Hadron-Quark phase transition in high-mass neutron stars

Gustavo Contrera (IFLP-CONICET & FCAGLP, La Plata, Argentina)

Milva Orsaria (FCAGLP, CONICET, Argentina & SDSU, USA)

Fridolin Weber (SDSU & Univ. Of California, San Diego, USA)

Hilario Rodrigues (Centro Fed. de Educação Tecnológica, RJ, Brazil)

IV IWARA 2013

September 30th to October 3rd; Rio de Janeiro, Brazil

Cosmology

Motivation

Heavy ion and p⁺-p⁺ collisions (RHIC, LHC, FAIR, NICA ...)

Compact stars astrophysics

IWARA 2013 1/20

A NEUTRON STAR: SURFACE and INTERIO 0 CRUST CORF Homogen Matter ATMOSPHERE ENVELOPE CRUST **OUTER CORE** INNER CORE PSR J1614 - 2230 $(M = 1.97 \pm 0.04 M_{sl})$ Demorest et al.

Nature 467, 1081 (2010).

Annu. Rev. Nucl. Part. Sci. 62:485–515

Motivation

 Recent high precision determination of two high mass Neutron Stars (NS) J1614-2230 (1.97±0.04 M_{Sun}) ^[1] and J0348+0432 (2.01±0.04 M_{Sun}) ^[2].
 [1] P. B. Demorest et al, Nature 467, 1081 (2010).

[2] L. Antoniadis et al, Science 340, 6131 (2013).

- What are the fundamental building blocks in the core of such stars?
- Does quark deconfinement occur?
- How could we modelate matter under such conditions?
- We have analyzed the global structure and composition of massive NSs in the framework of a non-local 3-flavor NJL model (n3NJL) for quark matter and a non-linear relativistic model for hadronic matter ^[3,4].
- [3] M. Orsaria, H. Rodrigues, F. Weber, G. A. Contrera, Phys. Rev. D 87, 023001 (2013).
 [4] M. Orsaria, H. Rodrigues, F. Weber, G. A. Contrera, arXiv:1308.1657 [nucl-th].
 IWARA 2013 3/20

Quark Phase: Local vs. Non-local NJL models

Local NJL	Non-local NJL model	
	• Confinement with a proper	
\bullet Lack of confinement	choice of the non-local regulator	
	and model parameters [1]	
• Quark-quark scalar-	• Quark-quark interaction	
isoscalar and pseudoscalar-	through phenomenologically	
isovectorial local interaction	effective quark propagator	
• Non-renormalizable.	• UV divergences are fixed [2]	
Ultra-violet (UV) cutoff Λ	Model dependent form factor $g(p)$	
is needed		
• Dynamical quark masses	• Dynamical quark masses	
are momentum independent	are momentum dependent as also	
	found in lattice calculations of QCD [3]	
• Divergences in the meson • The momentum dependent		
loop integrals. Extra cutoffs	regulator makes the theory finite	
are needed.	to all orders in the $1/N_c$ expansion [4]	
• The cutoff Λ is turned off at high	• The form factor provides a natural	
momenta, limiting the applicability	cutoff that falls off at high momenta	
of the model at high densities		

[1] Bowler & Birse, Nucl. Phys. A 582, 655 (1995); Plant & Birse, Nucl. Phys. A 628, 607 (1998);
[2] G. Ripka, Quarks bound by chiral fields (Oxford University Press, Oxford, 1997);
[3] Parappilly et al., Phys. Rev. D 73, 054504 (2006);
[4] D. Blaschke et al., Phys. Rev. C 53, 2394 (1996).

Quark Phase: n3NJL

Euclidean effective action including vector interaction

$$S_{E} = \int d^{4}x \left\{ \bar{\psi}(x) \left[-i\partial \!\!\!/ + \hat{m} \right] \psi(x) - \frac{G_{S}}{2} \left[j_{a}^{S}(x) j_{a}^{S}(x) + j_{a}^{P}(x) j_{a}^{P}(x) \right] - \frac{H}{4} T_{abc} \left[j_{a}^{S}(x) j_{b}^{S}(x) j_{c}^{S}(x) - 3 j_{a}^{S}(x) j_{b}^{P}(x) j_{c}^{P}(x) \right] \left(-\frac{G_{V}}{2} j_{V}^{\mu}(x) j_{V}^{\mu}(x) \right) \right\}$$

