CENTRO BRASILEIRO DE PESQUISAS FÍSICAS

http://www.cbpf.br

MICROSCOPIA ELETRÔNICA

ANDRÉ LUIZ PINTO

CBPF

Roteiro

Introdução

• Fundamentos

- Fontes de elétrons
- o Lentes de elétrons
- o Interação elétron-matéria
- Microscópio Eletrônico de Varredura
- Microscópio Eletrônico de Transmissão
- Aplicações à Nanotecnologia
- Comentários Finais
 - o LabNano

O que desejamos observar?

- Morfologia da matéria
- Materiais amorfos
 - o Morfologia
 - o Composição química
 - Composição atômica
 - Estado de ionização
 - Estrutura molecular
 - Presença de ordenamento de curto alcance

- Materiais cristalinos
 - Morfologia
 - o Composição química
 - × Composição atômica
 - × Estado de ionização
 - × Estrutura molecular
 - Estrutura cristalina
 - **o** Defeitos
 - × Classificação
 - × Quantificação
 - Natureza das interfaces entre os domínios cristalinos
 - o Textura cristalográfica

Nosso Arsenal

• Aumento x Resolução (lateral)

- Olho humano 0,1 mm
- Microscopia Ótica 0,5 μm
- Microscópio Eletrônico de Varredura (MEV) 1-4 ηm
- Microscópio Eletrônico de Transmissão (MET) 1-0,8 Å
- Microscópio de Ponta de Prova (SPM) 0,3 Å

O que desejamos em um canhão?

- Alto brilho
- Fonte de dimensões reduzidas
- Estabilidade
- Energia Controlável
- Coerência

Energia dos Elétrons

 Através do Princípio da Dualidade Onda-Partícula de de Broglie podemos associar o momento da partícula ao seu comprimento de onda

$$\lambda = \frac{h}{p}$$

 Energia cinética do elétron a partir do seu potencial de aceleração

$$eV = \frac{m_o v^2}{2} \Rightarrow p = m_o v = \sqrt{2m_o eV}$$

Energia dos Elétrons

Comprimento de onda

$$\lambda = \frac{h}{\sqrt{2m_o eV}}$$

Correção relativística

$$\lambda = \frac{h}{\sqrt{2m_o eV\left(1 + \frac{eV}{2m_o c^2}\right)}}$$

Energia dos Elétrons

TABLE 1.2 Electron Properties as a Function of Accelerating Voltage												
Accelerating voltage (kV)	Non-relativistic wavelength (nm)	Relativistic wavelength (nm)	Mass (× m _o)	Velocity (× 10 ⁸ m/s)								
100	0.00386	0.00370	1.196	1.644								
120	0.00352	0.00335	1.235	1.759								
200	0.00273	0.00251	1.391	2.086								
300	0.00223	0.00197	1.587	2.330								
400	0.00193	0.00164	1.783	2.484								
1000	0.00122	0.00087	2.957	2.823								

Fontes Termiônicas

• Lei de Richardson para a densidade de corrente

$$J = AT^2 e^{-\frac{\Phi}{kT}}$$

A- Cte de Richardson Φ - Função Trabalho K – Cte de Boltzmann

Filamento de W

- Baixo custo (~ US\$ 90)
- Baixa vida (~ 100 h)
- Baixo brilho

Williams e Carter

Filamento de LaB₆

- Maior custo (~US\$ 1-3k)
- Maior vida (~500 h)
- Maior brilho
- Monocristal <100>
- Suporte resistivo de grafite ou rênio
- Sujeito a choque térmico
- Altamente reativo
- Podem ter efeito Schottky (ponta com r~1-10µm dobra o brilho)

Williams e Carter

Problemas das Fontes Termiônicas

- Evaporação do catodo
- "Thermal drift"
- Baixo brilho
 - o Brilho máximo

$$\beta_{Max} = \frac{J_c e V_o}{\pi kT}$$

Canhão de Emissão por Campo (FEG)

- Monocristal <310> com ponta afiada (r < 100 ηm)
- Menor raio concentra o campo elétrico e diminui a necessidade de T
- V1 voltagem de extração (3-5 kV)
- V2 voltagem de aceleração
- Brilho máximo $\beta_{Max} = \frac{J_c e V_o}{\pi \Delta E}$

Williams e Carter

Canhão de Emissão por Campo (FEG)

