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1. Introduction

The unification program aiming at a unified description of the known interactions as well

as a consistent quantum formulation for gravity, nowadays mostly points towards higher-

dimensional supersymmetric theories. At present the most promising, however still conjec-

tural, candidate should live in eleven dimensions and goes under the name of M -theory [1].

The theoretical (and phenomenological) consistency requirements put on any possible can-

didate for unification necessarily lead to a systematic investigation of the properties of

Clifford algebras and spinors in space-times of arbitrary dimension and signature. Ex-

ploring in full generality the existence of specific algebraic relations (such as the identities

necessary to prove the k-symmetry invariance in the GS formulation of the superstring,

see [2]), which are technically relevant in the model construction, is a necessary preliminary

mathematical step before any attempt to model building.

From a mathematical point of view, Clifford algebras have been classified in the sixties

(see [3]). Some twenty years later the relation between supersymmetry and division algebras

was analyzed in [4]. A systematic and very convenient presentation in physicists’ notation
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of the classification for Clifford algebras and spinors, based on the three associative division

algebras of the real, complex and quaternionic numbers (R, C and H), can be found in [5].

This relatively old subject has been revived recently in a series of work [6]. The aim

in this case was the classification (once again based on the R, C, H division algebras)

of the generalized supersymmetries admitting the presence of tensorial bosonic central

charges and going therefore beyond the standard HÃLS scheme [7]. The real-valued M -

algebra underlying the M -theory is the most celebrated and possibly the most physically

relevant example in this class of generalized supersymmetries. In the last few months it

was pointed out in [8] and [9] that the M -algebra admits a consistent octonionic restriction

with surprising properties, which will be discussed in the following.

The first attempt of introducing octonions in physics goes back to the works of Jor-

dan [10]. More recently, and in connection with the specific program of unification through

supersymmetry, we can cite a series of works [11, 12] devoted to the octonionic description

of the superstring. Already in [4] some mathematical results concerning the relations of

the octonions with the Lorentz and Jordan algebras are mentioned, while a more devel-

oped investigation of this topic is presented in [13]. Moreover, in several different works

(see e.g. [14, 15]) the octonionic characterization of the seven sphere S 7 (regarded as a

compactification space for the eleven-dimensional maximal supergravity) and the analysis

of its properties were investigated.

Octonions are non-associative and can not be represented through matrices with the

standard matrix product. Octonionic realizations of Clifford algebras have peculiar prop-

erties, the most noticeable perhaps is the fact that they do not generate the corresponding

Lorentz group, but only its coset over G2, the group of automorphisms of the octonions [14].

This work is devoted to a systematic investigation of the properties of the quaternionic

and the octonionic realizations of the Clifford algebras. More specifically, in the first part

we classify such realizations, also furnishing recursive algorithms to explicitly construct

them. Later, quaternionic and octonionic spinors are introduced. The notion of Weyl pro-

jection, whenever applicable, for these two classes of spinors is defined. The consistency

conditions for the existence of a free dynamics for quaternionic and octonionic spinors are

fully investigated and classified. We produce a whole set of tables expressing the allowed

space-times admitting kinetic or pseudokinetic, as well as massive or pseudomassive, terms

in the free-spinors lagrangian. These results can be considered as quaternionic and octo-

nionic extensions of previous classification schemes available for real-valued spinors, see [16].

Since quaternionic Clifford algebras and spinors can always be represented through real-

valued matrices and column vectors, the tables presented in the quaternionic case can be

recovered from suitably constraining the real-valued case in order to admit a quaternionic

structure. The situation however is entirely different, for the motivations that we already

recalled, in the octonionic case.