$$\begin{split} j_a^S(x) &= \int d^4 z \, \widetilde{\tilde{g}}(z) \, \bar{\psi} \left(x + \frac{z}{2} \right) \, \lambda_a \, \psi \left(x - \frac{z}{2} \right) \, ,\\ j_a^P(x) &= \int d^4 z \, \widetilde{\tilde{g}}(z) \, \bar{\psi} \left(x + \frac{z}{2} \right) \, i \, \gamma_5 \lambda_a \, \psi \left(x - \frac{z}{2} \right) \\ j_V^\mu(x) &= \int d^4 z \, \widetilde{\tilde{g}}(z) \, \bar{\psi} \left(x + \frac{z}{2} \right) \, \gamma^\mu \, \psi \left(x - \frac{z}{2} \right) \, , \end{split}$$

Form factor responsible for the non-local interaction

IWARA 2013 5/20

After the standard bosonization of the Euclidean action...

$$\begin{split} \Omega^{NL}(M_{f},0,\mu_{f}) &= -\frac{N_{c}}{\pi^{3}} \sum_{f=u,d,s} \int_{0}^{\infty} dp_{0} \int_{0}^{\infty} dp \ln \left\{ \widehat{[\omega_{f}^{2}]} M_{f}^{2}(\omega_{f}^{2}) \right] \frac{1}{\omega_{f}^{2} + m_{f}^{2}} \right\} \\ &- \frac{N_{c}}{\pi^{2}} \sum_{f=u,d,s} \int_{0}^{\sqrt{\mu_{f}^{2} - m_{f}^{2}}} dp \ p^{2} \ [(\mu_{f} - E_{f})\theta(\mu_{f} - m_{f})] - \frac{1}{2} \left[\sum_{f=u,d,s} (\bar{\sigma}_{f} \ \bar{S}_{f} + \frac{G_{s}}{2} \ \bar{S}_{f}^{2}) + \frac{H}{2} \bar{S}_{u} \ \bar{S}_{d} \ \bar{S}_{s} \right] \left(- \sum_{f=u,d,s} \frac{\omega_{f}^{2}}{4G_{V}} M_{f}^{2}(\omega_{f}^{2}) - \frac{1}{2} \left[\sum_{f=u,d,s} (\bar{\sigma}_{f} \ \bar{S}_{f} + \frac{G_{s}}{2} \ \bar{S}_{f}^{2}) + \frac{H}{2} \bar{S}_{u} \ \bar{S}_{d} \ \bar{S}_{s} \right] \left(- \sum_{f=u,d,s} \frac{\omega_{f}^{2}}{4G_{V}} M_{f}^{2}(\omega_{f}^{2}) - \frac{1}{2} \left[\sum_{f=u,d,s} (\bar{\sigma}_{f} \ \bar{S}_{f} + \frac{G_{s}}{2} \ \bar{S}_{f}^{2}) + \frac{H}{2} \bar{S}_{u} \ \bar{S}_{d} \ \bar{S}_{s} \right] \left(- \sum_{f=u,d,s} \frac{\omega_{f}^{2}}{4G_{V}} M_{f}^{2}(\omega_{f}^{2}) - \frac{1}{2} \left[\sum_{f=u,d,s} (\bar{\sigma}_{f} \ \bar{S}_{f} + \frac{G_{s}}{2} \ \bar{S}_{f}^{2}) + \frac{H}{2} \bar{S}_{u} \ \bar{S}_{d} \ \bar{S}_{s} \right] \left(- \sum_{f=u,d,s} \frac{\omega_{f}^{2}}{4G_{V}} M_{f}^{2}(\omega_{f}^{2}) - \frac{1}{2} \left[\sum_{f=u,d,s} (\bar{\sigma}_{f} \ \bar{S}_{f} + \frac{G_{s}}{2} \ \bar{S}_{f}^{2}) + \frac{H}{2} \bar{S}_{u} \ \bar{S}_{d} \ \bar{S}_{s} \right] \left(- \sum_{f=u,d,s} \frac{\omega_{f}^{2}}{4G_{V}} M_{f}^{2}(\omega_{f}^{2}) - \frac{1}{2} \left[\sum_{f=u,d,s} (\bar{\sigma}_{f} \ \bar{S}_{f} + \frac{G_{s}}{2} \ \bar{S}_{f}^{2}) + \frac{H}{2} \bar{S}_{u} \ \bar{S}_{d} \ \bar{S}_{s} \right] \left(- \sum_{f=u,d,s} \frac{\omega_{f}^{2}}{4G_{V}} M_{f}^{2}(\omega_{f}^{2}) - \frac{1}{2} \left[\sum_{f=u,d,s} (\bar{\sigma}_{f} \ \bar{S}_{f} + \frac{G_{s}}{2} \ \bar{S}_{f}^{2}) + \frac{1}{2} \bar{S}_{u} \ \bar{S}_{d} \ \bar{S}_{s} \right] \right] \left(- \sum_{f=u,d,s} \frac{\omega_{f}^{2}}{4G_{V}} M_{f}^{2}(\omega_{f}^{2}) - \frac{1}{2} \left[\sum_{f=u,d,s} (\bar{\sigma}_{f} \ \bar{S}_{f} - \frac{1}{2} \left[\sum_{g=u,d,s} (\bar{\sigma}_{f} \ \bar{S}_{f} \ \bar{S}_{f} - \frac{1}{2} \left[\sum_{g=u,d,s} (\bar{\sigma}_{f} \ \bar{S}_{f} \ \bar{S}_{f} \ \bar{S}_{f} - \frac{1}{2} \left[\sum_{g=u,d,s} (\bar{\sigma}_{f} \ \bar{S}_{f} \ \bar{S}_{f}$$

