

XI Escola do CBPF Curso de Pós-Graduação

Notas de Aula

A Física dos Detectores de Partículas

Dr Arthur M. Moraes - CBPF

(web-page: <u>http://cern.ch/amoraes</u>)

21 de Julho de 2017

Introdução

Programa do Curso:

Aula 1: De Rutherford ao LHC: Desenvolvimento dos detectores ao longo da história da física das partículas elementares. (2ªf. 17/07)

Aula 2: Interações das partículas com a matéria. (3ªf. 18/07)

Aula 3: Detectando partículas carregadas & neutras. (5ªf. 20/07)

Aula 4: Cintiladores: detectando partículas via luminescência. (6ªf. 21/07)

Aula 5: Detectores de semicondutores: medidas de alta precisão. (2ªf. 24/07)

Aula 6: Detectores de gás: medindo partículas em grandes volumes. (3ªf. 25/07)

Aula 7: Calorímetros: eletromagnéticos & hadrônicos. (5ªf. 27/07)

Aula 8: Exemplos de aplicações dos detectores em várias áreas. (6ªf. 28/07)

Aula 4

Interações de partículas neutras com a matéria

Dr Arthur Moraes (CBPF)

A Física dos Detectores de Partículas - Aula 4

Interação de fótons com matéria

A Física dos Detectores de Partículas - Aula 4

Interação de fótons com matéria

Interação de fótons com matéria

Interação de fótons: efeito fotoelétrico

http://cern.ch/amoraes

A Física dos Detectores de Partículas - Aula 4

Interação de fótons: efeito fotoelétrico

Dr Arthur Moraes (CBPF)

A Física dos Detectores de Partículas - Aula 4

Interação de fótons: espalhamento Compton

nttp://cern.ch/amoraes

A Física dos Detectores de Partículas - Aula 4

Rio de Janeiro, 21 de Julho de 2017.

9

Interação de fótons: espalhamento Compton

Cross Section: [use QED ...]

$$\frac{d\sigma}{d\Omega} = \frac{r_e^2}{2} \frac{1}{[1+\gamma(1-\cos\theta)]^2} \cdot \dots$$
$$\dots \cdot \left(1+\cos^2\theta + \frac{\gamma^2(1-\cos\theta)^2}{1+\gamma^2(1-\cos\theta)}\right)$$

[Klein-Nishina Formula]

Thomson

cross Section

Substitution/integration yields:

$$\frac{d\sigma}{dT_e} = \dots \qquad \sigma_C = \dots$$

Small photon energies [E_Y « m_ec²]: $\sigma_{C} = \sigma_{th} (1 - 2E_{Y}/mc^{2})$ [with $\sigma_{th} = 8\pi/3 r_{e}^{2} = 0.66$ barn]

Large photon energies: $\sigma_{\rm C} \propto (\ln E_{\rm Y})/E_{\rm Y}$ [E_Y » m_ec²]

nttp://cern.ch/amoraes

nttp://cern.ch/amoraes

A Física dos Detectores de Partículas - Aula 4

Cross Section: [for $E_{\rm Y} \gg m_{\rm e}c^2$] $\sigma_{\text{pair}} \approx \frac{7}{9} \left(4 \,\alpha r_e^2 Z^2 \ln \frac{183}{Z^{\frac{1}{3}}} \right)$ A/N_AX_0 [X₀: radiation length] [in cm or g/cm²] Absorption coefficient: $\mu = n\sigma$ [with n: particle density] $\mu = \rho \cdot N_A / A \sigma_{pair}$

$$= 7/9 \frac{1}{X_0}$$

[where now X_0 is in cm]

A Física dos Detectores de Partículas - Aula 4

A Física dos Detectores de Partículas - Aula 4

Interações eletromagnéticas

A Física dos Detectores de Partículas - Aula 4

Dependência do material

Electrons

Dr Arthur Moraes (CBPF)

A Física dos Detectores de Partículas - Aula 4

- Partículas eletricamente neutras não interagem via força eletromagnética
- Nêutrons são detectados via *interação nuclear*.
- Interação a ser escolhida para a detecção de nêutrons depende do intervalo de energia que se deseja investigar.