To fully appreciate the further results presented in this paper concerning the octo-

nionic case, some clarifications are needed. The octonionic M -superalgebra in [8] does not

contain the Lorentz algebra. Indeed, it is an octonionic supertranslation algebra. How-

ever in [9] (based on the F -theory dual picture of the M -algebra, realized in terms of

(2, 10) Majorana-Weyl octonionic spinors) the octonionic superconformal algebra has been
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explicitly constructed. The latter is the octonionic counterpart of OSp(1, 64), the general-

ized superconformal algebra of the M -theory. This superalgebra contains in particular an

SO(2, 10) bosonic subalgebra which, by Inonü-Wigner contraction, produces Poincaré in

11 dimensions. In the octonionic case as well an Inonü-Wigner contraction can be straight-

forwardly carried out. It is worth stressing the fact that in the octonionic case the Lorentz

algebra is broken, but not arbitrarily, since we obtain in its place its G2 coset. For a

generic octonionic description of a (p, q) spacetime we obtain in fact SO(p, q)/G2. At least

in special cases, the latter admits a geometrical interpretation. For instance, the euclidean

seven-dimensional case is associated with the seven-sphere S7, through its description in

terms of unit octonions, see formula (4.5) and the following discussion.

It is remarkable that the M -algebra arises in two (and only two, due to the absence

of the complex and of the quaternionic structures) versions, the standard real M-algebra

with its 528 bosonic components and the octonionic algebra, with its restricted number

of 52 bosonic components, potentially linked with exceptional structures (exceptional Lie

and exceptional Jordan algebras), see e.g. the considerations in [17]–[21]. The octonionic

M -algebra presents surprising new features, like the non-independence of theM1, M2, M5

brane-sectors, symbolically expressed through M5 = M1 +M2, see [8]. This relation is

a special application of the higher-rank antisymmetric octonionic tensor identities, which

have been classified for the first time in this paper and for which we present explicit tables

(the very special case used in [8] was not explicitly written). Not only in physics, but even

in the mathematical literature these identities have not been discussed (at least, no obvious

reference can be found).

For what concerns the free dynamics of the octonionic spinors, it is worth remembering

that our results are immediately applicable to field theories formulated on the seven sphere

S7 (or to higher-dimensional field theories admitting the seven sphere S 7 as a compactifica-

tion space). Once more, this follows from the octonionic description of the seven-sphere S 7.

Let us further mention that the classification of the consistency conditions for the free

octonionic dynamics should be regarded as a first preliminary step towards the investigation

of octonionic supersymmetric dynamical systems associated to the generalized octonionic

supersymmetries. It is worth stressing the fact that, for what concerns the latter, for the

time being just examples of such superalgebras, the ones seemingly more attractive on

physical grounds, have been analyzed so far. A classification scheme is still in progress.

The paper is organized as follows. In the next section we review [5] the classifica-

tion of Clifford algebras and spinors in terms of the associative division algebras. In

section 3 we present a systematic construction of the real irreducible representations of

the Clifford algebras. This paves us the way to introduce in section 4 the explicit con-

struction of the associative quaternionic and the non-associative octonionic realizations of

the Clifford algebras. In section 5 we introduce the necessary conventions to introduce

the dynamics for real, quaternionic and octonionic spinors. In section 6 the results of [16]

concerning the classification of the most general free dynamics for real spinors in arbitrary

signature space-times are reviewed. In section 7 and 8 these results are extended to, re-

spectively, quaternionic and octonionic spinors. Section 9 is devoted to present a list of

identities, due to the non-associativity of the octonions, involving higher-rank antisym-
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metric octonionic tensors. In the next section 10 some applications of these last results

to octonionic generalized supersymmetries and M -theory are mentioned. Finally, in the

conclusions 11, we point out possible future developments of the line of investigation here

presented.

2. On Clifford algebras and division algebras

For later convenience we review in this section, following [5], the classification of the Clifford

algebras associated to the R,C, H associative division algebras.

The most general irreducible real matrix representations of the Clifford algebra

ΓµΓν + ΓµΓν = 2ηµν , (2.1)

with ηµν being a diagonal matrix of (p, q) signature (i.e. p positive, +1, and q negative, −1,

diagonal entries), can be classified according to the property of the most general S matrix

commuting with all the Γ’s ([S,Γµ] = 0 for all µ). If the most general S is a multiple of

the identity, we get the normal (R) case. Otherwise, S can be the sum of two matrices,

the second one multiple of the square root of −1 (this is the almost complex, C case) or

the linear combination of 4 matrices closing the quaternionic algebra (this is the H case).

According to [5] the real irreducible representations are of R, C, H type, according to the

table 1, whose entries represent the values p− q mod 8.

