
1 What is an elementary particle?

Two limitations on human view of nature:

� Finiteness of the maximum speed of propagation of interactions (c 6=1))
Special Relativity

� Existence of a maximum acuracy in measurements of conjugated observ-
ables (~ 6= 0)) Quantum Mechanics

Fundamental interactions are the domain where these two theories must match.
But how?

Requirements:



1. Poincaré group MUST be unitarily represented in the Hilbert space that
describes the situation;

2. Time evolution MUST preserve Poincaré symmetry.

Poincaré group:

x0� = ���x� + a� := P (�; a) (x�)

with

a� 2 R
�t�� = �

(���) =

0BBB@
1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1CCCA



� ! charactherized by 6 independent parameters, !�� (!�� = �!��) )
Poincaré group transformations are �xed by 10 parameters (!�� and a�).

Performing two successive transformations,

P (�2; a2)P (�1; a1) = P (�2�1;�2a2 + a1)

Unitary representation of Poincaré symmetry means that there must exist a set
of unitary operators U (�; a) in one-to-one correspondence with each P (�; a),
such that

U (�2; a2)U (�1; a1) = U (�2�1;�2a2 + a1)

Quantum Poincaré transformation:

U (�; a) = exp
�
i

2
!��J

�� + ia�P
�
�



with (J�� = �J��),

i [J��; J��] = ���J�� � ���J�� � ���J�� + ���J��;

i [P�; J��] = ���P� � ���P �;
[P�; P �] = 0

The Hamiltonian is identi�ed with P 0 (generator of time translations). Labels
of physical states come from the eigenvalues of operators that commute with
H = P 0: these are the generators of spatial translations,

P =
n
P 1; P 2; P 3

o
and of rotations

J =
n
J23; J31; J12

o
:

Boost generators do not commute with H, but will have an important role in
the following:

K =
n
J10; J20; J30

o



Physical states

P� jp; �i = p� jp; �i

� ! to be discussed in the following

Problem: what is the e¤ect of U (�; a) on jp; �i (or what is U (�; a))?

U (�; a) jp; �i = U (�; 0)U
�
1;��1a

�
jp; �i

= U (�; 0) exp
�
i
�
��1a

�
�
P�

�
jp; �i

= exp
�
i
�
��1a

�
�
p�
�
U (�; 0) jp; �i

So, we need to study the unitary representations of the Lorentz group (a� = 0).
Let�s call U (�) := U (�; 0). Using the algebra of the generators, it can be



proven that

P� (U (�) jp; �i) = ���p� (U (�) jp; �i)

) U (�) jp; �i = P
�0
C�0� (�; p)

����p; �0E
New problem: to determinate C�0� (�; p). We will restrict ourselves to proper
orthocronous Lorentz transformations (POLT) (det� = 1 and �00 � 1). The
general case will be worked out later. These transformations preserve p�p� and
the sign of p0 (for p2 � 0).

All p� satisfying

p2 = m2, p0 � 0

can be obtained from a given k� (k2 = m2, k0 � 0) through a POLT

p� = L�� (p) k
�



De�nition (for p 6= k):

U (L (p)) jk; �i = P
�0
C�0� (L (p) ; k)

���p; �0E
� 1

Nk (p)
jp; �ik

The vectors jp; �ik constitute a basis as much as jp; �i. Now

U (�) jp; �ik = Nk (p)U (�)U (L (p)) jk; �i = N (p)U (�L (p)) jk; �i

= Nk (p)U (L (�p))U

0BB@L�1 (�p)�L (p)| {z }
W (�;p)

1CCA jk; �i
= Nk (p)U (L (�p))U (W (�; p)) jk; �i

W satis�es

W�
�k
� = k�



U (W ) jk; �i = P
�0
D�0� (W )

���k; �0E
The set of all Lorentz transformations W�

� which leave k� invariant is called
isotropy group (or little group) of k�. If we know its representations D�0�, the
original problem is solved for the basis jp; �ik (up to normalization factors)

U (�) jp; �ik = Nk (p)
P
�0
D�0� (W (�; p))U (L (�p))

���k; �0E
=

Nk (p)

Nk (�p)

P
�0
D�0� (W (�; p))

����p; �0E
k

(Nk (p) =

vuutk0
p0
)

� m 6= 0: choosing k� = (m; 0; 0; 0) ! the isotropy group is the rotation
group.



