

XI Escola do CBPF Curso de Pós-Graduação

Notas de Aula

A Física dos Detectores de Partículas

Dr Arthur M. Moraes - CBPF

(web-page: <u>http://cern.ch/amoraes</u>)

24 de Julho de 2017

Introdução

Programa do Curso:

Aula 1: De Rutherford ao LHC: Desenvolvimento dos detectores ao longo da história da física das partículas elementares. (2ªf. 17/07)

Aula 2: Interações das partículas com a matéria. (3ªf. 18/07)

Aula 3: Detectando partículas carregadas & neutras. (5ªf. 20/07)

Aula 4: Cintiladores: detectando partículas via luminescência. (6ªf. 21/07)

Aula 5: Detectores de semicondutores: medidas de alta precisão. (2ªf. 24/07)

Aula 6: Detectores de gás: medindo partículas em grandes volumes. (3ªf. 25/07)

Aula 7: Calorímetros: eletromagnéticos & hadrônicos. (5ªf. 27/07)

Aula 8: Exemplos de aplicações dos detectores em várias áreas. (6ªf. 28/07)

nttp://cern.ch/amoraes

Aula 5

Cintiladores e detectores de semicondutores

Dr Arthur Moraes (CBPF)

A Física dos Detectores de Partículas - Aula 5

Rio de Janeiro, 24 de Julho de 2017.

Cintiladores

Princípio:

- *dE/dx* é convertida em luz visível

- detecção feita com foto-sensor (fotomultiplicadora, olho humano)

Características principais:

- sensitividade à energia
- rápida resposta (curto tempo de resposta)
- perfil de pulso bem característico

Requisitos:

nttp://cern.ch/

- alta-eficiência para conversão de energia de excitação em radiação fluorescente
- transparência à radiação fluorescente para permitir transmissão da luz
- emissão da luz na região do espectro detectável por fotossensores
- curto tempo de decaimento permitindo resposta rápida

Cintiladores

Cintiladores: cristais inorgânicos

Materiais:

- Iodeto de sódio (NaI)
- Iodeto de césio (CsI)
- Floreto de bário (BaF₂)

Mecanismo:

- Deposição de energia por ionização
- Transferência de energia à impurezas
- Radiação por cintilação de fótons

Energy bands in impurity activated crystal showing excitation, luminescence, guenching and trapping

Dr Arthur Moraes (CBPF)

A Física dos Detectores de Partículas - Aula 5

Cintiladores: cristais inorgânicos

Crystal growth Example CMS Electromagnetic Calorimeter One of the last CMS end-cap crystals

Dr Arthur Moraes (CBPF)

PbW04

ingots

A Física dos Detectores de Partículas - Aula 5

Cintiladores: cristais inorgânicos

A Física dos Detectores de Partículas - Aula 5

Cristais inorgânicos: constante de tempo

Cristais inorgânicos: luz de saída

Cintiladores: gases nobres líquidos

nttp://cern.ch/amoraes

Cintiladores: propriedades

Scintillator material	Density [g/cm ³]	Refractive Index	Wavelength [nm] for max. emission	Decay time constant [µs]	Photons/MeV
Nal	3.7	1.78	303	0.06	8·10 ⁴
Nal(TI)	3.7	1.85	410	0.25	4 · 10 ⁴
CsI(TI)	4.5	1.80	565	1.0	1.1·10 ⁴
Bi ₄ Ge ₃ O ₁₂	7.1	2.15	480	0.30	2.8 · 10 ³
CsF	4.1	1.48	390	0.003	2 · 10 ³
LSO	7.4	1.82	420	0.04	1.4·10 ⁴
PbWO ₄	8.3	1.82	420	0.006	2·10 ²
LHe	0.1	1.02	390	0.01/1.6	2.10 ²
LAr	1.4	1.29*	150	0.005/0.86	4 · 10 ⁴
LXe	3.1	1.60*	150	0.003/0.02	4 · 10 ⁴
					* at 170 nm

Cintiladores: propriedades

Numerical examples:

Nal(TI)

 $\lambda_{max} = 410 \text{ nm}; \text{hv} = 3 \text{ eV}$ photons/MeV = 40000 $\tau = 250 \text{ ns}$

$$\lambda_{max} = 420 \text{ nm}; \text{ hv} = 3 \text{ eV}$$

photons/MeV = 200
 $\tau = 6 \text{ ns}$

Scintillator quality:

Light yield – $\varepsilon_{sc} =$ fraction of energy loss going into photons e.g. Nal(TI) : 40000 photons; 3 eV/photon $\rightarrow \varepsilon_{sc} = 4 \cdot 10^4 \cdot 3 \text{ eV}/10^6 \text{ eV} = 11.3\%$ PBWO₄ : 200 photons; 3 eV/photon $\rightarrow \varepsilon_{sc} = 2 \cdot 10^2 \cdot 3 \text{ eV}/10^6 \text{ eV} = 0.06\%$ [for 1 MeV particle]