Nêutron de alta energia: Calorímetro hadrônico

(mede-se a energia depositada em forma de chuveiro hadrônico; neutralidade da partícula tem pouco efeito)

• Nêutron de energia moderada: Espalhamento n-p

(detecta-se os nêutrons através do espalhamento em material contendo hidrogênio em grandes quantidades; detecta-se o recuo dos prótons.)

Nêutron de baixa energia: Processos Nucleares Exoérgicos

 (utiliza-se material com alta taxa de captura de nêutrons para nêutrons de baixa
 energia; processo de captura de nêutrons resulta em núcleos instáveis.

Decaimentos desses núcleos produzem sinais que podem ser detectados.)

19

nttp://cern.ch/amoraes

A Física dos Detectores de Partículas - Aula 4

Dr Arthur Moraes (CBPF)

A Física dos Detectores de Partículas - Aula 4

Scintillation Detectors ...

Detect scintillation light produced in capture process ...

e.g. Lithium glass:

n + ⁶Li → ⁴He + ³H + 4.79 MeV

Common scintillators used for neutron detection ... Density Scintillation Photons per Photon of ⁶Li atoms wavelength efficiency neutron [10²² cm⁻³] [in %] [nm] Li-glass 1.75 0.45 395 ~ 7000 (Ce) Lil (Eu) 1.83 2.8 470 ~ 51000 ZnS (Ag) -1.18 9.2 450 ~ 160 000 LiF

Dr Arthur Moraes (CBPF)

A Física dos Detectores de Partículas - Aula 4

Gas Detectors ...

Standard Geiger counter with He or BF₃ as counting gas ...

e.g. Helium: $n + {}^{3}\text{He} \rightarrow {}^{3}\text{H} + {}^{1}\text{H} + 0.76 \text{ MeV}$ [About 25000 ionizations produced per neutron; charge $\approx 4 \text{ fC}$]

anode	neutron	
\ cathode		\circ \vee
	³ He gas	

http://cern.ch/amoraes

Nêutrons rápidos

detecção baseia-se na observação de reação nuclear induzida pela absorção de nêutrons;

seção de choque de absorção de nêutrons rápidos é pequena se comparada com nêutrons de baixa energia: $\sigma_{cap} \sim 1/v$

Duas possibilidades:

1- Termalizar/moderar antes de promover a captura dos nêutrons (permite apenas a contagem do fluxo de nêutrons);

2- Espalhamento elástico em prótons de altas-energias (prótons são "fáceis" de se detectar). Permite que a energia seja medida.

Neutron moderation ...

Moderate neutrons to increase efficiency in conventional slow-neutron detectors ...

Moderation with hydrogenous materials such as polyethylene or paraffin ...

Optimum thickness between few cm to tens of cm for energies of keV to MeV ...

Trade-off between sufficient slow down and detection cross section ...

Relative response vs. energy for different absorber thicknesses

Dr Arthur Moraes (CBPF)

A Física dos Detectores de Partículas - Aula 4

Detector Type	Size	Neutron Active Material	Incident Neutron Energy	Neutron Detection Efficiency ^a (%)	Gamma-Ray Sensitivity (R/h) ^b
Plastic scintillator	5 cm thick	¹ H	1 MeV	78	0.01
Liquid scintillator	5 cm thick	¹ H	1 MeV	78	0.1
Loaded scintillator	1 mm thick	⁶ Li	thermal	50	1
Hornyak button	1 mm thick	1 H	1 MeV	1	· 1
Methane (7 atm)	5 cm diam	1 H	1 MeV	1	1
⁴ He (18 atm)	5 cm diam	⁴ He	1 MeV	1	1
3 He (4 atm), Ar (2 atm)	2.5 cm diam	³ He	thermal	77	1
3 He (4 atm), CO ₂ (5%)	2.5 cm diam	³ He	thermal	77	10
BF ₃ (0.66 atm)	5 cm diam	¹⁰ B	thermal	29	10
BF ₃ (1.18 atm)	5 cm diam	¹⁰ B	thermal	46	10
¹⁰ B-lined chamber	0.2 mg/cm^2	¹⁰ B	thermal	10	10 ³
Fission chamber	2.0 mg/cm^2	²³⁵ U	thermal	0.5	$10^6 - 10^7$

^aInteraction probability for neutrons of the specified energy striking the detector face at right angles. ^bApproximate upper limit of gamma-ray dose that can be present with detector still providing usable neutron output signals.

