

MICROSCOPIA ELETRÔNICA

ANDRÉ LUIZ PINTO

CBPF

Roteiro

- Introdução
- Fundamentos
 - Fontes de elétrons
 - o Lentes de elétrons
 - o Interação elétron-matéria
- Microscópio Eletrônico de Varredura
- Microscópio Eletrônico de Transmissão
- Aplicações à Nanotecnologia
- Comentários Finais
 - LabNano

Opções para visualizar a microestrutura

- Olho humano 0,1 mm
- Microscopia Ótica 0,5 μm
- Microscópio Eletrônico de Varredura (MEV) 1 4 ηm
- Microscópio Eletrônico de Transmissão (MET) 0,8 1,4 Å
- Microscópio de Ponta de Prova (SPM) 0,3 Å

Interação Elétron-Amostra

Microscopia Eletrônica de Varredura

Jeol

Câmara

Microscopia Eletrônica de Varredura

Jeol Goldstein et alli, 2003 Detector SPECIMEN MAGNIFICATION No MEV, o aumento é dado pela relação entre as dimensões varridas na amostra e as dimensões da tela.

"Spot Size" e Resolução

"Spot Size" e Qualidade

Jeol

Detectores de Elétrons Secundários

Detetor de Everhart-Thornley

Detectores de Elétrons Secundários

- Cintilador utilizado é um YAG (yttrium-aluminium garnet) dopado com Ce, para obter menor tempo de decaimento (ηs ao invés dos μs do ZnS)
- Ganho da fotomultiplicadora de 10ⁿ, dependendo de qtos n dinodos estão presentes
- Ganhos de 10⁸ são comuns, logo o nível de ruído é baixo
- Velocidade de resposta compatível com as taxas de imagem de TV
- Bx eficiência energética (1 e⁻ de 100kV gera 4.000 fótons)

Profundidade de Campo >> Resolução

Gota de Au aplicada por "jet spray Electroplating".

Thalamoporella stapifera.

Análise de falha em cabo de aço.

Placa de Armodon (UHMW-PP) submetida a Impacto balístico.

Perspectiva Cônica

Goldstein

Perspectiva Cônica

0°

Goldstein

55° com correção

55°

Imagem de Elétrons Retroespalhados

22

➤ Contraste de Z

Goldstein

Detector de e_{BSE} de Estado Sólido

Detector de Estado Sólido

Detector de e_{BSF} de Estado Sólido

- Sensíveis apenas a elétrons de alta energia
- Fáceis de fabricar e baratos
- Podem ser fabricados em qualquer forma plana
- Alta eficiência energética (1 e⁻ de 100kV gera 28.000 pares)
- Grande ruído de fundo

Detector de e_{BSE} de Estado Sólido

Imagem de e_{BSE}

BSE Topo

E-T

BSE Compo

Secundários x Retroespalhados

- Topografia com baixa resolução
- Contraste de Z

Elétrons Secundários Os vários sinais

Detectores de Elétrons Secundários

Detectores de Elétrons Secundários

Uma visão comparativa dos vários sinais

SE + BSE

E₀ influence on the SE image

FEI

lateral detector

Uma visão comparativa dos vários sinais

SE SE

E₀ influence on the SE image

In-lens detector

Uma visão comparativa dos vários sinais

E-T lateral

E-T in lens

EDS – "Energy Dispersive Spectroscopy"

Detector de Raios X

Detector de Raios X (SiLi)

Goodhew et all

Cada par elétron-buraco consome 3,8 eV

Processamento do Sinal

- Cada fóton gera um pulso de voltagem
- Os pulsos gerados são amplificados e digitalizados num intervalo de tempo, τ (10-50 μs), ou constante temporal
- Os pulsos são separados em diferentes canais com resolução energética de 20 eV

Processamento do Sinal

 Um menor τ implica em maior número de contagens por segundo (cps), mas com menor resolução energética

$$TempoMorto\% = \frac{\left(TempoTotal - TempoVivo\right)}{TempoTotal}x100\%$$

Goldstein et al.