IWARA 2013 6/20

Hadronic Phase

Non-linear Relativistic Mean Field approximation

$$\mathcal{L} = \mathcal{L}_{H} + \mathcal{L}_{\ell} \qquad \qquad \mathcal{L}_{\ell} = \sum_{\lambda = e^{-}, \mu^{-}} \bar{\psi}_{\lambda} (i\gamma_{\mu}\partial^{\mu} - m_{\lambda})\psi_{\lambda}$$

$$\mathcal{L}_{H} = \sum_{\substack{B=n,p,\Lambda,\Sigma,\Xi}} \bar{\psi}_{B} \left[\gamma_{\mu} (i\partial^{\mu} - g_{\omega}\omega^{\mu} - g_{\rho}\vec{\rho}_{\mu}) - (m_{N} - g_{\sigma}\sigma) \right] \psi_{B}$$
$$+ \frac{1}{2} (\partial_{\mu}\sigma\partial^{\mu}\sigma - m_{\sigma}^{2}\sigma^{2}) - \frac{1}{3} b_{\sigma}m_{N}(g_{\sigma}\sigma)^{3} - \frac{1}{4} c_{\sigma}(g_{\sigma}\sigma)^{4}$$
$$- \frac{1}{4} \omega_{\mu\nu}\omega^{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega_{\mu}\omega^{\mu} + \frac{1}{2} m_{\rho}^{2}\vec{\rho}_{\mu} \cdot \vec{\rho}^{\mu} - \frac{1}{4} \vec{\rho}_{\mu\nu}\vec{\rho}^{\mu\nu}$$

- Full baryon octet: p, n, Λ , Σ^+ , Σ^+ , Σ^0 , Ξ^- , Ξ^0
- Mesons: σ, ω, ρ
- Leptons: e⁻, µ⁻

Hadronic Phase

Coupling		Parametrizations		
constants	GM1	GM3	NL3	
g_{σ}	8.910	8.175	10.217	
g_ω	10.610	8.172	12.868	
$g_ ho$	8.196	8.259	8.948	
b_{σ}	0.002947	0.008659	0.002055	
c_{σ}	-0.001070	-0.002421	-0.002651	

		Parametrizations		
Properties	GM1	GM3	NL3	
$ ho_0 ~({\rm fm}^{-3})$	0.153	0.153	0.148	
E/N (MeV)	-16.3	-16.3	-16.3	
$K ({\rm MeV})$	300	240	272	
m^*/m_N	0.78	0.70	0.60	
$a_{\rm sy} ({\rm MeV})$	32.5	32.5	37.4	

[1] N. K. Glendenning, S. A. Moszkowski, Phys. Rev. Lett, 67, 2414 (1991).
[2] G. A. Lalazissis, J. Konig, P. Ring, Phys. Rev. C 55, 540 (1997).