The real irreducible representation is always unique un-
R C H

0, 2 4, 6

1 3, 7 5

Table 1: Division-algebra

type of the real irreps of

Clifford algebras in different

space-times: normal (R), al-

most complex (C), quater-

nionic (H).

less p−q mod 8 = 1, 5. In these signatures two inequivalent

real representations are present, the second one recovered by

flipping the sign of all Γ’s (Γµ 7→ −Γµ).

Furthermore, in the given signatures p − q mod 8 =

0, 4, 6, 7, without loss of generality, the Γµ matrices can be

chosen block-antidiagonal (generalized Weyl-type matrices),

i.e. of the form

Γµ =

(
0 σµ

σ̃µ 0

)
. (2.2)

In these signatures it is therefore possible to introduce the Weyl-projected spinors, whose

number of components is half of the size of the corresponding Γ-matrices.1

The division algebra characteristic for spinors (of R, C, H type) can be found in [6].

It is useful to illustrate our discussion presenting a table with the division algebra

characteristic and number of real components for both Clifford algebras (Γ) and funda-

mental spinors (Ψ), at least in the specific case of the minkowskian spacetimes up to 11

dimensions. We obtain the table 2.

It should be noticed that, as far as Clifford algebras are concerned, the table 2 is not

symmetric under the exchange (p, q)↔ (q, p) (the simplest example is the one-dimensional

1It is worth mentioning here that our notion of generalized Weyl spinors differs from the one usually

adopted, since the latter is employed in connection with complex representations of Clifford algebras, while

we are working here with real representations (realized by matrices whose entries are real) of Clifford

algebras. This point will be extensively discussed in the next section.
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(p, q) Γ Ψ (p, q) Γ Ψ

(1, 0) R, 1 R, 1 (0, 1) C, 2 R, 1

(1, 1) R, 2 R, 1 (1, 1) R, 2 R, 1

(1, 2) C, 4 R, 2 (2, 1) R, 2 R, 2

(1, 3) H, 8 C, 4 (3, 1) R, 4 C, 4

(1, 4) H, 8 H, 8 (4, 1) C, 8 H, 8

(1, 5) H, 16 H, 8 (5, 1) H, 16 H, 8

(1, 6) C, 16 H, 16 (6, 1) H, 16 H, 16

(1, 7) R, 16 C, 16 (7, 1) H, 32 C, 16

(1, 8) R, 16 R, 16 (8, 1) C, 32 R, 16

(1, 9) R, 32 R, 16 (9, 1) R, 32 R, 16

(1, 10) C, 64 R, 32 (10, 1) R, 32 R, 32

Table 2: Division-algebra type and size of Clifford algebras (Gamma) and fundamental spinors

(Psi) in different Minkowski spacetimes.

Clifford algebra with negative eigenvalue, represented by a 2 × 2 real matrix). On the

other hand, the properties of spinors are invariant (in some of the cases, for the signatures

allowing it, the Weyl projection is required). As a consequence, the theories under con-

sideration can be equivalently described either working with the (p, q) or with the (q, p)

signatures.

For what concerns the generalized supersymmetry alge-
Ψ ]

R (32) 528

C (16) 256

H (8) 120

O (4) 52

Table 3: Maximal number

of bosonic components in

a supertranslation algebra

for division algebra-valued

supersymmetry generators

with 32 real components.

bras, it should be pointed out that the notion of spin algebra,

generalizing the standard notion of spin covering and based on

the division algebra structure of spinors alone, has been intro-

duced in [6]. On the other hand, a different prescription for

constructing generalized supersymmetries is also possible and

has been advocated in [8]. It requires matching the division

algebra structures of both spinors and Clifford algebras. Ac-

cording to the table 3, e.g., in the 5-dimensional case a quater-

nionic structure can be imposed on the supersymmetry since

both spinors and Clifford algebras are quaternionic. On the

other hand in, let’s say, the minkowskian 7-dimensional case,

at most a complex structure can be imposed, because this is the minimal structure shared

both by spinors and Gamma matrices (see [8] for details). We will come back later on

this issue. For the time being, let us just present another table concerning the constraint

generated by division-algebra structures on generalized supersymmetries. For the sake of

clarity we will discuss fundamental spinors admitting 32 real components (as in the maxi-

mal supergravity or the 11-dimensional M -theory). Let us suppose that they admit a real,

complex, quaternionic2 or even an octonionic (as discussed later) division algebra struc-

ture. Accordingly, the supersymmetry generators Qa can be represented, respectively, as

