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Introduction

Introduction

It has been proposed that the light curves of some peculiar
superluminous Ia supernovae could be explained by white dwarf
progenitors whose masses are larger than the traditional
Chandrasekhar limit MCh = 1.44 M⊙

Upasana & Banibrata (2013) recently purported that the effects of a
quantizing strong and uniform magnetic field on the equation of state
of a white dwarf, would increase its critical mass up to a new value
Mmax ≈ 2.58 M⊙
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Ultramagnetized white dwarfs

Ultramagnetized white dwarfs

The equation of state of a degenerate electron gas in presence of a
magnetic field B directed along the z-axis, in the limit B → ∞ when
all electrons are constrained to the lowest Landau level, obeys a
polytrope-like for P = Kmρ

2, where

Km =
mec

2π2λ3
e

(µemH)2BD

, (1)

with λe the electron Compton wavelength, and BD = B/Bc the magnetic
field in units of the critical field Bc = m2

ec
3/(e~) = 4.41 × 1013 G. For

obtaining the above expression, in Upasana & Banibrata the density of the
system was assumed to be given by ρ = µemHne , so determined only by
the nuclei component, where ne is the electron number density.
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Ultramagnetized white dwarfs

Ultramagnetized white dwarfs

Then, Lane-Emden solution of Newtonian self-gravitating polytropes of
index n = 1 was used to obtain the mass of an ultramagnetized white
dwarf

M = 4π2ρc

(

Km

2πG

)3/2

, (2)

and the corresponding radius

R =

√

πKm

2G
, (3)

where ρc is the central density.
In the present limit of one Landau level with high electron Fermi energies
EF
e , E

F
e = EF

max ≫ mec
2, with

EF
max = mec

2
√

1 + 2BD ≈ mec
2
√

2BD (4)
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Ultramagnetized white dwarfs

Ultramagnetized white dwarfs

the maximum possible value of EF
e , ρc becomes

ρc =
πM

4R3
=

µemH√
2π2λ3

e

B
3/2
D . (5)

Introducing Eq. (5) into Eq. (2), Upasana & Banibrata obtained the mass
limit of ultramagnetized white dwarfs

Mmax = π3/2 m3
Pl

(µemH)2
≈ 2.58 M⊙, (6)

when ρc → ∞ and R → 0, and Planck mass mPl = (~c/G )1/2. This
upper bound is larger than the canonical Chandrasekhar limit.
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Ultramagnetized white dwarfs

Ultramagnetized white dwarfs
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1 We reproduce the evolutionary
track of the white dwarf
proposed. The magnetic field
along the curve is increasing as
a consequence of accretion of
matter onto the star. It can be
seen in the plot how the star
reaches the maximum mass
limit while reducing its radius.
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Already at this point it is possible to identify some of the assumptions in
the model of Upasana & Banibrata that led to the above results, and
which we show below are incorrect and/or unjustified, invalidating their
final conclusions.

the equation of state assumed in the limit of very intense magnetic
fields, B → ∞;

a uniform magnetic field is adopted;

the huge magnetic fields and the obtained mass-radius relation
explicitly violate even the absolute upper limit to the magnetic field
imposed by the Virial theorem;

dynamical instabilities due to quadrupole deformation are not taken
into account either;

(ITA) IWARA 2013 CBPF 8 / 27



Ultramagnetized white dwarfs

Ultramagnetized white dwarfs

spherical symmetry is assumed for all values of the magnetic field;

the role of the magnetic field in the hydrostatic equilibrium equations
is neglected;

general relativistic effects are ignored even if the final configuration is
almost as compact as a neutron star and the magnetic energy is
larger than the matter energy-density;

microphysical effects such as inverse β decay and pycnonuclear fusion
reactions, important in a regime where the electrons are highly
relativistic, EF

e ≫ mec
2, are neglected;
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Equation of state and virial theorem violation