D�0� come from representations of the rotation group) � represents the
property called spin.

� m = 0: choosing k� = (k; 0; 0; k) ! the isotropy group is ISO (2)
(translations and rotations in 2 dimensions) ) � represents the property
called helicity.

Basis states in a Hilbert space where one has a unitary representation of the
Poincaré group are associated (in one-to-one correspondence) to elementary
particles. The basis states are called one-particle states.

What about the other components of the Lorentz group (det� = �1, �00 �
�1)?



Fact: all Lorentz transformations can be decomposed (in the 4D representation)
as a product of a POLT and P, T or PT , where

P =

0BBB@
1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1CCCA! space inversion

T =

0BBB@
�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1CCCA! time reversal

In the Hilbert space, P has to correspond to a linear and unitary operator P
and T , to an antilinear and antiunitary operator T . Their e¤ect in one particle
states can be shown to be as follows:



� m 6= 0:

P jp; �ik = � jPp; �ik �: intrinsic parity (spin independent)

T jp; �ik = � (�1)j�� jT p; �ik �: time reversal phase (� = 1)

� m = 0 :

P jp; �ik = �� exp (�i��) jPp;��ik ��:

8><>:
intrinsic parity;
helicity dependent;
� if the sign of p2 is �

T jp; �ik = �� exp (�i��) jPp; �ik ��:

8><>:
time reversal phase;
helicity dependent;
� if the sign of p2 is �



2 How do we take interaction into account?

Interaction ! more than one particle!

Many particle states (drop the su�x �k"): tensor products of one-particle states

jp1; �1; p2; �2; :::i = jp1; �1i 
 jp2; �2i 
 ::: � j�i
The action of a POLT on such states is

U0 (�; a) j�i = U (�; a) jp1; �1; p2; �2; :::i = exp
�
ia�

�
p
�
1 + p

�
2 + :::

��
�

vuut(�p1)0 (�p2)0 :::
p01p

0
2:::

� P
�01;�

0
2:::
D
(j1)
�01�1

(W (�; p1))D
(j2)
�02�2

(W (�; p2)) :::

�
����p1; �01;�p2; �02; :::E



j�i ! non-interacting state ! eigenstate of an Hamiltonian H0

H0 j�i = E� j�i , E� = p01 + p02 + :::

j�i ! non-normalizable state ! physical states are superpositions

j i =
Z
d�g (�) j�i

Interaction ! H = H0 + V ) j�i changes with time (possibility of creation
and/or annihilation of particles!)

�In� (j�i+) and �out� (j�i�) states (Heisenberg picture) ! eigenstates of
H which contain the particles described by � if the observations are done at
t = �1 and t = +1, resp.

H j�i� = E� j�i�



What is the relationship between j�i+ and j�i�? Suppose that the clocks of
two observers O and O0 di¤er by a time interval of �

t0 = t� �
If O sees the system in the state j i, then O0 will see it in the state (with
U 6= U0!) ��� 0E = U (1;��) j i = exp (�iH�) j i

For physical states (superpositions of the basis states above) the de�nition of
the �in� state requires that

exp (�iH�)
Z
d�g (a) j�i� =

Z
d�e�iE��g (a) j�i�

�!
t!�1

Z
d�e�iE��g (a) j�i = exp (�iH0�)

Z
d�g (a) j�i

So, presuming the superposition, for �1 !1,

exp (�iH0�1) j�i = exp (�iH�1) j�i�



) j�i� = exp (iH�1) exp (�iH0�1) j�i � 
(�1) j�i

and, similarly, for �2 ! �1,

exp (�iH0�2) j�i = exp (�iH�2) j�i+

) j�i+ = exp (iH�2) exp (�iH0�2) j�i � 
(�2) j�i

Probability amplitude for the transition � (t = �1) ! � (t = +1): S
matrix

S�� = � h�j�i+

���S�����2 is a physically measurable quantity!



