

XI Escola do CBPF Curso de Pós-Graduação

Notas de Aula

A Física dos Detectores de Partículas

Dr Arthur M. Moraes - CBPF

(web-page: <u>http://cern.ch/amoraes</u>)

20 de Julho de 2017

Notas de Aula: onde encontra-las?

https://amoraes.web.cern.ch/amoraes/escola-cbpf-2017/

Introdução

Programa do Curso:

Aula 1: De Rutherford ao LHC: Desenvolvimento dos detectores ao longo da história da física das partículas elementares. (2ªf. 17/07)

Aula 2: Interações das partículas com a matéria. (3ªf. 18/07)

Aula 3: Detectando partículas carregadas & neutras. (5ªf. 20/07)

Aula 4: Cintiladores: detectando partículas via luminescência. (6ªf. 21/07)

Aula 5: Detectores de semicondutores: medidas de alta precisão. (2ªf. 24/07)

Aula 6: Detectores de gás: medindo partículas em grandes volumes. (3ªf. 25/07)

Aula 7: Calorímetros: eletromagnéticos & hadrônicos. (5ªf. 27/07)

Aula 8: Exemplos de aplicações dos detectores em várias áreas. (6ªf. 28/07)

Aula 3

Interações das partículas com a matéria

Interação de partículas carregadas

Detecção de partículas carregadas ocorre através da *interação das partículas com a matéria*.

exemplo: perda de energia no meio (ionização)

Perda de energia deve sere detectada, feita visível, geralmente na forma de sinais *elétricos ou luminosos*

Principal interação de partículas carregadas com o meio: *interação eletromagnética*

energia é perdida principalmente através da interação das partículas com os elétrons dos átomos do meio

Seção de choque é (tipicamente) grande: $\sigma \sim 10^{-17}$ - 10^{-16} cm²

energia perdida por colisão individual é pequena, porém, há um grande número de colisões em materiais densos.

6

A Física dos Detectores de Partículas - Aula 03

Interação de partículas carregadas

Interação de partículas carregadas com o meio via *interação eletromagnética*

Três processos possíveis:

Ionização ✓ Radiação Cherenkov (hoje) Radiação de Transição (hoje)

http://cern.ch/amoraes

Para a derivação da equação de perda de energia, ou da intensidade da radiação emitida considere

Partícula carregada com velocidade $v=\beta c$ Constante dielétrica do meio $\varepsilon=\varepsilon_1 + i\varepsilon_2$

A constante dielétrica

Fótons (virtuais) interagem com átomos do meio.

Efeito é descrito pela *constante dielétrica*

 $\varepsilon = \varepsilon_1 + i\varepsilon_2$

Propriedade óptica do meio depende da constante dielétrica.

http://cern.ch/amoraes

Parte imaginária: absorção de fótons (seção de choque de absorção)

Parte real: refração (modificação da velocidade de fase)

A Física dos Detectores de Partículas - Aula 03

A constante dielétrica

Propriedade óptica do meio depende da constante dielétrica.

 $\varepsilon = \varepsilon_1 + i\varepsilon_2$

Parte imaginária: absorção de

fótons (seção de choque de absorção)

Im $\varepsilon = k$

(parâmetro de absorção)

Parte real: refração (modificação da velocidade de fase)

 $Re \sqrt{\epsilon} = n$ (índice de refração)

Radiação Cherenkov

Partículas carregadas atravessando um meio dietético com velocidade v > c/n(velocidade superior à da propagação da luz no meio) emitem uma radiação característica conhecida como radiação Cherenkov.

Para fótons com energias abaixo da energia de excitação:

$$\frac{d\sigma}{dE} = \frac{z^2 \alpha}{\beta^2 \pi} \frac{1}{N_{\alpha} \hbar c} \left(\beta^2 - \frac{\epsilon_1}{|\epsilon|^2} \right) \Theta$$

 $\varepsilon_2 = 0 \text{ e } \sigma_{\gamma} = 0 \rightarrow \text{ apenas o último termo de } d\sigma/dE \text{ contribui}$

Comportamento no limite de transição via fase Θ

$$\Theta = \arg(1 - \varepsilon_1 \beta^2 + i \varepsilon_2 \beta^2) = \arg(1 - \varepsilon_1 \beta^2)$$

$$\sqrt{\epsilon} \frac{v}{c} \cos \theta_C = 1$$
[θ_c : Cherenkov angle]

varia de 0 a π para $\varepsilon_1 > 1/\beta^2$ ou $1 < v/c \sqrt{\varepsilon_1}$ limite Cherenkov

A Física dos Detectores de Partículas - Aula 03

Radiação Cherenkov

Partículas carregadas atravessando um meio dietético com velocidade v > c/n(velocidade superior à da propagação da luz no meio) emitem uma radiação característica conhecida como radiação Cherenkov.

