, 2797 (1988)

Mass-radius relation and structure

Hybrid star within the QH model and realistic ground state + nuclei

different quark-vector couplings

normalized particle numbers in hybrid star

Hybrid Stars

Maxwell / Gibbs construction for local / global charge neutrality

Large mixed region

baryonic star with a 2km hybrid core

potential fitted to lattice data generate critical end point

 $a(T, \mu) = a_0T^4 + a_1 \mu^4 + a_2 \mu^2T^2$

(also Schäfer et al, PRD 76 074023)

Dexheimer, SWS, PRC 81 045201 (2010) Negreiros, Dexheimer, SWS, PRC82 035803 (2010)

Hybrid Stars, Quark Interactions

baryons alone M_{max} ~1.8 M_{solar}

ingredients – Standard baryonic EOS (G300) plus MIT bag model + α_s corrections

Fast cooling in the quark core need gaps in the quark phase

Negreiros, Dexheimer, SWS, PRC 035805 (2012)

Susceptibilitiy c₂ in PNJL and QH model for different quark vector interactions

 $P(T,\mu) = P(T) + c_2(T) \mu^2 T^2 + \dots$

small quark vector repulsion !!

PNJL

Steinheimer, SWS, PLB 696, 257 (2011)

analogous behaviour of strange susceptibilitiy

 $X_s = T^2 d^2 (P/T^4) / (d \mu_S)^2 |_{\mu B, \mu S = 0}$

Rau, Steinheimer, Stöcker, SWS, arxiv:1308.4319

Include magnetic field effects

observed surface fields up to ~ 10^{15} G - magnetars

might be significantly larger in the interior of the star

Landau levels:

$$E_{i_{\nu s}}^{*} = \sqrt{k_{z_{i}}^{2} + \left(\sqrt{m_{i}^{*2} + 2\nu|q_{i}|B^{*}} - s_{i}\kappa_{i}B^{*}\right)^{2}}$$

anomalous magnetic moment

simple parameterization of the field

$$B^*(\mu_B) = B_{surf} + B_c \left[1 - e^{b \frac{(\mu_B - 938)^a}{938}} \right]$$

Dexheimer, Negreiros, SWS EPJA 2012

QH model with PT

$$e B_{cr} = m_e^2$$
, $B_{cr} = 4.4 \ 10^{13} \text{ G}$
(1.5 10^{20} G)

particle densities $B_c = 7.2 \times 10^{18} \text{ G}$

Polyakov loop and 1st order transition

PT gets shifted somewhat to higher $\boldsymbol{\mu}$

Dexheimer, Negreiros, SWS EPJA 2012

Impact on M(R) diagram for neutron/hybrid star

for "interesting" field strengths field energy dominates changes in the EOS

include deformation in approximate fashion

$$\epsilon = \epsilon_m + \frac{B^2}{8\pi}$$
$$P_{\perp} = P_m + \frac{B^2}{8\pi}$$
$$P_{\parallel} = P_m - \frac{B^2}{8\pi}.$$

$$P = P_m + \frac{B^2}{8\pi} (1 - 2\cos^2\theta)$$

$$P = P_m + [p_0 + p_2 P_2(\cos\theta)]$$

assume a dipole field

expand metric into multipoles

analogous to Hartle/rotation

Hartle, APJ, 1967 Konno et al A&A, 1999

$$ds^{2} = -e^{\nu(r)} [1 + 2(h_{0}(r) + h_{2}(r)P_{2}(\cos\theta))]dt^{2}$$

+ $e^{\lambda(r)} [1 + \frac{e^{\lambda(r)}}{r}(m_{0}(r) + m_{2}(r)P_{2}(\cos\theta))]dr^{2}$
+ $r^{2} [1 + 2k_{2}(r)P_{2}(\cos\theta)](d\theta^{2} + \sin^{2}\theta d\phi^{2}),$

Mass shift and deformation for different values of central energy density and field

Conclusions, Outlook

- heavy hyper stars possible not too hyper, though
- formulation of realistic quark-hadron model possible
- 2 solar mass hybrid star again not very strange
- serious conflicts with lattice QCD
- simple treatment of deformation for high magnetic fields
- comprehensive equation of state for a wide range of densities/ temperatures (supernovae, mergers)

Many thanks to the organizers!

kaon energies as function of density for neutron star at T = 0

Mishra, Kumar, Sanyal, SWS, EPJA 41, 205

polar and equatorial radii

UrQMD/Hydro hybrid simulation of a Pb-Pb collision at 40 GeV/A EOS part of the package

red regions show the areas dominated by quarks

Extension of the parity model to SU(3)

Baryon SU(3) multiplet + parity doublets

Similar approach, SU(3)-invariant potential for scalar fields

single particle energies $E_{\pm} = \sqrt{(g_1\sigma + g_2\varsigma)^2 + m_0^2 \pm (g_1\sigma + g_2\varsigma)}$

simplify investigation - same mass shift for whole octet

Candidates – $\Lambda(1670), \Sigma(1750), \Xi$ (?) overall unclear

Steinheimer, SWS, Stöcker, JPhysG 38, 035001 (2011)

first study - Nemoto et al. PRD 57, 4124 (1998)

scalar condensate for different masses m_{N^*}

First order transition for masses ≥ 1470 MeV, below crossover