It can be expressed (very formally!) also as

S�� = h�jS j�i

S = lim
�1!1
�2!�1


y (�1) 
 (�2)

= lim
�1!1
�2!�1

exp (iH0�1) exp (�iH (�1 � �2)) exp (�iH0�2)



Poincaré covariance is expressed through

S�� = � h�j�i+ = � h�jU
y (�; a)U (�; a) j�i+

= exp
�
ia�

�
p
�
1 + p

�
2 + :::� p0�1 � p

0�
2 � :::

��

�

vuuut(�p1)0 (�p2)0 ::: ��p01�0 ��p02�0 :::
p01p

0
2:::p

00
1 p
00
2 :::

� P
��1;��2:::

D
(j1)
��1�1

(W (�; p1))D
(j2)
��2�2

(W (�; p2)) :::

� P
��01;��

0
2:::
D
(j01)�
��01�
0
1

�
W

�
�; p01

��
D
(j02)�
��02�
0
2

�
W

�
�; p02

��
:::

� S����
) S�� � � (� � �) = �2�iM���

4
�
p� � p�

�
The same formula could be obtained provided that the free states j�i and j�i



were transformed by U0 (�; a) and

U�10 (�; a)SU0 (�; a) = S or [S;U0 (�; a)] = 0

) [H0; S] = [P0; S] = [J0; S] = [K0; S] = 0

These conditions can be proved if we assume that K = K0 + KI and that
the matrix elements of KI between eingenstates of H0 are smooth functions
of the energy.

How do we obtain S��? From the de�ning equation for j�i�,

H j�i� = E� j�i� ) (E� �H0) j�i� = V j�i�
! j�i� = j�i+ (E� �H0 � i")

�1 V j�i�

= j�i+
Z
d�

T���
E� � E� � i"

j�i



(Lippmann-Schwinger equations) with

T��� = h�jV j�i�
From this, with some extra manipulations, it is possible to derive an integral
formula for the S matrix:

S�� = � (� � �)� 2�i�
�
E� � E�

�
T���

Born approximation (weak V ):

S�� ' � (� � �)� 2�i�
�
E� � E�

�
h�jV j�i

This formula does not show Lorentz covariance explicitly. Let�s use an equiva-
lent (and more illuminating) approach: as we already saw

S = U (1;�1)

with

U (�; �0) = exp (iH0�) exp (�iH (� � �0)) exp (�iH0�0)



)

i
d

d�
U (�; �0) = V (�)U (�; �0)

V (t) = exp (iH0�)V exp (�iH0�) (interaction picture)

Integral equation:

U (�; �0) = 1� i
Z �
�0
dtV (t)U (t; t0)

Iterating and rearraging integration limits,

S = U (1;�1) = T exp
�
�i

Z 1
�1

dtV (t)
�

T means time-ordered product. Lorentz covariance can be explicitly achieved
if the three conditions below are satis�ed:



1. V is expressed as the integral of some local density,

V (t) =
Z
d3xHI (x; t)

2. The density is a Poincaré scalar

U0 (�; a)HI (x)U�10 (�; a) = HI (�x+ a)

3. (Causality condition) As time ordering is preserved under POLT for time
and light-like separations

�
x� x0

�2 � 0, we require thath
HI (x) ;HI

�
x0
�i
= 0, for

�
x� x0

�2 � 0
(the equality is due to possible problems when x! x0).



3 Why do we need Quantum Field Theory?

How do we construct V ? To begin to consider this question let�s analyse the
behavior of multiparticle states under exchange of two identical particles:���:::p; �; :::p0; �0; :::E = �

���:::p0; �0; :::p; �; :::E
j�j2 = 1

Exchanging again

�2 = 1) � = �1

(there are further considerations necessary to reach this conclusion, but it re-
mains valid in 4D).