Goldstein et all

- 3 tipos básicos
 - o Frio
 - o Térmico
 - o Schottky
- Crossover
 - <mark>ο Frio < 5</mark> ηm
 - <mark>ο Térmico < 5 ηm</mark>
 - <mark>o Schottky < 15-30 ηm</mark>

- Variação da Energia (ΔE)
 - o Frio 0,3 eV
 - o Térmico 1 eV
 - o Schottky 0,3 1 eV
- Estabilidade de Corrente
 - Frio 5%/h
 - o Térmico 5%/h
 - o Schottky 2%/h

TABLE 5.1 Characteristics of the Principal Electron Sources												
	Units	Tungsten	LaB ₆	Schottky FEG	Cold FEG							
Work function, Φ	eV	4.5	2.4	3.0	4.5							
Richardson's constant	A/m ² K ²	$6 imes10^9$	$4 imes 10^9$									
Operating temperature	K	2700	1700	1700	300							
Current density (at 100 kV)	A/m ²	5	10 ²	10 ⁵	10 ⁶							
Crossover size	nm	> 10 ⁵	10 ⁴	15	3							
Brightness (at 100 kV)	A/m ² sr	10 ¹⁰	5×10^{11}	5×10^{12}	10 ¹³							
Energy spread (at 100 kV)	eV	3	1.5	0.7	0.3							
Emission current stability	%/hr	<1	<1	<1	5							
Vacuum	Pa	10 ⁻²	10 ⁻⁴	10 ⁻⁶	10 ⁻⁹							
Lifetime	hr	100	1000	>5000	>5000							

Williams e Carter

Goldstein et all

Resolução Prática

$$r = \sqrt{r_{th}^2 + r_{sph}^2} = \sqrt{\left(0, 61\frac{\lambda}{\beta}\right)^2 + \left(C_S\beta^3\right)^2}$$

Ângulo de coleta ótimo:

$$\frac{dr(\beta)}{d\beta} = 0 \Rightarrow \beta_{opt} = 0,77 \frac{\lambda^{\overline{4}}}{C_{S}^{\frac{1}{4}}}$$

Resolução do Microscópio

$$r_{\min} \approx 0.91 (C_S \lambda^3)^{1/4}$$

Profundidade de Campo Profundidade de Foco

Profundidade de Campo

$$D_{ob} = \frac{d_{ob}}{\beta_{ob}}$$

- $d_{ob} \sim 2 \text{ Å}$ $\beta_{ob} \sim 10 \text{ mrad}$ $D_{ob} \sim 20 \text{ } \mu\text{m}$
- $d_{ob} \sim 2 \eta m$ $\beta_{ob} \sim 10 mrad$ $D_{ob} \sim 200 \eta m$

Profundidade de Foco

$$D_{im} = \frac{d_{ob}}{\beta_{ob}} M_T^2$$

Williams e Carter

 $d_{ob} \sim 2 \text{ Å}$ $\beta_{ob} \sim 10 \text{ mrad}$ $M_T \sim 500.000 \text{ x}$ $D_{im} \sim 5 \text{ km}$ $d_{ob} \sim 2 \text{ } \eta \text{ m}$

 $d_{ob} \sim 2 \eta m$ $\beta_{ob} \sim 10 mrad$ $M_T \sim 50.000x$ $D_{im} \sim 5 m$

Características gerais do feixe

- Quase paralelo (0,05-1°)
- Diâmetro (1 ηm 1 μm)
- Corrente (1 ρA 1 μA)
- Energia
 - o MEV 1- 40 keV
 - MET 100 400 keV (exige correção relativística)
- Coerência depende da fonte

Espalhamento

Elástico

- Elétrons espalhados elasticamente ("foward")
- Elétrons Retroespalhados elasticamente

• Inelástico

- Elétrons espalhados inelasticamente ("foward")
- Elétrons Retroespalhados inelasticamente
- o Elétrons Secundários
- o Elétrons Auger
- o Raios-X
- o Luz
- o Fónons
- o Plásmons

Seção de Choque

 Avalia a probabilidade de espalhamento por um átomo isolado:

 $\sigma_{T} = \sigma_{Elast} + \sigma_{Inelast}$

 Pode-se tomar também a seção de choque com a área efetiva para a ocorrência de um determinado evento

