Quark matter and the high-density frontier

Mark Alford Washington University in St. Louis

Outline

I Quarks at high density

Confined, quark-gluon plasma, color superconducting

II Color superconducting phases Color-flavor locking (CFL), and beyond

III Quark matter in the real world

Battle between color superconductivity and the strange quark

M. Alford, K. Rajagopal, T. Schäfer, A. Schmitt, arXiv:0709.4635 (RMP) A. Schmitt, arXiv:1001.3294 (Springer Lecture Notes)

I. Quarks at high density

heavy ion collisions: chiral critical point and first-order line compact stars: color superconducting quark matter core

Color superconductivity

At sufficiently high density and low temperature, there is a Fermi sea of almost free quarks.

$$F = E - \mu N$$

$$\frac{dF}{dN} = 0$$

But quarks have attractive QCD interactions.

Any attractive quark-quark interaction causes pairing instability of the Fermi surface: BCS mechanism of superconductivity. BCS in quark matter: Ivanenko and Kurdgelaidze, Lett. Nuovo Cim. IIS1 13 (1969).

What is a condensate of Cooper pairs?

 $|\phi_0\rangle$, not $|\text{Fermi sea}\rangle$, is the ground state.

Physical consequences of Cooper pairing

Changes low energy excitations, affecting transport properties.

- ▶ Spontaneous breaking of global symmetries ⇒ Goldstone bosons, massless degrees of freedom that dominate low energy behavior.
 E.g.: Superfluidity
- Spontaneous breaking of local (gauged) symmetries: massive gauge bosons, exclusion of magnetic fields (Meissner effect).
 E.g.: Superconductivity

► Gap in fermion spectrum.

Adding a fermion near the Fermi surface now costs energy because it disrupts the condensate.

$$a^{\dagger}_{p}(\cos heta+\sin heta\,a^{\dagger}_{p}a^{\dagger}_{-p})=\cos heta\,a^{\dagger}_{p}$$

Interactions between Quarks

Dominant interaction between quarks is the strong interaction, mediated by exchange of gluons that couple to "color" charge (QCD). Properties of QCD

- Short distances, r ≪ 1 fm, asymptotically free : gauge coupling g ≪ 1, single gluon exchange dominates, the theory is analytically tractable.
- Long distances r > 1 fm, QCD confines: color electric fields form flux tubes, only color-neutral states, baryons and mesons, exist.

Interactions between Quarks

Dominant interaction between quarks is the strong interaction, mediated by exchange of gluons that couple to "color" charge (QCD). Properties of QCD

- Short distances, r ≪ 1 fm, asymptotically free : gauge coupling g ≪ 1, single gluon exchange dominates, the theory is analytically tractable.
- Long distances r > 1 fm, QCD confines : color electric fields form flux tubes, only color-neutral states, baryons and mesons, exist.
- At low temperature (T ≤ 170 MeV), Chiral (left-right) symmetry is broken : color force can't turn a LH quark to RH, but our vacuum is full of q
 _Lq_R pairs

Handling QCD at high density

- Lattice: "Sign problem"—negative probabilities
 - **SUSY:** Statistics crucial to quark Fermi surface
- large N: Quarkyonic phase?
 - **pert**: Applicable far beyond nuclear density. Neglects confinement and instantons.
 - NJL: Model, applicable at low density. Follows from instanton liquid model.

EFT: Effective field theory for lightest degrees of freedom. "Parameterization of our ignorance": assume a phase, guess coefficients of interaction terms (or match to pert theory), obtain phenomenology.

II. Color superconducting phases

Attractive QCD interaction \Rightarrow Cooper pairing of quarks. We expect pairing between *different flavors*.

Quark Cooper pair: $\langle q_{ia}^{\alpha} q_{ib}^{\beta} \rangle$

color
$$\alpha, \beta = r, g, b$$

flavor $i, j = u, d, s$
spin $a, b = \uparrow, \downarrow$

Each possible BCS pairing pattern P is an 18×18 color-flavor-spin matrix

$$\langle q^lpha_{ia} q^eta_{jb}
angle_{_{1PI}} = \Delta_P \, P^{lphaeta}_{ij\, ab}$$

The attractive channel is:

space symmetric [s-wave pairing] color antisymmetric [most attractive] spin antisymmetric \Rightarrow flavor antisymmetric

[isotropic]

Initially we will assume the most symmetric case, where all three flavors are massless.

High-density QCD calculations

- Guess a color-flavor-spin pairing pattern P
- to obtain gap Δ_P , minimize free energy Ω with respect to Δ_P (imposing color and electric neutrality)

$$\frac{\partial \Omega}{\partial \Delta_P} = 0 \qquad \frac{\partial \Omega}{\partial \mu_i} = 0$$

- The pattern with the lowest $\Omega(\Delta_P)$ wins!
 - 1. Weak-coupling methods. First-principles calculations direct from QCD Lagrangian, valid in the asymptotic regime, currently $\mu\gtrsim 10^6$ MeV.
 - 2. Nambu–Jona-Lasinio models, ie quarks with four-fermion coupling based on instanton vertex, single gluon exchange, etc. This is a semi-quantitative guide to physics in the compact star regime $\mu \sim 400$ MeV, not a systematic approximation to QCD.
- NJL gives $\Delta \sim 10\!-\!100$ MeV at $\mu \sim 400$ MeV.