Silicon Drift Detector (SDD)

- Refriado por Efeito Peltier
- Resolução ~ 145 eV
- Maiores taxas de contagem (~100.000 cps)

Si(Li)

X

SDD

- Resolução energética ~
 148 eV
- Melhor resolução energética ~ 127 eV
- 5-10.000 cps
- -196°C (N₂ Liq)

- Resolução energética ~
 140 eV
- Melhor resolução energética ~ 123 eV
- 1.000-100.000 cps
- -25°C (Termoelétrico)

Espectro de EDS

- Permite a análise qualitativa da composição química
- Permite a realização de análise de composição atômica semiquantitativa
- Permite a realização de mapeamentos para localização de elementos químicos

WDS – "Wavelength Dispersive Spectroscopy"

Neste caso, a energia do fóton de R-X é avaliada através do seu comprimento de onda.

$$E = \frac{h}{\lambda}$$

- > O comprimento de onda é avaliado através da difração por um monocristal com ângulo de posicionamento variável.
- ➤ Lei de Bragg

$$n\lambda = 2d \operatorname{sen} \theta$$

Comparação EDS x WDS

EDS

- Rápida análise qualitativa
- Fácil de usar
- Barato
- Baixa resolução energética (150 eV)
- Alto limite de detectabilidade (1%)
- Baixa detectabilidade de elementos leves

WDS

- Análise qualitativa lenta
- Exige muitos cuidados com alinhamento
- > Caro
- ➤ Alta resolução energética (5 eV)
- Baixo limite de detectabilidade (0,01 %)
- Excelente detectabilidade de elementos leves

Resolução e origem

- e Secundários
 - ~ 1 ηm
- e- Retroespalhados
 - $\sim 0.1 \ \mu m$
- EDS
 - ~ 1 µm

- > A largura das bandas está diretamente relacionada ao espaçamento interplanar.
- > O ângulo entre as bandas corresponde ao ângulo entre os planos cristalinos.
- A posição das bandas está ligada à posição dos planos.

NiCo Nanoestruturado Eletrodepositado

NiCo Nanoestruturado Eletrodepositado

Danos

(a) Undamaged specimen

(b) Damaged specimen

Tilt angle: 45°

x1,400

(d) 5 kV

Danos

Deposição de Camada Condutora

- A deposição de Au, , Ag, Pt, Ni e Cr por "sputtering" proporciona boa resolução, mas pode representar um problema em EDS e em amostras sensíveis.
- A deposição de C por evaporação costuma resolver este problema.

Observação em Baixa Voltagem

Observação em Baixa Voltagem

> Todo material possui uma voltagem onde ocorre o equilíbrio de cargas, em geral entre 0,5 kV e 5 kV.

Observação em Alto Vácuo

Canhão de elétrons, coluna e câmara permanecem à pressão de vácuo em torno de 10-6 Torr

Observação em Baixo Vácuo

- Detector de Everhart-Thornley precisa ser desligado.
- A única imagem disponível é de elétrons retroespalhados.

MEV Ambiental

Novos detectores permitem a observação da imagem de elétrons secundários em baixo vácuo.

Ambiental x Baixo Vácuo

Acc V Spot Magn Det WD | 5 μm 25.0 kV 3.0 5000x GSE 8.4 Wet 4.0 Torr

Ambiental x Baixo Vácuo

Ambiental x Baixo Vácuo

Ambiental x Baixo Vácuo

Referências

- Williams, D. B. e Carter, C. B., "Transmission Electron Microscopy", Ed. Plenum, New York, 1996.
- Clarke, A. R. e Eberhardt, C. N., "Microscopy Techniques for Materials Science", Ed.CRC, 2002.
- Apostila da Jeol MET
- Apresentação Jeol EM 2100F
- Apresentação Gatan
- Site EDAX (<u>www.edax.com</u>)
- Site www.x-raymicroanalysis.com

André L. Pinto

pinto@cbpf.br

Obrigado pela atenção

