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Outline of the talk

Effective metric

(Linear) stability through the effective metric

Example: The model by Frolov

Stability through the effective potential

Discussion

IWARA 2013



EOM:

Effective metric: scalar field - nonlinear theory

Background metric
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(all quantities evaluated at the background sol.)

E. Goulart and SEPB (2011)
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In the linear case, the effective metric reduces to 
the backgd. metric.  
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Stability using the effective metric 
(Moncrief, 1980, for the case of a non-self gravitating potential perfect fluid 
accreting onto a Schwarzschild black hole)

If X μ is a Killing 
vector, 

͠͠͠   
  :    
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Finite energy → 

R

r
s
 is the sonic horizon (see below)

Finite energy → 

Assume that

V
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This expression is valid for any sonic bh with the assumed symmetries.
It gives the the time derivative of the energy of a (finite energy) 
perturbation in the 3-volume between r

s
 and infinity.

                             Stability 

(assuming that there is a sonic horizon, see below)



An example (Frolov, 2004)
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Steady state accretion  
+ spherical symmetry 

W

It can be used to source the  accelerated 
expansion as an effective cosmological constant 
(Arkani-Hamed et al, 2003)

0
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r = r
g

r = ∞

α ≈ 1.5

There is only one solution that goes from infinity to r
g 
 (independently of 0 ≤ A ≤ 1) .

It is such that ψ
,r 
> 0  .



The fluid interpretation 

which can be rewritten as 
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The horizon is at

for the chosen sol.



which is negative for the solution showed before

→ THE SYSTEM IS STABLE

(C. A. Paz Rivasplata, J. M. Salim, SEPB, 2013) 
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0

(only the sign of ψ
,r 
 is needed)  

Back to the stability problem...  
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Stability using the effective potential 

“tortoise” coordinates

ρ* = ρ*(r) must be 
calculated numerically

must be diagonalized
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The positivity of the potential is a sufficient condition for stability 
 (Detweiler and Ipser 1973).

After a long and straightforward 
calculation,

(C. A. Paz Rivasplata, J. M. Salim, SEPB, 2013) 

The explicit form of the function 
ψ(r)

 
 is needed. 



Conclusions

● The perturbations of a W-nonlinear field theory are 
governed (at the linear level) by an effective metric 
that depends on the nonlinearities of the theory and 
on the backgd. Solution.

● The time derivative of the energy of the perturbations 
can be evaluated as a surface integral, which 
depends on the effective metric. 

● Using this integral, it was shown that the model by 
Frolov is stable.

● The integral method employed here requires much 
less work than the traditional effective potential 
method. In particular, the explicit form of the backgd. 
is not needed, only its derivative wrt r.  
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● It yields a definite result, while V
eff

 > 0 is a sufficient 
condition.  

● It might be applied to systems with several dof, if in some 
regime the perturbations of one of them decouples from 
the rest of the perturbations.
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Example: Newtonian star

etc



c2 > 0 guarantees stability 
only for ω >> Max (V

eff
)
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(No) Effective metric: scalar field - linear theory

in the EOM 
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Eikonal:

in the EOM + λ→ 0
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The high-energy excitations of φ 
follow geodesics  of the background 
metric (in this case, Minkowski's) 
in the linear theory.



Effective metric: scalar field - nonlinear theory

EOM:

Effective 
metric

λ→ 0
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Background metric in Cartesian coords.

~

~

The high-energy excitations of φ follow 
geodesics of the effective metric in the 
nonlinear theory.

(C. Barcelo et al, 2011)
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