Seção de Choque

• Probabilidade de ocorrência de um evento:

$$Q = \frac{N}{n_i n_t} = \frac{N_0 \sigma_T \rho}{A}$$

$$\frac{(eventos / cm^3)}{(e^- / cm^2)(at. / cm^3)} \Rightarrow (cm^2)$$

- N número de eventos
- o n_i número de partículas incidentes
- o n_t número de alvos

Livre Caminho Médio

• Distância entre eventos de espalhamento:

$$\lambda = \frac{1}{Q} = \frac{A}{N_0 \rho \sigma_T} \qquad \text{(cm)}$$

- A massa atômica
- N₀ número de Avogrado
- \circ ρ densidade

Espalhamento Elástico

 Espalhamento elástico de Rutherford para um ângulo maior do que θ:

 $\sigma(\flat\theta) = 1,62x10^{-20} \frac{Z^2}{E} ctg^2 \frac{\theta}{2}$

E é a energia do feixeZ é o número atômico

Raios-X Contínuos (Bremsstrahlung)

- Fruto da desaceleração dos elétrons do feixe devido à interação coulômbica com os átomos da amostra
- Qualquer quantidade de energia pode ser perdida

Energy Table

element	Κα	K <i>B</i> 1	Kah	$\lfloor \alpha \rfloor$	1 8 1	I R2	Lv1	Llah	' I llah	Lillah	Mg 1	element	Ka	KB1	Kah	101	181	182	Lv1	Llah	Lllab	LIIIab	Ma 1
1 4		TXP 1	T T CAD	- Carl	-p 1	-p	-/ .	LICIS	Encio	Emero		55 Ce	30.857	34 985	35 990	4 287	4.620	4936	5 281	5 721	5 358	5012	
2.40											Contraction of	50 03	22.071	26 201	27 450	4.466	1020	5157	5.521	5.006	5.622	5 247	
2 He												50 Ba	02.071	07.000	20.040	4.400	4.020	5.107	5.001	0.000	0.020 E 000	5.647	0.000
31												57 La	33.302	37.800	38.940	4.651	5.042	5.364	5.769	0.200	0.101	5.404	0.033
4 Be												58 Ce	34.575	39.261	40.452	4.840	5.262	5.613	6.052	6.548	6.161	5.724	0.883
58	0.183		0.192									59 Pr	35.865	40.744	42.000	5.034	5.489	5.850	6.322	6.835	6.439	5.963	0.929
60	0.277		0.284									60 Nd	37.188	42.272	43.580	5.231	5.722	6.090	6.602	7.130	6.724	6.210	0.978
7 N	0.392		0.400									61 Pm	38.541	43.826	45.201	5.433	5.962	6.339	6.892	7.436	7.014	6.461	
80	0.525		0.532									62 Sm	39.918	45.416	46.858	5.636	6.205	6.587	7.178	7.748	7.314	6.718	1.081
9 F	0.677		0.687									63 Eu	41.328	47.035	48.526	5.846	6.457	6.843	7.481	8.061	7.620	6.981	1.131
10 Ne	0.849		0.867									64 Gd	42.768	48.698	50.237	6.058	6.714	7.103	7.786	8.386	7.932	7.243	1.185
11 Na	1.041	1.067	1.072									65 Tb	44.233	50.380	52.007	6.273	6.978	7.367	8.102	8.717	8.253	7.516	1.240
12 Mg	1.254	1.296	1.303								No. of the second se	66 Dy	45.734	52.116	53.790	6.495	7.248	7.636	8.419	9.055	8.583	7.790	1.293
13 AI	1.487	1.553	1.560									67 Ho	47.268	53.883	55.624	6.720	7.526	7.912	8.747	9.400	8.917	8.068	1.348
14 Si	1.740	1.829	1.840								100000	68 Er	48.813	55.674	57.480	6.949	7.811	8.189	9.089	9.758	9.262	8.358	1.406
15 P	2.013	2.136	2.144									69 Tm	50.421	57.507	59.380	7.180	8.102	8.469	9.426	10.121	9.617	8.650	1.462
16.5	2.308	2.464	2.471									70 Yb	52.051	59.380	61.318	7.416	8.402	8.759	9.780	10.491	9.976	8.944	1.522
17 CI	2622	2816	2820									7110	53,696	61,288	63,290	7.656	8.709	9.049	10.144	10.874	10.345	9.249	1.581
18 Ar	2957	3 1 9 1	3,203									72 Hf	55,400	63,225	65.324	7.899	9.023	9.348	10.516	11.274	10.737	9.558	1.645
19K	3313	3 590	3,608	10 E								73 Ta	57110	65 221	67.420	8146	9343	9.652	10.896	11682	11133	9877	1710
20 02	3691	4013	4.038	0341	0345			-	0353	0349	Net rest in the	70 H	58.872	67 237	69.498	8398	9673	9.962	11 286	12100	11,539	10,200	1.776
21 60	4.089	4.010	1.180	0.396	0.040				0.000	0.040		75 Ro	60.658	69 304	71.668	8.653	10010	10.276	11.686	12531	11.000	10.531	1.843
21 30	4.003	4.401	4.403	0.330	0.400							76.00	62,402	71.420	72.045	0.000	10.255	10.500	12,006	12.001	12 201	10.001	1.040
22 11	4.509	4.932	4.900	0.452	0.456							70 05	02.432	71.420	73.045	0.312	10.300	10.000	12.030	12.072	12.001	11.010	1.000
