CENTRO BRASILEIRO DE PESQUISAS FÍSICAS

www.cbpf.br

MICROSCOPIA ELETRÔNICA

ANDRÉ LUIZ PINTO

CBPF

Roteiro

Introdução

• Fundamentos

- Fontes de elétrons
- o Lentes de elétrons
- o Interação elétron-matéria
- Microscópio Eletrônico de Varredura
- Microscópio Eletrônico de Transmissão
- Aplicações à Nanotecnologia
- Comentários Finais
 - o LabNano

Opções para visualizar a microestrutura

• Aumento x Resolução (lateral)

- Olho humano 0,1 mm
- Microscopia Ótica 0,5 μm
- Microscópio Eletrônico de Varredura (MEV) 1 4 ηm
- Microscópio Eletrônico de Transmissão (MET) 0,8 1,4 Å
- Microscópio de Ponta de Prova (SPM) 0,3 Å

Um MET moderno

Jeol

Amostras para MET

Suposição de um só evento de choque

Espessura < 100 դ**m**

Pergunta básica:

•Amostra de Folha Fina

ou

•Grade

Resolução Espacial

Abertura SAD no plano Imagem Aumento de aprox. 25x (M) Abertura de 50 μm seleciona área de 2 μm na amostra

Menor abertura ~ 10 μm Resolução ~0,5 μm

Plano da Amostra

A

Feixe Convergente

 Franjas de Kossel-Möllenstedt (K-M) permitem a determinação da espessura

Feixe Convergente

Precisão angular ~0,1º

Campo Claro: Toda imagem que inclui o feixe direto Campo Escuro: Toda imagem que deixa de incluir o feixe direto

Campo Escuro

(A) (B) 500nm (D)

Precipitado V₆C₅ e seu padrão de difração.

Nanoestrutura de ZnO

Precipitado V_8C_7 e seu padrão de difração.

STEM

A realização de figura de campo claro ou escuro depende apenas da seleção do sinal de interesse.

Sinais Espúrios

• Possíveis origens:

- RX contínuo de alta energia e e⁻ não colimados podem gerar RX longe do pto de convergência (p/ minimizar: aberturas de Pt espessas e limpas)
- Espalhamento pela amostra (p/ minimizar: 0° de inclinação, amostra fina e s/ AO)

Espectro de EDS

- Permite a análise qualitativa da composição química
- Permite a realização de mapeamentos para localização de elementos químicos
- Permite análises quantitativas

Aplicação de EDS

Mapeamento por EDS

Microscopia de Amostras Magnéticas

- Amostras devem estar em redes com grampo
- Objetivas devem ser desligadas durante a inserção
- Se a amostra sumir, desligue o microscópio
- Grande trabalho de alinhamento!!!
- DF centrada requer lentes especiais (Lorentz Microscopy)
- Lorentz Microscopy lentes objetivas especiais de baixo campo na amostra de modo que os domínios magnéticos da amostra não sejam alterados pela objetiva

Microscopia de Lorentz

É necessário trabalhar com uma lente objetiva que tenha menor campo magnético de modo a não alterar os domínios magnéticos da amostra

> Imagem de Foucault DF centrada

Microscopia de Lorentz

Imagens de Foucault de Fe puro utilizando os diferentes quadrantes de um detector de estado sólido obtidas em um STEM

- > Valence excitations: densidade eletrônica das bandas de condução/valência, medida de band gap, efeitos de polarização, efeitos dielétricos
- > Core excitations: Identificação e quantificação de elementos, investigação do ambiente eletrônico incluindo número de coordenação, estado de valência e tipo de ligação atômica

Mapeamento elementar

Imageamento por EELS

Energy filtered TEM (EFTEM): select the electrons with certain energy losses for imaging.

EFTEM has many uses, based on the wealthy information on EELS :

- Contrast enhancement in imaging & diffraction zero-loss filtering; most probable loss imaging; contrast tuning; pre-carbon imaging
- Elemental mapping/Jump ratio imaging
 3 window method; 2 window method
- Chemical mapping

Zere loss filtered image projected onto CCD

EFTEM – Mapeamento e identificação de fases

Gatan

Unfiltered bright-field TEM image of semiconductor device structure and some elemental maps formed from ionization-edge signals of N-K, Ti-L, O-K, Al-K, and W-M.

Color composite of the elemental maps displayed on the left, clearly showing the construction of the device.

For a given ED pattern, the correlation index map is calculated for all possible template orientations and plotted on a map that represents a portion of the stereographic projection (reduced to a double standard triangle). That resulting map reveals the most probable orientation for every experimental spot ED pattern (in this case ED pattern is found to be close to 110 ZA orientation)

Nanomegas

Microscopia de Orientação com Auxílio de Difração com Precessão

Using precession diffraction the number of ED spots observed increases; correlation index map becomes much more reliable

In this example (right) a metal particle gives wrong correlation index without precession due to presence of Kikuchi lines; after applying precession (right lower image), index gets correct value as ED quality improves and Kikuchi lines disapear

Microscopia de Orientação com Auxílio de Difração com Precessão

Sample : Replica sample extracted from 430 stainless steel contain lot of precipitates NOT possible to distinguish between them from size

carbides

ASTAR crystal phase map, step 22 nm

Nanomegas

Referências

- Goldstein, J. I. et alli., "Scanning Electron Microscopy and X-Ray Analysis", Ed. Plenum, New York, 2003.
- Williams, D. B. e Carter, C. B., "Transmission Electron Microscopy", Ed. Plenum, New York, 2009.
- Goodhew, P. J. et all, "Electron Microscopy and Analysis", Ed. Taylor & Francis, London, 2001.

André L. Pinto

pinto@cbpf.br

September 19-24