� = +1! bosons

� = �1! fermions



Multiparticle states have to be normalized consistently, according to the nature
of the particles (boson or fermion): for a 2-particle state, for example (q denotes
p, �, etc.):D

q01q
0
2jq1q2

E
= �

�
q01 � q1

�
�
�
q02 � q2

�
� �

�
q01 � q2

�
�
�
q02 � q1

�
Let us de�ne two very convenient operators, acting on the basis of free states:

Creation operators (bosons and fermions):

a
y
0 (q) jq1; q2; :::qNi � jq; q1; q2; :::qNi

Annihilation operators (they are the adjoints of creation operators), de�ned for
bosons (+) and fermions (�):

a0 (q) jq1; q2; :::i =
NP
r=1

(�1)r+1 � (q � qr) jq1; :::; qr�1; qr+1; :::qNi



Multiparticle states can be constructed from the state with no particle (the
vacuum):

a
y
0 (q1) :::a

y
0 (qN) j0i = jq1; q2; :::qNi

The vacuum is brought into the zero vector under the action of a0 (q):

a0 (q) j0i = 0

The de�nitions of a0 and a
y
0 imply

a0
�
q0
�
a
y
0 (q)� a

y
0 (q) a0

�
q0
�
= �

�
q � q0

�
a0
�
q0
�
a0 (q)� a0 (q) a0

�
q0
�
= 0

a
y
0

�
q0
�
a
y
0 (q)� a

y
0 (q) a

y
0

�
q0
�
= 0

! creation and annihilation operators that commute (anticommute) create
and annihilate bosons (fermions).



Transformation of creation operators under Poincaré transformations:

U0 (�; �) a
y
0 (p; �)U

�1
0 (�; �) = e�i(�p)��

vuut(�p)0
p0

�P
�0
D
(j)
�0� (W (�; p)) ay0 (p�; �)

(di¢ culty: under Poincaré transformations, the operator is multiplied by coef-
�cients that depend on the momentum carried by the operator!)

Creation and annihilation operators could also be de�ned in terms of �in�and
�out� states: this requires the introduction of �in�and �out�vacua

a� (q) j0i� = 0
a
y
� (q1) :::a

y
� (qN) j0i� = jq1; q2; :::qNi�

In this case, a� and a
y
� (q) must transform with the interacting representation

of the Poincaré group, U (�; �).



Theorem 1 Any operator O can be expressed as a sum of products of creation
and annihilation operators:

O =
1P
N=0

1P
M=0

Z
dq01:::dq

0
Ndq1:::dqM

� ay0
�
q01
�
:::a
y
0

�
q0N
�
a0 (qM) :::a0 (q1)

� CNM
�
q01:::q

0
N ; q1:::qM

�

Example: any additive operator

F jq1; q2; :::qNi = (f (q1) + :::_f (qN)) jq1; q2; :::qNi

can be written as

F =
Z
dqa
y
0 (q) a0 (q) f (q)



In particular,

H0 =
Z
dqa
y
0 (q) a0 (q)E (q)

Theorem 2 If the Hamiltonian is expressed in terms of creation and annihila-
tion operators like

H =
1P
N=0

1P
M=0

Z
dq01:::dq

0
Ndq1:::dqM

� ay0
�
q01
�
:::a
y
0

�
q0N
�
a0 (qM) :::a0 (q1)

� hNM
�
q01:::q

0
N ; q1:::qM

�
with hNM having the structure tiao

hNM
�
q01:::q

0
N ; q1:::qM

�
= �3

�
p01 + :::+ p0N � p1 � :::� pM

�
� ~hNM

�
q01:::q

0
N ; q1:::qM

�



where ~hNM contains no delta function factors, then the S matrix satis�es the
Cluster Decomposition Principle (CDP).

Wait! What says the CDP? Well, it says that experiments that are su¢ ciently
separated in space have unrelated results. Quite reasonable!!!

The CDP implies a factorization structure for the S matrix, everytime its ar-
guments become largely spatially separated:

S�1+�2+:::+�N ;�1+�2+:::+�N = S�1�1S�2�2:::S�N�N

where it is supposed that the particles indicated by �i and �i are close spatially
to each other (in a cluster) and distant from other clusters.