Radiação Cherenkov

Partículas carregadas atravessando um meio dietético com velocidade v > c/n(velocidade superior à da propagação da luz no meio) emitem uma radiação característica conhecida como radiação Cherenkov.

Perda de energia atribuída a emissão de radiação Cherenkov são pequenas quando comparadas com energia perdida em ionização (~1%)

dE/dx (Cherenkov) ~ 0.01 - 0.02 MeV/g cm⁻² (gás)

VS.

dE/dx (Ionização mínima) ~ 1.5 MeV/g cm⁻² (gás)

Número de fótons emitidos em função do comprimento de onda

$$\frac{d^2 N}{d\lambda dx} = \frac{2\pi\alpha z^2}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2(\lambda)}\right) = \frac{2\pi\alpha z^2}{\lambda^2} \sin^2\theta_C$$

Integrate over sensitivity range:dN[for typical Photomultiplier]da

$$\frac{N}{lx} = \int_{350 \text{ nm}}^{550 \text{ nm}} d\lambda \frac{d^2 N}{d\lambda dx}$$

 $=475 z^2 \sin^2 \theta_C$ photons/cm

Quantidade de fótons emitidos em função da energia é constante

$$\frac{d^2 N}{dEdx} = \frac{z^2 \alpha}{\hbar c} \left(1 - \frac{1}{\beta^2 n^2(\lambda)} \right) = \frac{z^2 \alpha}{\hbar c} \sin^2 \theta_C$$

 $\approx \text{const}$

For single charged particle:

$$\frac{d^2N}{dEdx} = 370 \, \sin^2\theta_C \, \mathrm{eV}^{-1} \, \mathrm{cm}^{-1}$$

Rio de Janeiro, 20 de Julho de 2017.

A Física dos Detectores de Partículas - Aula 03

Radiação Cherenkov: exemplo de aplicação

Dr Arthur Moraes (CBPF)

A Física dos Detectores de Partículas - Aula 03

Dr Arthur Moraes (CBPF)

A Física dos Detectores de Partículas - Aula 03

Super Kamiokande (Super-K)

A Física dos Detectores de Partículas - Aula 03

Experimento ANTARES

Astronomia com neutrinos (informação mais precisa sobre processos físico no interior de estrelas)!

Rio de Janeiro, 20 de Julho de 2017.

Dr Arthur Moraes (CBPF)

A Física dos Detectores de Partículas - Aula 03

Experimento AMANDA: Antarctic Muon and Neutrino Detector Array

Telescópio de neutrinos (hoje, parte do experimento "IceCube Neutrino Observatory" no Polo Sul!)

Experimento AMANDA: Antartic Muon and Neutrino Detector Array

The AMANDA-II team has produced the most detailed map of the high energy neutrino sky so far. No sources of continuous emission have yet been observed, but data is streaming in.

A Física dos Detectores de Partículas - Aula 03

Experimento LHCb

 $\begin{array}{l} \mbox{Measurement of Cherenkov angle:} \\ \mbox{Use medium with known refractive index n } \boldsymbol{\succ} \ \beta \end{array}$

Principle of:

RICH (Ring Imaging Cherenkov Counter) DIRC (Detection of Internally Reflected Cherenkov Light) DISC (special DIRC; e.g. Panda)

A Física dos Detectores de Partículas - Aula 03

Radiação de Transição ocorre quando uma partícula carregada, com velocidade relativística (alta valor de γ) atravessa a interface de dois meios com índices de refração diferentes.

Efeito pode ser explicado pelo "re-arranjo" do campo elétrico.

(efeito previsto por Ginzburg e Frank em 1946; confirmado experimentalmente nos anos 70)

A Física dos Detectores de Partículas - Aula 03

Radiated power: $\int \sin^2 \theta d\Omega$ $\frac{dP}{d\omega} = r^2 \int \frac{d^2S}{d\omega d\Omega} d\Omega$ $= r^2 \int \frac{8e^2 v^2 \sin^2 \theta}{4\pi r^2 c^3} d\Omega = \frac{8\pi}{3} \frac{8e^2 v^2}{4\pi c^3} = 16 \frac{e^2 v^2}{3c^3}$ $\frac{dP}{d(\hbar\omega)} = 2 \frac{16}{3} \frac{e^2}{\hbar c} \frac{\frac{1}{2}mv^2}{mc^2} = \frac{32}{3} \frac{e^2}{\hbar c} \frac{E}{mc^2} \qquad \text{dP } \boldsymbol{\omega} \text{-independent} \\ \text{classically expect white spectrum} \end{cases}$ $dP \sim \gamma$ $\propto \alpha \cdot \frac{E}{mc^2}$