23 V	4.950	5.428	5.464	0.511	0.519			0740	0.000	0.500		77 11	04.341	75.002	70.111	9.170	11.709	11.921	12.012	10.424	12.020	11.212	1.960
24 Cr	5.412	5.947	5.989	0.573	0.583			0.742	0.693	0.599		78 Pt	66.267	75.739	/8.3/2	9.443	11.071	11.201	12.942	13.883	13.273	11.563	2.050
25 Mn	5.895	6.491	6.538	0.638	0.649							79 Au	68.199	//.9/8	80.719	9.714	11.443	11.585	13.382	14.353	13./36	11.922	2.123
26 Fe	6.400	7.058	7.111	0.705	0.718				0.721	0.708		80 Hg	/0.16/	80.249	83.100	9.989	11.823	11.924	13.830	14.843	14.215	12.287	2.195
27 Co	6.925	7.650	7.710	0.776	0.791				0.794	0.779		8111	72.168	82.602	85.507	10.269	12.214	12.272	14.292	15.343	14.701	12.661	2.271
28 Ni	7.473	8.265	8.332	0.852	0.869				0.871	0.854		82 Pb	74.243	84.921	87.995	10.552	12.614	12.623	14.765	15.855	15.205	13.041	2.346
29 Cu	8.042	8.906	8.981	0.930	0.950				0.953	0.933	1	83 Bi	76.345	87.313	90.566	10.839	13.024	12.980	15.248	16.376	15.720	13.427	2.423
30 Zn	8.632	9.572	9.661	1.012	1.035			1.198	1.045	1.022		84 Po	78.472	89.779		11.131	13.447	13.340	15.744				
31 Ga	9.243	10.265	10.368	1.098	1.125			1.303	1.145	1.117		85 At	80.614	92.319		11.427	13.876		16.252				
32 Ge	9.876	10.983	11.104	1.188	1.219			1.413	1.249	1.217		86 Rn	82.878	94.862	0	11.728	14.315		16.771				
33 As	10.532	11.727	11.865	1.282	1.317			1.529	1.359	1.324	-	87 Fr	85.096	97.473		12.032	14.771	14.450	17.304				
34 Se	11.209	12.496	12.655	1.379	1.419			1.653	1.475	1.434		88 Ra	87.437	100.149		12.341	15.235	14.841	17.850				
35 Br	11.909	13.292	13.471	1.481	1.526			1.782	1.599	1.553		89 Ac	89.779	102.807		12.653	15.714		18.409				
36 Kr	12.634	14.113	14.325	1.586	1.637			1.916	1.730	1.677		90 Th	92.182	105.609	109.624	12.969	16.203	15.625	18.984	20.463	19.683	16.299	2.996
37 Rb	13.376	14.961	15.204	1.694	1.752			2.064	1.866	1.807		91 Pa	94.645	108.473		13.292	16.703	16.025	19.568	21.172	20.362	16.768	3.083
38 Sr	14.142	15.837	16.108	1.807	1.872			2.217	2.009	1.941		92 U	97.167	111.297	115.658	13.616	17.220	16.428	20.167	21.771	20.947	17.165	3.171
39 Y	14.934	16.739	17.038	1.923	1.996			2.377	2.154	2.080		93 Np	99.427	113.748		13.945	17.750	16.841	20.785				
40 Zr	15.748	17.669	18.000	2.042	2.125	2.219	2.303	2.541	2.305	2.222		94 Pu											
41 Nb	16.584	18.622	18.987	2.166	2.257	2.367	2.462	2.710	2.464	2.371		95 Am											51
42 Mo	17446	19.609	20.004	2 293	2 3 9 5	2518	2 6 2 4	2881	2627	2 5 2 4		96 Cm											
43 TC	18.327	20.620	21.047	2 4 2 4	2537	2.010	2.021	3.055	2 795	2678		97 Bk											
14 Pu	10.027	21657	22 120	2559	2683	2836	2 965	3 2 3 3	2.966	2838		98 Cf											COLUMN AND A
45 Ph	20 170	22 725	23.218	2.607	2.835	3.001	3144	3/17	3145	3,002		99 Ec											
	21.125	22.720	24.240	2,037	2,000	2170	2 220	3.417	2 220	3173		100 50											
40 P0	221.125	24.040	24.349 25 E 1 7	2.009	2.330	0.172	3.329	2007	3.330	3.173		101 M											
4/ Ag	22.105	24.942	20.01/	2.984	3.151	3.348	3.520	3.807	3.526	3.301													
48 Ud	23.110	26.09/	26./15	3.134	3.317	3.528	3./1/	4019	3.728	3.538		102 100							and the state				
49 In	24.140	27.279	27.943	3.287	3.487	3./14	3.921	4.237	3.939	3.730		[103 Lr											
50 Sn	25.195	28.489	29.194	3.444	3.663	3.905	4.131	4.465	4.157	3.929													
51 Sb	26.279	29.725	30.486	3.605	3.844	4.101	4.348	4.699	4.382	4.132										$(+) \leq$	SHIN	ΠΔΝ	DZL
52 Te	27.382	30.996	31.816	3.770	4.030	4.302	4.571	4.940	4.613	4.342											((
531	28.515	32.296	33.169	3.938	4.221	4.508	4.801	5.192	4.854	4.599										Sc	olutions	for Sci	ence
54 Xe	29.669	33.628	34.594	4.110				5.453	5.104	4.782											since	1875	