H0 is already in the proposed form

H0 =
Z
dqa
y
0 (q) a0 (q)E (q)

=
Z
dq1dq2a

y
0 (q1) a0 (q2) � (q1 � q2)E (q2)

We need to consider V . It has to satisfy all the requirements stated previously
and has to be built out of creation and annihilation operators. But how do
we construct Poincaré scalars with them (remember their transformation laws,
momentum dependent!)?

Proposal: we consider linear superpositions of creation and annihilation opera-
tors chosen in such a way as to transform as tensors under Poincaré transfor-
mations:

'+0;l (x) =
P
�

Z
d3pul (x;p; �) a0 (p; �)!

! U0 (�; a)'
+
0;l (x)U

�1
0 (�; a) =

P
l
Ll�l

�
��1

�
'+
0;�l
(�x+ a)



'�0;l (x) =
P
�

Z
d3pvl (x;p; �) a

y
0 (p; �)!

! U0 (�; a)'
�
0;l (x)U

�1
0 (�; a) =

P
l
Ll�l

�
��1

�
'�
0;�l
(�x+ a)

with Ll�l (�) constituting a representation of the Lorentz group (by consis-
tency). If we can do this, we can construct the interaction as

HI (x) =
P
NM

P
l01:::l

0
N

P
l1:::lM

gl01:::l
0
N ;l1:::lM

� '�
0;l01

(x) :::'�
0;l0N

(x)'+0;l1
(x) :::'+0;lM

(x)

with the g being Lorentz covariantX
l01:::l

0
N

X
l1:::lM

Ll01
�l01

�
��1

�
:::Ll0N

�l0N

�
��1

�
Ll1�l1

�
��1

�
:::LlM�lM

�
��1

�
�gl01:::l0N ;l1:::lM = g�l01:::

�l0N ;
�l1:::�lM



What are the ul�s and vl�s? They have to satisfy

X
�
u�l (�x+ b;p�; ��)D

(jn)
��� (W (�; p)) =

vuut p0

(�p)0

�
X
l

L�ll (�) exp (i (�p) � b)u�l (x;p; �)

and

X
�
v�l (�x+ b;p�; ��)D

(jn)�
��� (W (�; p)) =

vuut p0

(�p)0

�
X
l

L�ll (�) exp (�i (�p) � b) v�l (x;p; �)



For m 6= 0, for example, translation + boost + rotation invariance )

ul (x;p; �) =
1

(2�)3=2

s
m

p0
eip�x

X
�l

Ll�l (B (p))u�l (0; �)

vl (x;p; �) =
1

(2�)3=2

s
m

p0
e�ip�x

X
�l

Ll�l (B (p)) v�l (0; �)

B (p)! Boost that applied to a particle of mass m at rest takes it to a
general four-momentum p�

ul (0; �)
vl (0; �)

)
satisfy

8>><>>:
P
��
u�l (0; ��)J

(jn)
��� =

P
l

~J�llul (0; ��)P
��
v�l (0; ��)J

(jn)�
��� = �P

l

~J�llvl (0; ��)



J
(jn)
��� : rotation generators for spin n in the representation D

(jn)
��� associated to

the little group;

~J�ll: rotation generators in the representation Ll�l (�) of the Lorenz group.

! these equations �x ul (0; �) up to a multiplicative constant (usual angular
momentum algebra)!

Is it enough? Can we proceed and try to build V from '�0;l (x)?

If we substitute the expressions that we found for '�0;l (x) in the expression
for V we see that the result satis�es the CDP requirement. What about the
causality condition? Notice thath

'+0;l (x) ; �
+
0;l (y)

i
�
=
h
'�0;l (x) ; '

�
0;l (y)

i
�
= 0



buth
'+0;l (x) ; '

�
0;l (y)

i
�
=

1

(2�)3

X
�

Z
d3pul (p; �) vl (p; �) e

ip�(x�y) 6= 0

Solution: combine '�0;l (x) into

�0;l (x) = �l�
+
0;l (x) + �l�

�
0;l (x)

and choose �l and �l such that, for x� y spacelikeh
'0;l (x) ; '0;l (y)

i
� =

h
'0;l (x) ; '

y
0;l (y)

i
�
= 0

Last (apparent) obstacle: what if the particles carry other conserved quantum
numbers? Then HI (x) must commute with the corresponding observable.