2as this is the case, e.g., for the 64-component euclidean D = 11 spinors. Quaternionic 32-component

spinors exist for instance in the (3, 7) signature.
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32-dimensional real column vectors, 16-dimensional complex, 8-dimensional quaternionic

or 4-dimensional octonionic spinors. The generalized supersymmetry algebra

{Qa, Qb
∗} = Zab , (2.3)

where Qa
∗ denotes the principal conjugation in the given division algebra, admits a her-

mitean r.h.s. (Zab = Z∗ba), given by a hermitean matrix Zab of, respectively, 32 × 32 real,

16×16 complex, 8×8 quaternionic or 4×4 octonionic-valued entries. Due to the hermitic-

ity condition, in the different cases, the maximal number ] of independent components for

Zab is given by table 3.

It should be noticed that 528 is the number of saturated independent bosonic compo-

nents in the M -algebra, deriving from the real structure of 11-dimensional minkowskian

spinors. As it will be apparent in the following, an octonionic structure can be imposed on

minkowskian 11-dimensional spinors, leading to an alternative, octonionic version of the

M -algebra with only 52 independent bosonic components.

3. Clifford algebras revisited. Classification and explicit constructions

For our purposes it is convenient to review the classification of the irreducible representa-

tions of Clifford algebras from another point of view, making explicit an algorithm allowing

to single out, in arbitrary signature space-times, a representative in each irreducible class

of representations of Clifford’s gamma matrices. As recalled in the previous section, the

class of irreducible representations is unique apart special signatures, where two inequiv-

alent irreducible representations are linked by sign flipping (Γµ ↔ −Γµ). The explicit

construction presented here is the right tool allowing us to introduce, in the next section,

the quaternionic and octonionic realizations for Clifford algebras and spinors.

Our construction goes as follows. At first we prove that starting from a given D

spacetime-dimensional representation of Clifford’s Gamma matrices, we can recursively

construct D + 2 spacetime dimensional Clifford Gamma matrices with the help of two

recursive algorithms. Indeed, it is a simple exercise to verify that if γi’s denotes the d-

dimensional Gamma matrices of a D = p + q spacetime with (p, q) signature (namely,

providing a representation for the C(p, q) Clifford algebra) then 2d-dimensional D + 2

Gamma matrices (denoted as Γj) of a D + 2 spacetime are produced according to either

Γj ≡

(
0 γi
γi 0

)
,

(
0 1d

−1d 0

)
,

(
1d 0

0 −1d

)

(p, q) 7→ (p+ 1, q + 1) , (3.1)

or

Γj ≡

(
0 γi
−γi 0

)
,

(
0 1d

1d 0

)
,

(
1d 0

0 −1d

)

(p, q) 7→ (q + 2, p) . (3.2)

It is immediate to notice, e.g., that the two-dimensional real-valued Pauli matrices τA, τ1,
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1 ∗ 2 ∗ 4 ∗ 8 ∗ 16 ∗ 32 ∗ 64 ∗ 128 ∗ 256 ∗

(1, 0) ⇒ (2, 1) ⇒ (3,2) ⇒ (4,3) ⇒ (5,4) ⇒ (6,5) ⇒ (7,6) ⇒ (8,7) ⇒ (9,8) ⇒

(1,4) → (2,5) → (3,6) → (4,7) → (5,8) → (6,9) →

↗

(0,3)

↘

(5,0) → (6,1) → (7,2) → (8,3) → (9,4) → (10,5) →

(1,8) → (2,9) → (3,10) → (4,11) → (5,12) →

↗

(0,7)

↘

(9,0) → (10,1) → (11,2) → (12,3) → (13,4) →

(1,12) → (2,13) →

↗

(0,11)

↘

(13,0) → (14,1) →

(1,16) →

↗

(0,15)

↘

(17,0) →

Table 4: Table with the maximal Clifford algebras (up to d = 256).