"risky" relativistic generalization via Energy dependence $dP \sim \alpha$ one α per boundary

nttp://cern.ch/amoraes

A energia total emitida na forma de "radiação de transição" é proporcional ao fator de Lorentz γ

$$\gamma = \frac{E}{m} = \frac{\sqrt{p^2 + m^2}}{m} \approx \frac{p}{m}$$

ou seja, esse mecanismo é extremamente útil para identificar partículas com alto momento/energia (para $\beta \approx 1$)

- Ângulo de emissão (valor típico): $\Theta = 1/\Upsilon$
 - Energia dos fótons radiados: ~ Υ
 - Número de fótons radiados: ∝ z²
 - Limite efetivo: $\Upsilon > 1000$

A Física dos Detectores de Partículas - Aula 03

Angular distribution strongly forward peaked [Interference; coherence condition]

Coherent radiation is generated only over a very small formation length

Volume element from which coherent radiation is emitted ...

Maximum energy of radiated photons limited by plasma frequency ... [results from requiring V \neq 0 $\rightarrow \omega = \gamma \omega_p$]

 $\theta \leq 1/\gamma$ $D = \gamma C/\omega_p$ $V = \pi D \rho_{max}^{2}$ Plasma frequency [from Drude model] $\rho_{max} = \gamma v / \omega$ [transversal range with large polarization] $E_{max} = \gamma \hbar \omega_p$ [X-Rays \rightarrow large γ !!] CH₂: $\hbar \omega_p = 20 \text{ eV}; \gamma = 10^3$ [Air: $\hbar \omega_p = 0.7 \text{ eV}$] $D = 10 \ \mu m$

[d > D: absorption dominates]

Dr Arthur Moraes (CBPF)

Typical values:

Principal aplicação: identificação de elétrons

Para um dado momento p, o fator γ é muito maior para elétrons do que para hádrons leves: fator 273 vezes maior para elétrons comparando-se com π^+ ou π^-

$$\gamma = \frac{E}{m} = \frac{\sqrt{p^2 + m^2}}{m} \approx \frac{p}{m}$$

Para um fator γ de 10³ (elétron com p=0.5 GeV, ou π^+ ~140 GeV) aproximadamente metade da energia radiada é encontrada na faixa de energias de Rontgen (2 - 20 keV para γ radiado).

Camadas de material com baixo Z são empilhadas formando várias transições e adiciona-se um detector com gás de alto Z

(note que apenas raios-X com E>20 keV conseguem atravessar as camadas do "radiador" sem serem absorvidos)

Dr Arthur Moraes (CBPF)

A Física dos Detectores de Partículas - Aula 03

Detectores de Radiação de Transição

ATLAS - TRT

- 4 mm in diameter, equipped with a 30 µm ٠ diameter gold-plated W-Re wire

Detectores de Radiação de Transição

ATLAS - TRT

Straw Tube Tracker with interspace filled with foam

→ Tracking & transition radiation

ATLAS - TRT

Detectores de Radiação de Transição

Cintiladores

Dr Arthur Moraes (CBPF)

Instrumentação em Física de Partículas - Aula 03

Rio de Janeiro, 10 de Fevereiro de 2012

Cintiladores

Princípio:

- *dE/dx* é convertida em luz visível

- detecção feita com foto-sensor (fotomultiplicadora, olho humano)

Características principais:

- sensitividade à energia
- rápida resposta (curto tempo de resposta)
- perfil de pulso bem característico

Requisitos:

- alta-eficiência para conversão de energia de excitação em radiação fluorescente
- transparência à radiação fluorescente para permitir transmissão da luz
- emissão da luz na região do espectro detectável por fotossensores
- curto tempo de decaimento permitindo resposta rápida

nttp://cern.ch/

Cintiladores

Cintiladores: cristais inorgânicos

Materiais:

- Iodeto de sódio (NaI)
- Iodeto de césio (CsI)
- Floreto de bário (BaF₂)

Mecanismo:

- Deposição de energia por ionização
- Transferência de energia à impurezas
- Radiação por cintilação de fótons

Energy bands in impurity activated crystal showing excitation, luminescence, guenching and trapping

Dr Arthur Moraes (CBPF)

A Física dos Detectores de Partículas - Aula 03

Cintiladores: cristais inorgânicos

Example CMS Crystal growth Electromagnetic Calorimeter One of the last CMS end-cap crystals

Dr Arthur Moraes (CBPF)

PbW04

ingots

A Física dos Detectores de Partículas - Aula 03

Cintiladores: cristais inorgânicos

Dr Arthur Moraes (CBPF)