IWARA 2013 8/20

Mixed Quark-Hadron Phase: Gibbs conditions

$$P^{H}(\mu_{b}^{H}, \mu_{e}^{H}, \{\phi\}) = P^{q}(\mu_{b}^{q}, \mu_{e}^{q}, \{\psi\})$$

$$\mu_{b}^{H} = \mu_{b}^{q} \qquad \mu_{e}^{H} = \mu_{e}^{q}$$

$$n_{b} = (1 - \chi)n_{b}^{H} + \chi n_{b}^{q} \qquad \mu_{b} = 1/3\sum_{f}\mu_{f}$$

$$\varepsilon = (1 - \chi)\varepsilon^{H} + \chi\varepsilon^{q} \qquad \mu_{f} = \mu_{b} - Q\mu_{e}$$

$$\chi = \frac{n^{q}}{(n^{q} + n^{H})} \qquad Q = \operatorname{diag}(2/3, -1/3, -1/3)$$
Chobal electric charge neutrality
$$(1 - \chi)\sum_{i=B,l}q_{i}^{H}n_{i}^{H} + \chi\sum_{i=q,l}q_{i}^{q}n_{i}^{q} = 0$$

IWARA 2013 9/20

EoS for Local NJL model

pure Hadronic stars

EoS for non-local NJL model

stars with a mixed phase (hadrons+quarks)

Vector interactions and Mass - Radius relation

IWARA 2013 11/20

Figure 3. (Color online) Pressure as a function of neutron $(\mu^n = \mu_B/3)$ and electron (μ^e) chemical potential for the local NJL model, l3NJL, hadronic parametrizations GM1 and NL3, and vector repulsions $G_V^L/G_s = 0$ and $G_V^L/G_s = 0.3$.

Figure 4. (Color online) Same as Fig. 3, but for the nonlocal NJL model, n3NJL, hadronic parametrizations GM1 and NL3, and vector repulsions $G_V^{NL}/G_s = 0$ and $G_V^{NL}/G_s = 0.09$.

Particle Population for local NJL model

IWARA 2013 13/20

Particle Population for non-local NJL model

NL3

8

9

IWARA 2013 14/20

Pressure *P* (solid lines), baryonic chemical potential μ_B (dashed lines), and electron chemical potential μ_e (dotted lines) as a function of baryon number density in units of normal nuclear matter density, $\rho_0 = 0.16$ fm⁻³ for parametrization NL3.

Table VI. Width of the mixed phase, central densities of the associated maximum-mass star of the QHS in the Local NJL model case.

G_V^L	Mixed phase	Central density of $M_{\rm max}$
	(ho_0)	(ho_0)
0 (GM1)	3.64 - 7.60	7.21
$0.30 \; (GM1)$	5.07 - 8.92	8.81
0 (NL3)	2.85 - 4.51	5.96
0.30 (NL3)	3.33 - 6.03	6.52

Table VII. Widths of the mixed phases and central densities of the associated maximum-mass stars for the non-local NJL model.

G_V^{NL}	Mixed phase	Central density of $M_{\rm max}$
	(ho_0)	(ho_0)
0 (GM1)	3.22 - 8.18	6.87
$0.09 \; (GM1)$	4.83 - 7.89	8.69
0 (NL3)	2.71 - 6.87	5.68
0.09 (NL3)	3.24 - 6.31	6.28

IWARA 2013 15/20

Mass – Radius for local NJL model

IWARA 2013 17/20

Mass – Radius relation for non-local NJL model

IWARA 2013 16/20

Table VIII. Maximum masses and radii of neutron stars made of quark-hybrid matter for different vector repulsion (G_V/G_S) .

NJL Model	G_V/G_S	$R_{\rm max}~({\rm km})$	$M_{\rm max}/M_{\odot}$
Local	0	12.49	1.96
GM1	0.30	11.80	2.11
Local	0	13.68	2.07
NL3	0.30	13.53	2.37
Non-local	0	12.62	1.87
GM1	0.09	11.81	2.11
Non-local	0	13.62	2.04
NL3	0.09	13.56	2.35

• We have used a non-local 3-flavor NJL model to modelate the quark matter and a non-linear Walecka model for the hadronic phase.

• The inclusion of the vector interaction is crucial for the stiffens of the EoS and the consequent increase of then M-R relationship.

 According to our results, high-mass Neutron Stars such as PSR J1614-2230 and J0348+0432 may contain a mixed phase of quarks and hadrons in their cores.

<u>Outlook</u>

Extension to finite temperature : protoneutron stars.

Color Superconductivity

IWARA 2013 19/20

Thank you very much for your attention!

Gustavo A. Contrera