τ2 which realize the Clifford algebra C(2, 1) are obtained by applying either (3.1) or (3.2)

to the number 1, i.e. the one-dimensional realization of C(1, 0). We have indeed

τA =

(
0 1

−1 0

)
, τ1 =

(
0 1

1 0

)
, τ2 =

(
1 0

0 −1

)
. (3.3)

All Clifford algebras are obtained by recursively applying the algorithms (3.1) and (3.2) to

the Clifford algebra C(1, 0) (≡ 1) and the Clifford algebras of the series C(0, 3+4m) (with

m non-negative integer), which must be previously known. This is in accordance with the

scheme illustrated in the table 4.

Concerning the table 4, some remarks are in order. The columns are labeled by the

matrix size d of the maximal Clifford algebras. Their signature is denoted by the (p, q)

pairs. Furthermore, the underlined Clifford algebras in the table can be named as “primi-

tive maximal Clifford algebras”. The remaining maximal Clifford algebras appearing in the

table are the “maximal descendant Clifford algebras”. They are obtained from the prim-

itive maximal Clifford algebras by iteratively applying the two recursive algorithms (3.1)

and (3.2). Moreover, any non-maximal Clifford algebra is obtained from a given maximal

Clifford algebra by deleting a certain number of Gamma matrices (as an example, Clifford

algebras in even-dimensional spacetimes are always non-maximal).
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It is immediately clear from the above construction that the maximal Clifford algebras

are encountered if and only if the condition

p− q = 1, 5 mod 8 (3.4)

is matched.

The notion of Clifford’s algebra of generalized Weyl type, namely satisfying the (2.2)

condition, has already been introduced. All maximal Clifford’s algebras, both primitive and

descendant, are not of generalized Weyl type. As already recalled, the notion of generalized

Weyl spinors is based on the real representations of the Clifford algebras which, for purpose

of classification, are more convenient to use w.r.t. the complex representations that are

usually employed. For this reason generalized Weyl spinors exist also in odd-dimensional

space-time, see formula (2.2), while standard Weyl spinors only exist in even-dimensional

spacetimes. This can be understood by analyzing a single example. The real irrep C(0, 7),

with all negative signs, is 8-dimensional, see table 4, while the real irrep C(7, 0) is 16-

dimensional, but of generalized Weyl type (2.2). Accordingly, the euclidean 8-dimensional

fundamental spinors can be understood either as the 8-dimensional “Non-Weyl” spinors

of C(0, 7), or the 8-dimensional “Weyl-projected” C(7, 0) spinors. On the other hand,

allowing for complex representions, the sign flipping C(0, 7) 7→ C(7, 0) can be realized by

multiplying all Gamma matrices by the imaginary unit “i”. No doubling of the matrix size

of the Γ’s is found and the notion of Weyl spinors cannot be applied. One faces a similar

situation in the one-dimensional spacetime. Working with complex representations, we can

realize C(1, 0) with 1 and C(0, 1) with i (both one-dimensional). On the other hand, the

real irreducible representation of C(0, 1) is 2-dimensional. It is explicitly given by the block-

antidiagonal matrix
(

0 1

−1 0

)
. Throughout the text Weyl (Non-Weyl) spinors are always

referred to the (2.2) property with respect to real representations of Clifford algebras. The

non-maximal Clifford algebras are of Weyl type if and only if they are produced from a

maximal Clifford algebra by deleting at least one temporal Gamma matrix which, without

loss of generality, can always be chosen the one with diagonal entries.

Let us discuss now explicitly how non-maximal Clifford algebras are produced from the

corresponding maximal Clifford algebras. The construction goes as follows. We illustrate

at first the example of the non-maximal Clifford algebras obtained from the 2-dimensional

maximal Clifford irrep C(2, 1) furnished by the three matrices τ1, τ2, τA given in (3.3).

If we restrict the Clifford algebra to τ1, τa, i.e. if we delete τ2 from the previous set, we

get the 2-dimensional irrep C(1, 1). If we further delete τ1 we are left with τA only, which

provides the 2-dimensional irrep C(0, 1) discussed above. On the other hand, deleting τA
from C(2, 1) leaves us with τ1, τ2, the 2-dimensional irrep C(2, 0).