Emissão de Elétrons

Williams e Carter

Elétrons emitidos

- o Auger (300eV-3keV)
 - Possuem energia característica das transições de decaimento
- o Secundários
 - × Lentos (E \leq 50eV)
 - provenientes das bandas de condução e valência
 - × Rápidos (E< $E_0/2$)
 - provenientes de camadas mais internas

Figure 3.1. The interaction volume for a 20-keV beam striking silicon, as calculated with a Monte Carlo electron trajectory simulation (CASINO by Hovington *et al.*, 1997). The beam electron trajectories that emerge as backscattered electrons are shown as thick traces.

X - Ray Information (total depth or less)

Emissão de Luz

 A luz emitida pode ser utilizada para caracterizar alterações na banda de gap como fruto de dopagens, segregações em interfaces...

Plásmons

 Podem ocorrer em qualquer material com elétrons fracamente ligados ou livres

$$\frac{d\sigma_{\theta}}{d\Omega} = \frac{1}{2\pi a_0} \left(\frac{\theta_E}{\theta_E} + \theta_E^2 \right)$$

o a₀ é o raio de Bohr

$$a_0 = \frac{h^2 \varepsilon_0}{\pi m_0 e^2}$$

Williams e Carter

Fónons

- Vibrações na rede (mesmo em materiais amorfos)
- Ângulo de espalhamento ~ 5-15 mrad
- Perda de energia ~ 0,1 eV
- Espalhamento ~ Z^{3/2}
- Aumenta com a temperatura
- Gera um ruído de fundo sem informação sobre a amostra

Williams e Carter

Referências

- Goldstein, J. I. et alli., "Scanning Electron Microscopy and X-Ray Analysis", Ed. Plenum, New York, 2003.
- Goodhew, P. J. et all, "Electron Microscopy and Analysis", Ed. Taylor & Francis, London, 2001.
- Williams, D. B. e Carter, C. B., "Transmission Electron Microscopy", Ed. Plenum, New York, 2009.
- Apostila da Jeol MET

André L. Pinto

63

pinto@cbpf.br

 Bem vindos ao mundo da microscopia eletrônica!

