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Introduction

Context

I am going to present you part of our research about:

the relation between the thermodynamic and Shannon entropies
along the stellar evolution and

how we can use information theoretic methods to address the
composition of neutron stars.

In this presentation my main focus will be the second problem.
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Development

Stellar sequence and adopted hypotheses

We assumed the schematic path of evolution of a single object:

MC → MSS → WDS → PNS → NS → BH.

Conserved quantity:

Baryon number, Nb = 1.6 × 1057 ⇒ 1.35M⊙.

Hypotheses:

the total energy is given by Etot = Eint + Ekin + Epot ;

the virial condition Epot = −2 × Ekin is satisfied;

the components have equilibrium particle distributions, for
example, equipartition of energy holds for ideal gases, Ekin ∼ kT .
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Development

Calculation

Internal conditions were properly chosen and were based on
astrophysical observations and computer simulations:

MC: agglutinating blobs with T ∼ 20K ;

MSS: four different ages, 0, 1 Gyr, 3 Gyr and 4 Gyr with internal
structure simulated by computer;

WDS: hot and cold phases, taking into account melting and
crystallization;

PNS: T ∼ 1011K , from explosion mechanisms;

NS: hot and cold phases, observations and theory;

BH: theory.
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Development

Results

Each component of matter had its entropy calculated appropriately:

Radiation Ideal baryons Ideal electrons Degenerate e− Crystal Degenerate n Area
MC – ∼ 1042 – – – – –

Star0 ∼ 1040
∼ 1042

∼ 1042 – – – –
Star1 ∼ 1040

∼ 1042
∼ 1042 – – – –

Star3 ∼ 1041
∼ 1042

∼ 1042 – – – –
Star4 ∼ 1042

∼ 1042
∼ 1042 – – – –

HWD ∼ 1037
∼ 1042 – ∼ 1040 – – –

CWD ∼ 1026 – – ∼ 1036
∼ 1033 – –

PNS ∼ 1042
∼ 1042 – ∼ 1042 – – –

HNS ∼ 1032 – – – – ∼ 1039 –
CNS ∼ 1026 – – – – ∼ 1037 –
BH ∼ 10−17 – – – – – ∼ 1061
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Development

Results

Evolution of thermodynamic entropy:
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Development

Results

The entropy regimes do not follow the pressure regimes (see WD):
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Complexity and Information

Complexity and Information

First, concepts and definitions:

Information: what we can get from observing the occurrence of an
event (how surprising, or unexpected or what else).

With a certain reductionism:

definition of information in terms of the probability of an event to
occur.
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Complexity and Information

Information

From some desired mathematical properties of information we can
derive:

I(p) = −logb(p) (1)

for some probability p and basis b (that gives the unit). b = 2 give us
bits.

flipping a fair coin once give you −log2(1/2) = 1 bit of information.
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Complexity and Information

Information

If a source provides n symbols {ai} with probability {pi}, then the
average amount of information in the stream of symbols is:

I
N

= −
N
∑

i=0

pi logb(pi) ≡ H(P). (2)

This quantity is defined as the entropy of the probability distribution
P = {pi}

Property:

The maximum of this quantity is achieved at equiprobability
pi = 1/n.
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Complexity and Information

Information

The generalization we seek should be valid for continuous systems
admitting a probability distribution.

H = −K
∫

p(x)logb
(

p(x)
)

d~x (3)

In order to apply this concept to physical systems we have to define
properly what quantity to use as a probability distribution.
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Complexity and Information

Information

In condensed matter, the momentum and position distributions in
the phase space or even the atomic number have been used.

Here we assumed that the probability distribution is proportional to
the energy density (or the mass density in the non-relativistic
case) profile of the star.

For each object we obtained the energy density profile by solving
the appropriate set of structure equations and calculated the
quantity H.
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Complexity and Information

Information

Evolution of information entropy:
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Complexity and Information

Complexity in physical systems: ideal cases

Complexity: what does not match the requirements of being
simple (tautology?). In physics, we always begin with ideal
systems as the simplest systems possible.

Let us allow complexity to encode order and disorder (or the
self-organization of a system): two ideal systems, extremes in all
aspects and opposites as well:

Perfect crystal: zero complexity by definition; strict symmetry rules
⇒ probability density centered around the prevailing state of
perfect symmetry ⇒ minimal information. Completely ordered.