A Física dos Detectores de Partículas - Aula 03

Cristais inorgânicos: constante de tempo

Cristais inorgânicos: luz de saída

Dr Arthur Moraes (CBPF)

Cintiladores: gases nobres líquidos

nttp://cern.ch/amoraes

A Física dos Detectores de Partículas - Aula 03

Cintiladores: propriedades

Scintillator material	Density [g/cm³]	Refractive Index	Wavelength [nm] for max. emission	Decay time constant [µs]	Photons/MeV
Nal	3.7	1.78	303	0.06	8·10 ⁴
Nal(TI)	3.7	1.85	410	0.25	4 · 10 ⁴
CsI(TI)	4.5	1.80	565	1.0	1.1·10 ⁴
Bi ₄ Ge ₃ O ₁₂	7.1	2.15	480	0.30	2.8 ⋅ 10 ³
CsF	4.1	1.48	390	0.003	2 ⋅ 10 ³
LSO	7.4	1.82	420	0.04	1.4·10 ⁴
PbWO ₄	8.3	1.82	420	0.006	2·10 ²
LHe	0.1	1.02	390	0.01/1.6	2.10 ²
LAr	1.4	1.29*	150	0.005/0.86	4 · 10 ⁴
LXe	3.1	1.60*	150	0.003/0.02	4 · 10 ⁴
					* at 170 nm

http://cern.ch/amoraes

Cintiladores: propriedades

Numerical examples:

Nal(TI)

 $\lambda_{max} = 410 \text{ nm}; \text{hv} = 3 \text{ eV}$ photons/MeV = 40000 $\tau = 250 \text{ ns}$

$$\lambda_{max} = 420 \text{ nm}; \text{ hv} = 3 \text{ eV}$$

photons/MeV = 200
 $\tau = 6 \text{ ns}$

Scintillator quality:

Light yield – $\varepsilon_{sc} =$ fraction of energy loss going into photons e.g. Nal(TI) : 40000 photons; 3 eV/photon $\rightarrow \varepsilon_{sc} = 4 \cdot 10^4 \cdot 3 \text{ eV}/10^6 \text{ eV} = 11.3\%$ PBWO₄ : 200 photons; 3 eV/photon $\rightarrow \varepsilon_{sc} = 2 \cdot 10^2 \cdot 3 \text{ eV}/10^6 \text{ eV} = 0.06\%$ [for 1 MeV particle]

Cintiladores orgânicos

Compostos hidrocarbonetos aromáticos:

- Naftaleno (C₁₀H₈)
- Antraceno (C₁₄H₁₀)

Mecanismo:

- Tempo de resposta muito rápido (~ns)!
- Transição de elétrons livres nos orbitais
- *Luz de cintilação surge dos elétrons nos orbitais-π*

Cintiladores orgânicos

Scintillator material	Density [g/cm ³]	Refractive Index	Wavelength [nm] for max. emission	Decay time constant [ns]	Photons/MeV
Naphtalene	1.15	1.58	348	11	4 · 10 ³
Antracene	1.25	1.59	448	30	4 · 10 ⁴
p-Terphenyl	1.23	1.65	391	6-12	1.2·10 ⁴
NE102*	1.03	1.58	425	2.5	2.5·10 ⁴
NE104*	1.03	1.58	405	1.8	2.4·10 ⁴
NE110*	1.03	1.58	437	3.3	2.4·10 ⁴
NE111*	1.03	1.58	370	1.7	2.3·10 ⁴
BC400**	1.03	1.58	423	2.4	2.5·10 ²
BC428**	1.03	1.58	480	12.5	2.2·10 ⁴
BC443**	1.05	1.58	425	2.2	2.4·10 ⁴

* Nuclear Enterprises, U.K. ** Bicron Corporation, USA

http://cern.ch/amoraes

Cintiladores orgânicos

Dr Arthur Moraes (CBPF)

Cintiladores: comparação

Inorganic Scintillators

Advantageshigh light yield [typical; $\boldsymbol{\epsilon}_{sc} \approx 0.13$]
high density [e.g. PBWO4: 8.3 g/cm³]
good energy resolutionDisadvantagescomplicated crystal growth
large temperature dependence

Organic Scintillators

Advantages	very fast easily shaped small temperature dependence pulse shape discrimination possible
Disadvantages	lower light yield [typical; $\epsilon_{sc} \approx 0.03$] radiation damage

Cheap

Expensive

http://cern.ch/amoraes

Rio de Janeiro, 20 de Julho de 2017.

Dr Arthur Moraes (CBPF)

A Física dos Detectores de Partículas - Aula 03

Seção de choque da interação

Equação Bethe-Bloch a partir de $d\sigma/dE$