To summarize, from the 2-dimensional irrep of the “maximal Clifford algebra” C(2, 1)

we obtain the 2-dimensional irreps of the non-maximal Clifford algebras C(1, 1), C(0, 1) and

C(2, 0) through a “Γ-matrices deleting procedure”. Please notice that, through deleting,

we cannot obtain from C(1, 2) the irrep C(1, 0), since the latter is one-dimensional.

In full generality, non-maximal Clifford algebras are produced from the corresponding

maximal Clifford algebras according to the table 5, which specifies the number of time-like

or space-like Gamma matrices that should be deleted, as well as the generalized Weyl (W )
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W NW

(0 mod 8) ⊂ (1 mod 8) (2 mod 8) ⊂ (1 mod 8)

(p, q) ⇐ (p+ 1, q) (p, q) ⇐ (p, q + 1)

(4 mod 8) ⊂ (5 mod 8) (3 mod 8) ⊂ (1 mod 8)

(p, q) ⇐ (p+ 1, q) (p, q) ⇐ (p, q + 2)

(6 mod 8) ⊂ (1 mod 8)

(p, q) ⇐ (p+ 3, q)

(7 mod 8) ⊂ (1 mod 8)

(p, q) ⇐ (p+ 2, q)

Table 5: Explicit construction of the real irreps for non-maximal Clifford algebras from the maximal

ones.

character or not (NW ) of the given non-maximal Clifford algebra. We get table 5. In the

entries of table 5 x mod 8 specifies the mod 8 residue of t− s for any given (t, s) spacetime.

The non-maximal Clifford algebras are denoted by p ≡ t, q ≡ s, while the maximal Clifford

algebras are denoted by (p′, q′), with p′ ≥ p, q′ ≥ q. The differences p′ − p, q′ − q denote

how many Clifford gamma matrices (of time-like or respectively space-like type) have to

be deleted from a given maximal Clifford algebra to produce the irrep of the corresponding

non-maximal Clifford algebra. To be specific, e.g., the 6 mod 8 non-maximal Clifford

algebra C(6, 0) is obtained from the maximal Clifford algebra C(9, 0), whose matrix size is

16 according to 4, by deleting three gamma matrices.

To complete our discussion what is left is specifying the construction of the primitive

maximal Clifford algebras for both the C(0, 3+8n) (which can be named as “quaternionic

series”, due to its connection with this division algebra, as we will see in the next section),

as well as the “octonionic” series C(0, 7 + 8n). The answer can be provided with the help

of the three Pauli matrices (3.3). We construct at first the 4 × 4 matrices realizing the

Clifford algebra C(0, 3) and the 8× 8 matrices realizing the Clifford algebra C(0, 7). They

are given, respectively, by

C(0, 3) ≡

τA ⊗ τ1 ,

τA ⊗ τ2 ,

12 ⊗ τA .

(3.5)

and

C(0, 7) ≡

τA ⊗ τ1 ⊗ 12 ,

τA ⊗ τ2 ⊗ 12 ,

12 ⊗ τA ⊗ τ1 ,

12 ⊗ τA ⊗ τ2 ,

τ1 ⊗ 12 ⊗ τA ,

τ2 ⊗ 12 ⊗ τA ,

τA ⊗ τA ⊗ τA .

(3.6)

– 9 –



J
H
E
P
0
4
(
2
0
0
3
)
0
4
0

The three matrices of C(0, 3) will be denoted as τ i, = 1, 2, 3. The seven matrices of C(0, 7)

will be denoted as τ̃i, i = 1, 2, . . . , 7.

In order to construct the remaining Clifford algebras of the two series we need at first

to apply the (3.1) algorithm to C(0, 7) and construct the 16× 16 matrices realizing C(1, 8)

(the matrix with positive signature is denoted as γ9, γ9
2 = 1, while the eight matrices

with negative signatures are denoted as γj, j = 1, 2 . . . , 8, with γj
2 = −1). We are now in

the position to explicitly construct the whole series of primitive maximal Clifford algebras

