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Phases of quark matter
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NJL model, uniform phases only

heavy ion
collider

/

€
C) gas i

60

° .
.
°
IS
5

T (MeV)
g

CFLK°

350 400 450 500 550
- /3 (MeV)

nuclear compact star i —

eseetfuia L Warringa, hep-ph/0606063

/supercond

But there are also non-uniform phases, such as the crystalline
(“"LOFF" /"FFLQO") phase.



Quark matter in compact stars

\Conventional scenario\ ’Strange Matter Hypothesis

Bodmer 1971; Witten 1984; Farhi, Jaffe 1984
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Two scenarios for quark matter

’ Conventional scenario ‘
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Two scenarios for quark matter

’Conventional scenario‘ ’Strange Matter Hypothesis‘
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) Vacuum—quark matter transition
at high pressure, (ficrit, Perit)

at (b = psqm, p=0.
Strange quark matter (SQM) is the
favored phase down to p = 0.



Stars under the Strange Matter Hypothesis
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Strangelet crust

At zero pressure, if its surface tension is low enough ,

strange matter, like nuclear matter, will undergo charge separation
and evaporation in to charged droplets.
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Charge separation: a generic feature
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Neutral quark matter and
neutral vacuum can coexist
at zero pressure.

But if they have different
electrostatic potentials e
then ps, > 0 and it is
preferable* to form a
charge-separated phase with
intermediate (..

% unless surface costs are too high, e.g. surface tension, electrostatic energy from

E = Vie.



Strange quark matter objects

Similar to nuclear matter objects, if surface tension is low enough.
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Strange Matter Hypothesis summary

» Strange matter is the true ground state at zero pressure.

» For a compact star, ground state is strange matter, perhaps with a
strangelet or nuclear matter crust.

» Neutron stars will convert to strange stars if hit by a strangelet.

» Regular matter is immune since strangelets are positively charged.
» If surface tension of strange matter is low enough, it will form
atoms, planets, dwarfs, compact stars, roughly like nuclear matter.
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» If surface tension of strange matter is low enough, it will form
atoms, planets, dwarfs, compact stars, roughly like nuclear matter.

Is SMH ruled out by observations of neutron stars?

» X-ray burst oscillations indicate ordinary nuclear crust
(Watts, Reddy astro-ph/0609364). But. ..
— Maybe nuclear crust can show similar behavior?
— Maybe strangelet crust can show similar behavior?

» Would cosmic strangelet flux be large enough to convert all
neutron stars? (Friedman, Caldwell, 1991)7
Depends on SQM params (Bauswein et. al. arXiv:0812.4248).



Conventional hypothesis

Transition from nuclear matter to quark matter occurs at high pressure.
Compact stars have nuclear crust/mantle, possible quark matter core.

| Vac—NM—QM|

nuclear
crust

neutron “p
star
pcrit ””””””” ‘
vac -
7 / T
hybrid
star 310MeV

Nuclear—quark matter
at high pressure, (ficrit, Perit)




Signatures of quark matter in compact stars

Microphysical properties

< Phases of dense matter
(and neutron star structure)

Observable <«

Property Nuclear phase  Quark phase
known unknown;
up to ~ Ny many models

mass, radius eqn of state ¢(p)




Signatures of quark matter in compact stars

Observable <«

Microphysical properties

< Phases of dense matter
(and neutron star structure)

Property Nuclear phase  Quark phase
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Nucl/Quark EoS ¢(p) = Neutron star M(R)
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Can quark matter be the favored phase at high density?



A fairly generic QM EoS

Model-independent parameterization:
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Constraints on QM EoS from max mass
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e Max mass can constrain QM EoS but not rule out generic QM
o For soft NM EoS, need cy; 2 0.4



Hybrid star M(R)

Hybrid star branch in M(R) relation has 4 typical forms
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“Phase diagram” of hybrid star M(R)

Soft NM + QM(céle)
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Disconnected branch exists in regions D and B.



Sensitivity to NM EoS and ¢,
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e NM EoS (HLPS=soft, NL3=hard) does not make much difference.
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e Higher céM favors disconnected branch.



r-modes: gravitational spin-down of
compact stars

An r-mode is a quadrupole flow that emits Polar view Sideview

gravitational radiation. It becomes unsta-
ble (i.e. arises spontaneously) when a star

spins fast enough, and if the shear and bulk
viscosity are low enough. :

Andersson gr-qc/9706075
Friedman and Morsink gr-qc/9706073

mode pattern
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Could neutron stars be spinning down via r-modes?
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heating too = hotter than
r-mode steady state.
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No known saturation
mechanism can achieve
this.

(Alford, Schwenzer,
unpublished)



r-modes and timing data

Use df /dt rather than T. Lots of radio pulsar data.
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Again, nuclear matter needs additional damping or oy, < 1077 to be a
viable model.  (Alford, Schwenzer unpublished)



Conventional Scenario summary

» Critical density for nuclear—quark transition is unknown.
Neutron stars may have quark matter cores.

» We need signatures that are sensitive to properties of the core

» Mass-radius curve

Cooling (e.g. Cas. A)

Spindown (r-mode exclusion regions)

Glitches

Grav waves? (Spindown, mergers, “mountains”)

v

v

v

v

» We need to understand quark matter phases and how their
properties are manifested in these signature behaviors.



The future

» Neutron stars:

v

More data on neutron star mass, radius, age, temperature, etc.
Spindown: r-mode damping and saturation mechanisms
Cooling: neutrino emissivity of quark matter phases

Glitches & grav waves: Color supercond. crystalline phase
Other signatures?

v

v

v

v

» Quark matter properties:

v

Intermediate density phases

Role of large magnetic fields

Better models of quark matter: PNJL, Schwinger-Dyson
Better weak-coupling calculations

Solve the sign problem and do lattice QCD at high density

v

v

v
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