Gap equation in a simple NJL model

RHS

Minimize free energy wrt Δ :

$$1 = \frac{8K}{\pi^2} \int_0^{\Lambda} p^2 dp \left\{ \frac{1}{\sqrt{\Delta^2 + (p-\mu)^2}} \right\} \qquad 1$$

Note BCS divergence as $\Delta \rightarrow 0$: there is *always* a solution, for any interaction strength K and chemical potential μ . Roughly,

$$1 \sim K \mu^2 \ln (\Lambda / \Delta)$$

 $\Rightarrow \Delta \sim \Lambda \exp \left(- \frac{1}{K \mu^2} \right)$

Superconducting gap is non-perturbative.

Color supercond. in 3 flavor quark matter Color-flavor locking (CFL)

Equal number of colors and flavors gives a special pairing pattern (Alford, Rajagopal, Wilczek, hep-ph/9804403)

$$\langle q_i^lpha q_j^eta
angle \sim \delta_i^lpha \delta_j^eta - \delta_j^lpha \delta_i^eta = \epsilon^{lpha eta n} \epsilon_{ijn}$$

$$\underbrace{SU(3)_{\text{color}} \times \underbrace{SU(3)_L \times SU(3)_R}_{\supset U(1)_Q} \times U(1)_B \rightarrow \underbrace{SU(3)_{C+L+R}}_{\supset U(1)_{\widetilde{Q}}} \times \mathbb{Z}_2}_{\supset U(1)_{\widetilde{Q}}}$$

- Breaks chiral symmetry, but *not* by a $\langle \bar{q}q \rangle$ condensate.
- There need be no phase transition between the low and high density phases: ("quark-hadron continuity")
- ► Unbroken "rotated" electromagnetism, Q, photon-gluon mixture.

Color-flavor-locked ("CFL") quark pairing

Conjectured QCD phase diagram

III. Quark matter in the real world

In the real world there are three factors that combine to oppose pairing between different flavors.

- 1. Strange quark mass is not infinite nor zero, but intermediate. It depends on density, and ranges between about 500 MeV in the vacuum and about 100 MeV at high density.
- **2.** Neutrality requirement. Bulk quark matter must be neutral with respect to all gauge charges: color and electromagnetism.
- **3.** Weak interaction equilibration. In a compact star there is time for weak interactions to proceed: neutrinos escape and flavor is not conserved.
- These factors favor different Fermi momenta for different flavors which *obstructs* pairing between different flavors.

Mismatched Fermi surfaces vs. Cooper pairing

s and *d* quarks near their Fermi surfaces cannot have equal and opposite momenta.

The strange quark mass is the cause of the mismatch.

Cooper pairing vs. the strange quark mass

CFL: Color-flavor-locked phase, favored at the highest densities.

$$\langle q_i^{\alpha} q_j^{\beta} \rangle \sim \delta_i^{\alpha} \delta_j^{\beta} - \delta_j^{\alpha} \delta_i^{\beta} = \epsilon^{\alpha \beta N} \epsilon_{ijN}$$

2SC: Two-flavor pairing phase. May occur at intermediate densities. $\langle q_i^{\alpha} q_j^{\beta} \rangle \sim \epsilon^{\alpha\beta3} \epsilon_{ij3} \sim (rg - gr)(ud - du)$

or: CFL with kaon condensation (CFL- K^0), crystalline phase (LOFF), *p*-wave "meson" condensates, single-flavor pairing (color-spin locking, ~liq ³He-B).

Phases of quark matter, again

But there are also non-uniform phases, such as the crystalline ("LOFF" /"FFLO") phase. (Alford, Bowers, Rajagopal, hep-ph/0008208)

Crystalline (LOFF) superconductivity

When the Fermi momenta are such that one flavor of quark is just barely excluded from pairing with another, it may be favorable to make pairs with a net momentum, so each flavor can be close to its Fermi surface.

Every quark pair in the condensate has the same nonzero total momentum 2q (single plane wave LOFF).

Free energy comparison of phases

Assuming $\Delta_{\rm CFL} = 25$ MeV.

(Alford, Rajagopal, Schäfer, Schmitt, arXiv:0709.4635)

Curves for CubeX and 2Cube45z use G-L approx far from its area of validity: favored phase at $M_s^2 \sim 4\mu\Delta$ remains uncertain.

IV. Looking to the future

Observability of quark matter in neutron stars:

- mass-radius relation
- spindown
- glitches
- cooling
- instability of gapless phases; better treatment of LOFF
- role of large magnetic fields
- better weak-coupling calculations
- ▶ better models of quark matter: Functional RG, Schwinger-Dyson
- solve the sign problem and do lattice QCD at high density.