C(0, 3 + 8n), C(0, 7 + 8n) through the formulas

C(0, 3 + 8n) ≡

τ i ⊗ γ9 ⊗ · · · · · · · · · ⊗ γ9 ,

14 ⊗ γj ⊗ 116 ⊗ · · · · · · · · · ⊗ 116 ,

14 ⊗ γ9 ⊗ γj ⊗ 116 ⊗ · · · · · · · · · ⊗ 116 ,

14 ⊗ γ9 ⊗ γ9 ⊗ γj ⊗ 116 ⊗ · · · · · · · · · ⊗ 116 ,

· · · · · · · · · ,

14 ⊗ γ9 ⊗ · · · · · · ⊗γ9 ⊗ γj ,

(3.7)

and similarly

C(0, 7 + 8n) ≡

τ̃i ⊗ γ9 ⊗ · · · · · · · · · ⊗ γ9 ,

18 ⊗ γj ⊗ 116 ⊗ · · · · · · · · · ⊗ 116 ,

18 ⊗ γ9 ⊗ γj ⊗ 116 ⊗ · · · · · · · · · ⊗ 116 ,

18 ⊗ γ9 ⊗ γ9 ⊗ γj ⊗ 116 ⊗ · · · · · · · · · ⊗ 116 ,

· · · · · · · · · ,

18 ⊗ γ9 ⊗ · · · · · · ⊗γ9 ⊗ γj ,

(3.8)

Please notice that the tensor product of the 16-dimensional representation is taken n times.

The total size of the (3.7) matrix representations is then 4×16n, while the total size of (3.8)

is 8× 16n.

With the help of the formulas presented in this section we are able to systematically

construct a set of representatives of the real irreducible representations of Clifford algebras

in arbitrary space-times and signatures.

4. Quaternionic and octonionic realizations of Clifford algebras

In this section we discuss the relations of Clifford algebras with the division algebras of the

quaternions (and of the octonions), from a slightly different point of view w.r.t. the one

expressed in section 2.

The relation can be understood as follows. At first we notice that the three matri-

ces appearing in C(0, 3) can also be expressed in terms of the imaginary quaternions τi
satisfying

τi · τj = −δij + εijkτk . (4.1)

As a consequence, the whole set of maximal primitive Clifford algebras C(0, 3 + 8n), as

well as their maximal descendants, can be represented with quaternionic-valued matrices.

In its turn the spinors have to be interpreted now as quaternionic-valued column vectors.

– 10 –



J
H
E
P
0
4
(
2
0
0
3
)
0
4
0

Similarly, there exists an alternative realization for the Clifford algebra C(0, 7), ob-

tained by identifying its seven generators with the seven imaginary octonions (for an up-

dated review on the octonions see e.g. [22]) satisfying the algebraic relation

τi · τj = −δij + Cijkτk , (4.2)

for i, j, k = 1, . . . , 7 and Cijk the totally antisymmetric octonionic structure constants

given by

C123 = C147 = C165 = C246 = C257 = C354 = C367 = 1 (4.3)

and vanishing otherwise. This octonionic realization of the seven-dimensional euclidean

Clifford algebra will be denoted as CO(0, 7). Due to the non-associative character of

the (4.2) octonionic product (the weaker condition of alternativity is satisfied, see [23]), the

octonionic realization cannot be represented as an ordinary matrix product and is therefore

a distinct and inequivalent realization of this euclidean Clifford algebra with respect to the

one previously considered (3.6). Please notice that, by iteratively applying the two lifting

algorithms to CO(0, 7), we obtain matrix realizations (with octonionic-valued entries) for

the maximal Clifford algebras of the series C(n, 7+n) and C(8+n, n−1), for positive inte-

gral values of n (n = 1, 2, . . .). The dimensionality of the corresponding octonionic-valued

matrices is 2n × 2n. For completeness we should point out that the construction (3.8)

leading to the primitive maximal Clifford algebras C(0, 7+8n), can be carried on with the

help of an octonionic-valued realization of the γ9 matrix. As a consequence, realizations

of C(0, 7 + 8n) and their descendants can be produced acting on column spinors, whose

entries are tensor products of octonions. In any case, in the following, we will focus on the

single octonionic realizations CO(n, 7 + n) and CO(9 + n, n) (here n = 0, 1, 2, . . .) which

are of relevance in the context of the M -theory.