Ideal gas: zero complexity by definition; accessible states are
equiprobable ⇒ maximal information. Totally disordered.
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Complexity and Information

Key concept: Disequilibrium

Here we show how to use the information we have just calculated
to discriminate among the myriad of equations of state.

However, the information alone is not enough to define complexity. We
define then the disequilibrium as the distance to the equiprobability.

Now we mathematically define complexity as:

C ≡ H × D (4)

Marcio G. B. de Avellar (IAG-USP) IWARA 2013 presentation 01/10/2013 15 / 37



Complexity and Information

Getting some intuition first

Figure: Intuitive definition of complexity
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Complexity and Information

Disequilibrium

As an expression to disequilibrium the proposal is

D =
N
∑

i=1

(

pi −
1
N

)2
→

∫

p2(x)dx (5)
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Complexity and Information

Compact stars

Application to neutron stars with two different compositions:

Hadronic composition with SLy4 equation of state;

Quark composition with three flavours in equal amounts or strange
quark matter.

How does the composition affect the measures of these quantities?
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Complexity and Information

Compact stars
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Figure: Mass-radius relation for two different EoSs

Marcio G. B. de Avellar (IAG-USP) IWARA 2013 presentation 01/10/2013 19 / 37



Complexity and Information

Results
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Complexity and Information

Results
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Complexity and Information

Results
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Complexity and Information

Summary

Summary of the results comparing the two equations of state:

H: M ≥ 1.3 M⊙ ⇒ higher I for quarks ⇒ quarks more “gaseous”;
M ≤ 1.3 M⊙ ⇒ lower I for quarks ⇒ quarks more “crystalline”;

D: M ≥ 1.1 M⊙ ⇒ lower D for quarks ⇒ quarks less ordered ⇒
quarks more “gaseous”;

M ≤ 1.1 M⊙ ⇒ higher D quarks ⇒ quarks more ordered ⇒
quarks more “crystalline”;

C: M ≥ 1.6 M⊙ ⇒ quarks more complex;
M ≤ 1.6 M⊙ ⇒ equivalent complexity for both compositions.

The white dwarf case: complexity grows with increasing mass,
reaching a maximum finite value at the Chandrasekhar mass.
Resemblance to atomic systems.
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Complexity and Information

Conclusions

Conclusions:

If higher D implies higher distance to the equiprobability and a
trend to be more crystalline (and ordered), and additionally we
assume that order has a cost, then for each EoS separately
Nature prefers to form less massive objects, albeit more complex
ones.

Therefore, comparing the two EoSs presented here it seems that
for masses ≤ 1.1 − 1.3 M⊙ the quarks tend to be more crystalline
than the hadrons, i.e., Nature would prefer to make hadronic
“neutron” stars. For masses ≥ 1.1 − 1.3 M⊙ the quarks tend to be
more “gaseous”, and quark “neutron” stars are preferred by
Nature.
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Complexity and Information

Conclusions

Remark:

Note that this is roughly in line with naive expectations about the
presence of quarks in massive stars only. The exact nature of the
objects formed in Nature still depends on the actual astrophysical
mechanism(s) allowing the birth of a compact star. For example,
in stellar collapses the expected iron cores would never form
compact stars with masses below ≥ 1 M⊙, therefore, essentially
all the observed “‘neutron stars” should be quark stars.

The mechanism of formation is not being tested; this method tests
the complexity and information entropy for different compositions.
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In progress...

Other EoSs and the effects of interactions

The following Figures show:

how different values of the bag constant affect these statistical
measures;

the effects of the strong coupling constant;

the effects of the anisotropy of pressure (exact solution versus
MIT original);

other EoSs;

...
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In progress... In progress

Other EoSs and the effects of interactions

EoSs we are studying now: can we quantify these differences?
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Figure: Hybrid stars: Bag Model + relativistic mean field TM1; For details,
see: S. Weissenborn et al. Astrophysical Journal, 740, L14 (2011)
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In progress... In progress

Other EoSs and the effects of interactions
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In progress... In progress

Other EoSs and the effects of interactions

EoSs we are studying now: can we quantify these differences?
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Other EoSs and the effects of interactions
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In progress... In progress
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Figure: Beff = 145MeV/fm3 and α = 0.4 for Gibbs and Maxwell transitions
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Other EoSs and the effects of interactions
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Figure: Original Bag Model vs Bag Model with anisotropic pressure (exact
solution)
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solution)
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In progress... In progress

Other EoSs and the effects of interactions
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