Equation of state and virial theorem

violation

The limiting field can be computed following the argument by
Chandrasekhar & Fermi (ApJ 118, 116c, 1953). There exists a magnetic
field limit (Bmax) above which an equilibrium configuration is impossible
because the electromagnetic energy (WB) exceeds the gravitational energy
(WG ) therefore becoming gravitationally unbound. If one includes the
forces derived from the magnetic field, one can write the virial scalar
relation for an equilibrium configuration

3Π +WB +WG = 0, (7)

where Π =
∫

PdV , with P the pressure of the system, WB the positive
magnetic energy, and WG the negative gravitational potential energy. The
quantity Π satisfies Π = (γ − 1)U for a polytrope, P = Kργ , where U is
the total kinetic energy of particles.
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Equation of state and virial theorem violation

Equation of state and virial theorem

violation

E = − 3γ − 4

3(γ − 1)
(|WG |−WB), (8)

and therefore the necessary condition for the stability of the star, E < 0, is
given by

(3γ − 4)|WG |
(

1− WB

|WG |

)

> 0. (9)

From this expression we can recover, in absence of magnetic field
(WB = 0), the known condition for bound unmagnetized polytropes
γ < 4/3, or n< 3 in terms of the polytrope index n defined by γ = 1+1/n.
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Equation of state and virial theorem violation

Equation of state and virial theorem

violation

The presence of a magnetic field weakens the stability, and as shown in
Eq. (9), no matter the value of γ, the star becomes gravitationally
unbound when the magnetic energy exceeds the gravitational one; i.e.
WB > |WG |. This condition clearly implies an upper bound for the
magnetic field, obtained for WB = |WG |. In order to determine such limit
we first obtain an expression for the magnetic energy of the star, which
considering a constant magnetic field can be written as

WB =
B2

8π

4πR3

3
=

B2R3

6
. (10)
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Equation of state and virial theorem violation

Equation of state and virial theorem

violation

As we discussed above, the equation of state assumes a polytrope-like for
with γ = 2 or n = 1 under extreme magnetic fields, such that only one
Landau level is populated and EF >> mec

2 . Thus, the gravitational
energy density of the spherical star configuration is

WG = − 3

5− n

GM2

R
= −3

4

GM2

R
, (11)

where M and R are the mass and star radius, respectively, and G is the
Newton gravitational constant. Using Eqs. (10) and (11), and expressing
M and R in units of solar mass and solar radius, we find that the
maximum value of magnetic field Bmax is given by

Bmax = 2.24 × 108
M

M⊙

(

R⊙

R

)2

. (12)
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Equation of state and virial theorem violation

Equation of state and virial theorem

violation

In the case of a Chandrasekhar white dwarf with the maximum mass
M = 1.44M⊙ and a radius of 3000 km, consistent with the recent
calculation of massive white dwarfs, we obtain Bmax ∼ 1.7× 1013 G.
This value is clearly lower than the critical field Bc = 4.4× 1013 G .
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1 In order to quantify how strong
is the violation of the virial
theorem produced by the
magnetic fields used in Upasana
& Banibrata, we choose three
star configurations whose values
of M and R lie in the region of
high mass configuration,
M > 2M⊙ .
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Equation of state and virial theorem violation

In this table we show also for these configurations the magnetic
energy WB given by Eq. (10), and the magnitude of the gravitational
energy |WG |. These results indicate that the magnetic field obtained
in Upasana & Banibrata, are at least one order of magnitude larger
than the maximum magnetic field allowed, Bmax.

As a consequence, for the three star configurations, WB/|WG |∼ 250
well above the stability condition which requires WB/|WG |∼ 1. Thus,
these white dwarf are unstable and unbound.