Cintiladores orgânicos

Compostos hidrocarbonetos aromáticos:

- Naftaleno (C₁₀H₈)
- Antraceno $(C_{14}H_{10})$

Mecanismo:

- Tempo de resposta muito rápido (~ns)!
- Transição de elétrons livres nos orbitais
- *Luz de cintilação surge dos elétrons nos orbitais-π*

Cintiladores orgânicos

Scintillator material	Density [g/cm ³]	Refractive Index	Wavelength [nm] for max. emission	Decay time constant [ns]	Photons/MeV
Naphtalene	1.15	1.58	348	11	4 · 10 ³
Antracene	1.25	1.59	448	30	4 · 10 ⁴
p-Terphenyl	1.23	1.65	391	6-12	1.2·10 ⁴
NE102*	1.03	1.58	425	2.5	2.5·10 ⁴
NE104*	1.03	1.58	405	1.8	2.4·10 ⁴
NE110*	1.03	1.58	437	3.3	2.4·10 ⁴
NE111*	1.03	1.58	370	1.7	2.3·10 ⁴
BC400**	1.03	1.58	423	2.4	2.5·10 ²
BC428**	1.03	1.58	480	12.5	2.2·10 ⁴
BC443**	1.05	1.58	425	2.2	2.4 · 10 ⁴

* Nuclear Enterprises, U.K. ** Bicron Corporation, USA

Cintiladores orgânicos

Dr Arthur Moraes (CBPF)

Cintiladores: comparação

Inorganic Scintillators

Advantageshigh light yield [typical; $\boldsymbol{\epsilon}_{sc} \approx 0.13$]
high density [e.g. PBWO4: 8.3 g/cm³]
good energy resolutionDisadvantagescomplicated crystal growth
large temperature dependence

Organic Scintillators

Advantagesvery fast
easily shaped
small temperature dependence
pulse shape discrimination possibleDisadvantageslower light yield [typical; $\varepsilon_{sc} \approx 0.03$]
radiation damage

http://cern.ch/amoraes

Rio de Janeiro, 24 de Julho de 2017.

Cheap

Expensive

Detectores de semicondutores

A Física dos Detectores de Partículas - Aula 5

http://cern.ch/amoraes

Intrinsic semiconductor:

Very pure material; charge carriers are created by thermal, optical or other excitations of electron-hole pairs; $N_{electrons} = N_{holes}$ holds ...

Commonly used: Silicon (Si) or Germanium (Ge); four valence electrons ...

Doped or extrinsic semiconductor:

Majority of charge carriers provided by donors (impurities; doping)

n-type: majority carriers are electrons (pentavalent dopants) p-type: majority carriers are positive holes (trivalent dopants)

Pentavalent dopants (electron donors): P, As, Sb, ... [5th electron only weakly bound; easily excited into conduction band]

Trivalent dopants (electron acceptors): AI, B, Ga, In, ... [One unsaturated binding; easily excepts valence electron leaving hole]

http://www-cdf.fnal.gov/virtualtour/video_ionizationanimation.html

A Física dos Detectores de Partículas - Aula 5

Rio de Janeiro, 24 de Julho de 2017.

Carrier concentration in conduction and valence band:

$$n = N_C \cdot e^{-(E_C - \mu)/k_B T}$$

$$p = N_V \cdot e^{-(\mu - E_V)/k_B T}$$

- N_C: effective density of electrons at edge of conduction band
- N_V: effective density of holes at edge of valence band

Pure semiconductors: carrier concentration depends on separation of conduction/valence band from chemical potential or Fermi level ...

Location of Fermi level determines n and p ... But, product is independent of location of Fermi level ...

 $np = N_C N_V e^{(E_V - E_C)/k_B T} \propto (m_e^* m_h^*)^{\frac{3}{2}}$

Law of mass action [holds more generally]

At given temperature characterized by effective mass and band gap.

Dr Arthur Moraes (CBPF)

A Física dos Detectores de Partículas - Aula 5

Rio de Janeiro, 24 de Julho de 2017.

24

http://cern.ch/amoraes

Intrinsic semiconductors; no impurities \rightarrow number of electrons in conduction band is equal to number of holes in valence band.

$$n=p$$
 [or $n_i=p_i$ to characterize that this holds for intrinsic semiconductors only

The expressions for n,p then yield:

$$\mu = \frac{E_C + E_V}{2} - \frac{k_B T}{2} \ln\left(\frac{N_C}{N_V}\right) = \frac{E_C + E_V}{2} - \frac{3}{4} k_B T \ln\left(\frac{m_e^*}{m_h^*}\right)$$

At T = 0:

Fermi-level ($E_F = \mu$) lies in the middle between valence and conduction band ...