Extension of notation: (p; �)! (p; �; n). For example, for eletric charge, Q

[Q; a0 (p; �; n)] = �q (n) a0 (p; �; n)h
Q; a

y
0 (p; �; n)

i
= +q (n) a

y
0 (p; �; n)

We need that [Q;HI (x)] = 0. This can be obtained if we requireh
Q;'0;l (x)

i
= �ql'0;l (x) ()

h
Q;'

y
0;l (x)

i
= ql'

y
0;l (x) )

and construct HI (x) as a sum of products of �elds '0;l1 (x)'0;l2 (x) ::: and

adjoints 'y0;m1 (x)'
y
0;m2

(x) ::: such that

ql1 + ql2 + :::� qm1 � qm2 � ::: = 0

This means that all the creation operators ay0 (p; �; n) that appear in '0;l (x)
must be associated to a n such that q (n) = �ql and the annihilation operators,



associated to a �n satisfying q (�n) = ql:

'0;l (x) =
P
�

Z
d3p

(2�)3=2

s
m

p0

n
eip�xul (p; �; n) a0 (p; �; n)

+e�ip�xvl (p; �; �n) a
y
0 (p; �; �n)

o

So, each '0;l (x) creates and annihilates two di¤erent species of particles.
Those labeled by �n receive the name of antiparticles. The operator '0;l (x) is
what we call a �eld operator.

By construction, antiparticles must carry opposite values of the quantum num-
bers carried by particles.

All �elds satisfy �
�+m2

�
'0;l (x) = 0



and other subsidiary �rst order equations eventually implied by the particular
representation of the Lorentz group that they carry. They also obey canoni-
cal equal-time commutation relations, implied by the corresponding relations
obeyed by creation and annihilation operatorsh

'0 (x; t) ; _'0
�
x0; t

�i
= i�

�
x� x0

�
h
'0 (x; t) ; '0

�
x0; t

�i
=
h
_'0 (x; t) ; _'0

�
x0; t

�i
= 0

4 The S matrix and Green�s functions

Simplest example of �eld: the real massive scalar �eld ! associated to the
trivial representation of the rotation group (� = 0, J(0)��� = 0).



Poincaré transformation:

U0 (�; a)'0 (x)U
�1
0 (�; a) = '0 (�x+ a)

) Ll�l

�
��1

�
= 1 and ~J�ll = 0. Choosing u (0) = v (0) = (2m)�1=2, we

obtain

'0 (x) =
Z

d3pq
2p0 (2�)3=2

n
eip�xa0 (p) + e�ip�xay0 (p)

o
= '

y
0 (x)

(no possibility of charged particles!). Taking the time derivative,

_'0 (x) = i
Z

d3p

(2�)3=2

s
p0

2

n
eip�xa0 (p)� e�ip�xa

y
0 (p)

o



Inverting these equations,

a0 (p) =
1

(2�)3=2

Z
d3xeip�x

0@sp0
2
'0 (x) + i

s
1

2p0
_'0 (x)

1A
=

�i
(2�)3=2

q
2p0

Z
d3xeip�x

 !
@0'0 (x)

a
y
0 (p) =

1

(2�)3=2

Z
d3xe�ip�x

0@sp0
2
'0 (x)� i

s
1

2p0
_'0 (x)

1A
=

i

(2�)3=2
q
2p0

Z
d3xe�ip�x

 !
@0'0 (x)

with

f
 !
@0g := (@0f) g � f (@0g)

The same construction can be done for �in�and �out�creation and annihilation



operators: it would express them in terms of �in�and �out��elds

a� (p) = lim
t!�1

�i
(2�)3=2

q
2p0

Z
d3xeip�x

 !
@0'� (x)

a
y
� (p) = lim

t!�1
i

(2�)3=2
q
2p0

Z
d3xe�ip�x

 !
@0'� (x)