One of the main consequences of the increasing magnetic field is that
even a small ratio of magnetic to gravitational energy will produce an
appreciable increase in the radii of magnetized white dwarfs.
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Equation of state and virial theorem violation

very compact magnetized white dwarf configuration obtained in
Upasana & Banibrata, in which large magnetic field implies large mass
and small radius, are possible only because the effect of the repulsive
magnetic force (Lorentz force) has not been properly considered.

the limiting magnetic field values are clearly obtained with the radii
much smaller than the self-consistent solution of the equilibrium
equations would give. Since the maximum magnetic field depends on
R−2, see Eq. (12), the real maximum possible field would actually be
smaller than the one computed here.
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Breaking of spherical symmetry and quadrupole instability

Breaking of spherical symmetry

It was shown by Chandrasekhar & Fermi that the figure of equilibrium of
an incompressible fluid sphere with an internal uniform magnetic field that
matches an external dipole field, is not represented by a sphere. The star
becomes oblate by contracting along the axis of symmetry, namely along
the direction of the magnetic field. Thus, we consider the fluid sphere to
be deformed in such a way that the equation of the bounding surface is
given by

r(µ) = R + ǫPl(µ), (13)

where µ = cos θ, with θ the polar angle, and Pl(µ) denotes the Legendre
polynomial of order l .
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Breaking of spherical symmetry and quadrupole instability

Breaking of spherical symmetry

The quantity ǫ satisfies ǫ << R and measures the deviations from a
spherical configuration. The polar and equatorial radii are
Rp = R + ǫPl(1) and Req = R + ǫPl(0) respectively, thus
ǫ = −(2/3)(Req − Rp) and therefore ǫ/R = −(2/3)(Req − Rp)/R , for
the axisymmetric deformed configuration with l = 2.

It was shown in Chandrasekhar & Fermi that such an
axisymmetrically deformed object is favorable energetically with
respect to the spherical star. Thus, the star becomes unstable and
proceeds to collapse along the magnetic field axis, turning into an
oblate spheroidal shape with ǫ < 0. The contraction continues until
the configuration reaches a value of ǫ/R given by

ǫ

R
= −15

8

B2R4

GM2
. (14)

(ITA) IWARA 2013 CBPF 18 / 27



Breaking of spherical symmetry and quadrupole instability

Breaking of spherical symmetry

Using the expression for Bmax given by Eq. (12), one obtains

ǫ

R
= −135

16

(

B

Bmax

)2

≃ −8.4

(

B

Bmax

)2

. (15)

Therefore, when the internal magnetic field is close to the limit set by the
virial theorem, the star deviates to a highly oblate shape.
The results show that |ǫ/R |& 2× 103, which implies that the star has a
highly oblate shape and thus the spherical symmetry is strongly broken.
Therefore, in order to account for the deformation caused by the presence
of a magnetic field, a more consistent calculation considering cylindrical
symmetry is mandatory.
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Breaking of spherical symmetry and quadrupole instability

Using the approximation of Eq. (5), we obtain the corresponding constant
magnetic field B of these stars configurations. We compare these values of
B with the maximum value, Bmax, allowed by the virial theorem (Eq. 12).
We show that such extreme magnetic fields with B > Bmax and the
magnetized white dwarfs of Table are in the instability region, violating the
virial theorem.
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General relativistic effects

General relativistic effects

mB = WB/c
2 ≈ 24.7 M⊙ is approximately one order of magnitude

larger than the mass computed in Upasana & Banibrata, which
implies a total star mass of ≈ 27.3 M⊙, instead of 2.6 M⊙.

a large B cannot be reached in the star; thus the real configurations
of equilibrium likely have a magnetic field energy-density much
smaller than the matter energy-density, implying that the
unmagnetized maximum mass, the Chandrasekhar mass still applies.
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General relativistic effects

General relativistic effects

the maximum mass configuration would have a radius R ≈ 70 km and
thus ρc ≈ 1.2× 1013 g cm−3.