At T > 0:

In case the effective masses of electrons and holes are non-equal, i.e. $N_C \neq N_V$ the Fermi-level changes with temperature ...

nttp://cern.ch/amoraes

Some properties of intrinsic semiconductors

	Si	Ge	GaAs [III-V Semiconductor]
E _{gap} [eV]	1.11	0.67	1.43
n _i @ 150 K [m ⁻³]	4.1·10 ⁶	_	1.8·10 ⁰
n _i @ 300 K [m ⁻³]	1.5 · 10 ¹⁶	2.4 · 10 ¹⁹	5.0·10 ¹³
me/me	0.43	0.60	0.065
mʰ/me	0.54	0.28	0.50
Energy/e-hole-pair [eV]	3.7	3.0 [†]	

† at 77 K

Introducing impurities (doping) - balance between holes and electrons in conduction band can be changed; yields higher carrier concentrations.

n-doping: extra electron resides in discrete energy level close to conduction band ...

p-doping: additional state close to the valence band can accept electrons ...

n-doping

	_0		n-doping:	majority carriers = electrons [holes don't contribute much; minority carriers]
hole Acceptor			p-doping:	majority carriers = holes [electrons are minority carriers]
impurity	_0_0_	0=:=0=	n-doping:	Sb, P, As
	()	() ()	p-doping:	B, Al, Ga
		p-dopina		

A Física dos Detectores de Partículas - Aula 5

Rio de Janeiro, 24 de Julho de 2017.

Dr Arthur Moraes (CBPF)

http://cern.ch/amoraes

A Física dos Detectores de Partículas - Aula 5

Propriedades de semicondutores: junção np

Function of semiconductor detectors depends on formation of a junction between n- and p-type semiconductors ...

Thermodynamic equilibrium \rightarrow Fermi energies should become equal ... vor Kontakt

nttp://cern.ch/amoraes

Junção np

Rio de Janeiro, 24 de Julho de 2017.

Dr Arthur Moraes (CBPF)

http://cern.ch/amoraes

Junção np

Equilibration process:

Electrons diffuse from n to p-type semiconductor and recombine ...

Holes diffuse from p to n-type semiconductor and recombine ...

Resulting electric field counteracts and stops diffusion process ...

$$eU_D = \Delta E_{\text{pot}} = E_C^{(p)} - E_C^{(n)}$$
$$= k_B T \cdot \ln \frac{n_{\text{n-type}}}{n_{\text{p-type}}} = k_B T \cdot \ln \frac{N_D N_A}{n_i^2}$$
$$[\text{using } n = N_C \cdot e^{-(E_C - \mu)/k_B T}, \ p = \dots]$$

At the boundary concentration of mobile carriers is depleted ... [depletion layer]

Junção np

Application of an external voltage:

Here: consider only electrons [similar for holes]

No voltage

Equilibrium: drift of minority electrons from p-side compensates diffusion current from n-side which have to move against E-field

Forward bias

Voltage drop over depletion zone; diffusion current higher due to shift of chemical potential; current increases exponentially with bias

 $I = I_0 (e^{eV/kT} - 1)$

Reverse bias

Voltage drop over depletion zone; diffusion current smaller due to shift of chemical potential; widening of the depletion zone

$$I = I_0 (e^{-eV/kT} - 1)$$

http://cern.ch/amoraes

A Física dos Detectores de Partículas - Aula 5

Comparison of energy resolutions ...

Scintillator [Nal(Tl)]:

1 MeV photon; $\sigma/E \approx 2\%$; $\Delta E/E \approx 5\%$ [N_i = 40000 photons/MeV x η x Q.E.; η =0.2, Q.E. = 0.25; $\sigma/E = 1/\sqrt{N_i}$]

Semiconductor [Si]:

1 MeV photon; $\sigma/E \approx 0.06\%$; $\Delta E/E \approx 0.15\%$ [N_i = 300000 e/h-pairs/MeV; $\eta \approx 1$, Q.E. ≈ 1 ; F = 0.1 $\sigma/E = \sqrt{F}/\sqrt{N_i}$]

Energy resolution of a semiconductor detector can be better by a factor 25 to 30.

This is indeed observed	1:
$[for E_{Y} = 1.33 \text{ MeV}]$	

Ge(Li) Counter: Nal(Tl) Detector: Resolution of 0.15% possible (at ~ 1 MeV) Resolution of about 6% (at ~ 1 MeV)

<u>nttp://cern.ch/amoraes</u>

A Física dos Detectores de Partículas - Aula 5

Rio de Janeiro, 24 de Julho de 2017.

CMS Si-strip detector

A Física dos Detectores de Partículas - Aula 5

CMS Si-strip detector

ATLAS SCT-strip detector

Dr Arthur Moraes (CBPF)

A Física dos Detectores de Partículas - Aula 5

Radio-ativação nos detectores do ATLAS

Dr Arthur Moraes (CBPF)

A Física dos Detectores de Partículas - Aula 5

Detectores de semicondutor 3D

A Física dos Detectores de Partículas - Aula 5