(a� (p) and a
y
� (p) are t independent!). The �elds '� (x) are associated to

t = �1. We can de�ne interacting �elds through a unitary transformation

' (x) = U (t)'� (x)U�1 (x)

with

U (t) = exp (�iHt)



This new �eld operator obeys the Heisenberg equations

_' =
1

i
[';H]

and the same equal-time commutation relations as the free (or �in�and �out�)
operators h

' (x; t) ; _'
�
x0; t

�i
= i�

�
x� x0

�
,h

' (x; t) ; '
�
x0; t

�i
=
h
_' (x; t) ; _'

�
x0; t

�i
= 0.

The Heisenberg equations can be obtained through the canonical formalism.
We propose an action

S =
Z
d4xL ('; _')



built from a Lagrangian density L ('; _') (scalar under Poincaré transforma-
tions); De�ne canonical momentum

� (x) =
@L ('; _')
@ _' (x)

= � ('; _')! _' = _' ('; �)

perform a Legendre transformation

H ('; �) = � _'� L ('; _' ('; �))

! H =
Z
d3xH

impose equal time commutation relationsh
' (x; t) ; �

�
x0; t

�i
= i�

�
x� x0

�
,h

' (x; t) ; '
�
x0; t

�i
=
h
� (x; t) ; �

�
x0; t

�i
= 0.



and obtain the equations of motion in Hamiltonian form

_' =
1

i
[';H]

_� =
1

i
[�;H]

For example, in the case of the real scalar �eld, we have

L = 1

2
@�'@

�'� 1
2
m2'2 � V (')

This gives the Hamiltonian

H =
Z
d3x

�
1

2
�2 + (r')2 + 1

2
m2'2 + V (')

�
and Heisenberg equations�

�+m2
�
'+ V 0 (') = 0,



where V 0 denotes @V (') =@':

It is possible to conjecture that, under the assumptions of

� adiabatically switching o¤ of the interaction;

� non-interaction between particles that constitute the �in�and �out�states;

� all quantities should be expressed in terms of the free (or �in�and �out�)
�elds;



the relation between �in� and �out� �elds and the interacting �eld is (inside
an expectation value)

' (x) �!
t!�1

Z1=2'� (x)

with Z being a constant between 0 and 1.

Let us consider an alternative form for the S matrix element:

S�� = � h�j�i+ = �
D
p1; p2; :::; pN�jq1; q2; :::; qN+

E
+

= �
D
p1; p2; :::; pN�ja

y
+ (q1) jq2; :::; qN+

E
+

=
Z
t
d3xe�iq1�xi

 !
@0

�
�
D
p1; p2; :::; pN�j'+ (x) jq2; :::; qN+

E
+

�
Choosing a large negative t we can write

'+ (x) �!
t!�1

Z�1=2' (x)



and performing (several) further manipulations,

S�� =
nX
k=1

q
2p0 (2�)3=2 �3 (pk � q1)

�
�
D
p1; p2; :::; bpk; :::pN�jq2; :::; qN+E+

�

+ iZ�1=2
Z
d4xe�iq1�x

�
�+m2

� �
�
D
p1; p2; :::; pN�j' (x) jq2; :::; qN+

E
+

�
We can repeat the above procedure with all momenta. The �nal result is

S�� = (disconnected terms)

+
�
iZ�1=2

�N�+N+ Z
d4y1:::d

4yN�d
4x1:::d

4xN+

� exp

0@i N�X
k=1

pk � yk �
N+X
r=1

qr � xr

1A
�
�
�y1 +m2

�
:::
�
�xN+ +m2

� �
�
D
0jT

�
' (y1) :::'

�
xN+

��
j0
E
+

�



Gn (x1; :::; xn) = � h0jT (' (x1) :::' (xn)) j0i+ is the n-point Green�s func-
tion

Z is absorbed in renormalization

�+m2 denotes the existence of poles in the Fourier transform of the Green�s
function when p2i = m2

The obtainance of the Green�s functions will be the main subject from now on
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