these values imply that the mass, radius, and density of the
ultramagnetized objects considered in Upasana & Banibrata are much
more similar to the parameters of neutron star rather than to the ones
of WDs. Thus, it is natural to ask whether the compactness of the
star, C = GM/(c2R), is such to require a full general relativistic
treatment. For the above star parameters close to the maximum mass
configuration, we see that C ≈ 0.05, a value in clear contrast with a
Newtonian treatment of the equilibrium equations.
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Conclusions
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We have shown that the ultramagnetized, B & 1015 G, massive,
M & 2M⊙, white dwarfs introduced in Upasana & Banibrata are
unlikely to exist in nature since their are subjected to several macro
and micro instabilities which would make a white dwarf either to
collapse or to explode much prior to the reaching of such a
hypothetical structure. The construction of equilibrium configurations
of a magnetized compact star needs the inclusion of several effects
not accounted for in Upasana & Banibrata, and therefore the
acceptance of such ultramagnetized white dwarfs as possible
astrophysical objects has to be considered with most caution.
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Conclusions

Microscopic instabilities

It is known that at sufficiently high densities in the interior of white
dwarfs, the inverse β decay or electron capture process becomes
energetically favorable, and therefore a nucleus (Z ,A) transforms into
a different nucleus (Z − 1,A) by capturing energetic electrons.

Such a process destabilizes the star since the electrons are the main
responsible for the pressure in a white dwarf.

Using Eq. (4), it can be seen that the electron capture process limits
the magnetic field to values lower than

B
β
D
=

1

2

(

ǫβ
Z

mec2

)2

≈ 812.6, 342.3, 207.9, 26.2, (16)

or B ≈ 3.6× 1016, 1.5× 1016, 9.1 × 1015, and 1.1× 1015 G , where we
have used the previously mentioned values of ǫβZ for helium, carbon,
oxygen, and iron, respectively.
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Conclusions

Microscopic instabilities

The electron capture in this case is shown to occur even at critical
central densities lower than in the unmagnetized case. The values of
the critical densities are ρβcrit ≈ 9.6× 1010, 2.6× 1010, 1.2× 1010, and
5.6× 108 g cm−3, respectively for helium, carbon, oxygen, and iron.

configurations approaching the maximum mass M ∼ 2.58M⊙ have
magnetic fields with B & 1017 G and threfore ρc & 4× 1012 g cm−3,
higher than neutron drip density ρdrip ≃ 4.3× 1011 g cm−3, at which
the less bound neutrons in nuclei start to drip out forming a Fermi
gas.

moreover, the pycnonuclear fusion reactions, important in a regime
where the electrons are highly relativistic, EF

e ≫ mec
2, is neglected.

Pycnonuclear fusion reactions might establish a more stringent limit
with respect to the inverse β decay in an ultramagnetized WD.

(ITA) IWARA 2013 CBPF 25 / 27



Conclusions

Microscopic instabilities

Carbon fusion leads to 24Mg, which undergoes electron capture, thus
inverse β decay instability, at a density of approximately
ρβcrit,Mg ≈ 3× 109 g cm−3.

Boshkayev, Rueda, Ruffini & Siutsou (ApJ 2013, 762,117) recently
obtained the pycnonuclear carbon fusion in white dwarfs. C+C fusion
occurs at a timescale of 0.1 Myr at a density
ρC+C
pyc ≈ 1.6× 1010 g cm−3. We infer that such a density is reached

for a magnetic field BD ≈ 246.6, or B ≈ 1.1× 1016 G . Longer
reaction times implies lower densities and thus lower magnetic fields.

the above limits to the magnetic field obtained from microscopic
instability processes are, however, still higher than the maximal values
allowed by the virial theorem. Thus, the macroscopic dynamical
instabilities sets in before both electron captures and pycnonuclear
reactions.
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Conclusions

ITA - the Golden Age

ITA is a federal government institution dedicated to provide high level
education and research in Science and Technology areas of interest to
the aerospace sector.

Rated one of the best academic institutions in Brazil in engineering
and related fields, ITA offers regular undergraduate courses in
engineering, and graduate programs leading to the degrees of Master
and Doctor.

ITA-CAPES agreement
(http : //www .ita.br/online/2013/noticias2013/capesita.htm)

post-graduate (120 to 240 students / year) and 50% increase in
Graduate (750 to 1,500 students).

new buildings and laboratories.

In 2014/15 will be built a building accommodation for 600
post-graduate students, and a new residence for graduate students,
teachers village to reside within the ITA.
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