Cascade Detector ...

Setup: Multi Boron Layers on GEM foils ...

GEMs:

- can be operated to be transparent for produced charges ...
- can be cascaded ...
- each can carry two Boron layers ...
- last one is operated as an amplification layer ...

The GEMs inherently introduce high rate capability ...

 $[10^7 \text{ Hz/cm}^2]$

Capture Process:

GEM: Gas electron multiplier

A Física dos Detectores de Partículas - Aula 4

Rio de Janeiro, 21 de Julho de 2017.

Dr Arthur Moraes (CBPF)

Cascade Detector ...

CASCADE-GEM Module GEM-foil glued onto a frame

CASCADE Module

Several GEM-modules stacked together with readout structure and drift electrodes to form a detector module

First 200 x 200 mm² Cascade neutron detector

A Física dos Detectores de Partículas - Aula 4

• Neutrinos são detectados via *interação fraca*.

Charged Current Reactions:

$\nu_e + n$	\rightarrow	$e^- + p$
$\bar{\nu}_e + p$	\rightarrow	$e^+ + n$
$\nu_{\mu} + n$	\rightarrow	$\mu^- + p$
$\bar{\nu}_{\mu} + p$	\rightarrow	$\mu^+ + n$
$\nu_{\tau} + n$	\rightarrow	$\tau^- + p$
$\bar{\nu}_{\tau} + p$	\rightarrow	$\tau^+ + n$

$$\bar{\nu}_e + e^- \rightarrow \mu^- + \bar{\nu}_\mu \bar{\nu}_e + e^- \rightarrow \tau^- + \bar{\nu}_\tau$$

Neutral Current Reactions:

$\nu_e + e^-$	\rightarrow	$\nu_e + e^-$
$\nu_{\mu} + e^{-}$	\rightarrow	$\nu_{\mu} + e^{-}$
$\nu_{\tau} + e^{-}$	\rightarrow	$\nu_{\tau} + e^{-}$

Remark:

Neutral Current ν N-interactions not usable due to small energy transfer

Dr Arthur Moraes (CBPF)

A Física dos Detectores de Partículas - Aula 4

Rio de Janeiro, 21 de Julho de 2017.

29

Neutrino nucleon x-Section: [examples]

 $\begin{array}{ll} 10 \ GeV \ neutrinos: & \pmb{\sigma} = 7 \cdot 10^{-38} \ cm^2/nucleon \\ \mbox{Interaction probability for 10 m Fe-target: } R = \pmb{\sigma} \cdot N_A \ [mol^{-1}/g] \cdot d \cdot \pmb{\rho} = 3.2 \cdot 10^{-10} \\ \mbox{with } N_A = 6.023 \cdot 10^{23} \ g^{-1}; \ d = 10 \ m; \ \pmb{\rho} = 7.6 \ g/cm^3 \end{array}$

Solar neutrinos [100 keV]: $\sigma = 7 \cdot 10^{-45} \text{ cm}^2/\text{nucleon}$ Interaction probability for earth: $R = \sigma \cdot N_A \text{ [mol}^{-1}/\text{g]} \cdot d \cdot \rho \approx 4 \cdot 10^{-14}$ with $N_A = 6.023 \cdot 10^{23} \text{ g}^{-1}$; d = 12000 km; $\rho = 5.5 \text{ g/cm}^3$

http://cern.ch/amoraes

A Física dos Detectores de Partículas - Aula 4

Neutrinos solares

A Física dos Detectores de Partículas - Aula 4

http://cern.ch/amoraes

Dr Arthur Moraes (CBPF)

A Física dos Detectores de Partículas - Aula 4

Mounting of Photomultiplier Tubes

Total:	11,146	20" pmts
	1,885	8" pmts

Dr Arthur Moraes (CBPF)

http://cern.ch/amoraes

The sun seen through the earth in neutrino light

 $\underset{\tiny [603 MeV]}{\text{Muon event}}$

Observation of clean Cherenkov ring with sharp edges

Flight direction from timing measurements [blue: early; red: late]

Energy from amount of light observed in PMTs

¢

40