One should be aware of the properties of the non-associative realizations of Clifford al-

gebras. In the octonionic case the commutators Σµν = [Γµ,Γν ] are no longer the generators

of the Lorentz group. They correspond instead to the generators of the coset SO(p, q)/G2,

being G2 the 14-dimensional exceptional Lie algebra of automorphisms of the octonions. As

an example, in the euclidean 7-dimensional case, these commutators give rise to 7 = 21−14

generators, isomorphic to the imaginary octonions. Indeed

[τi, τj ] = 2Cijkτk . (4.4)

The alternativity property satisfied by the octonions implies that the seven-dimensional

commutator algebra among imaginary octonions is not a Lie algebra, the Jacobi identity

being replaced by a weaker condition that endorses (4.4) with the structure of a Malcev

algebra (see [23]).

Such an algebra admits a nice geometrical interpretation [14, 15]. Indeed, the normed

1 unitary octonions X = x0+xiτi (with x0 and xi, for i = 1, . . . , 7, real and the summation

over repeated indices understood), i.e. restricted by the condition

X† ·X = 1 , (4.5)
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describe the seven-sphere S7. The latter is a parallelizable manifold with a quasi (due to

the lack of associativity) group structure. Here X † denotes the principal conjugation for

the octonions, namely

X† = x0 − xiτi . (4.6)

On the seven sphere, infinitesimal homogeneous transformations which play the role of the

Lorentz algebra can be introduced through

δX = a ·X , (4.7)

with a an infinitesimal constant octonion. The requirement of preserving the unitary

norm (4.5) implies the vanishing of the a0 component, so that a ≡ aiτi. Therefore, the above

commutator algebra (4.4), generated by the seven τi, can be interpreted as the algebra of

“quasi” Lorentz transformations acting on the seven sphere S7. At least in this specific

example we discovered a nice geometrical setting underlining the use of the octonionic

realization of the CO(0, 7) Clifford algebra. While the associative (3.6) representation of

the seven dimensional Clifford algebra is required for describing the euclidean 7-dimensional

flat space, the non-associative realization describes the geometry of S 7.

5. On real, quaternionic and octonionic spinors

In this section we introduce (following [4], where real and complex spinors were treated), the

necessary ingredients and conventions to introduce the spinorial dynamics. Quaternionic

and octonionic spinors are considered as well.

In [4] three matrices (only two of them independent) A, B, C, associated to the three

conjugations (hermitean, complex and transposition) acting on Gamma matrices, were

introduced. In the case of the restriction to real-valued Gamma matrices, only one matrix

(conventionally denoted as A, see [16]) needs to be introduced. A plays the role of Γ0 in

the minkowskian case and serves to introduce barred spinors. In a (t, s) spacetime A is, up

to a sign, the product of the time-like Gamma matrices and satisfies the relations

AΓµAT = ξΓµT ,

AT = αA , (5.1)

with

ξ = (−1)t−1 ,

α = (−1)t(t−1)/2 , (5.2)

as it can be easily checked.

In both the quaternionic and octonionic case, two real-valued matrices, conventionally

denoted as A and C, can be introduced. As before, A plays the role of Γ0 and is used to

define barred spinors (ψ = ψ†A). A and C satisfy the set of relations

AΓµA
† = ξΓ†µ,
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CΓµC
† = δΓT

µ ,

CT = ρC ,

A† = αA ,

AT = σCAC† , (5.3)

where “†” denotes the combination of matrix transposition and principal conjugation in

the division algebra (see (4.6)). The signs α, ξ, δ, ρ, σ will be specified below.

The matrix A is always given by the product of the temporal Γ’s (regardless of the or-

der), while up to two inequivalent C matrices can be found, given by the product (again, re-

gardless of the order) of respectively all symmetric (CS) or all antisymmetric (CA) Gamma

matrices (in special cases CS, CA collapse to the single matrix C).

For maximal Clifford algebras (in the sense specified in section 3) of a (t, s) space-time,

the set of signs is given by

α = (−1)t(t−1)/2 ,

ξ = (−1)t−1 ,

δ = (−1)t

ρ = (−1)t(t+1)/2 ,

σ = sin

(
|t− s|π

2

)
(−1)

t(t+1)
2

+1 , (5.4)

as it can be checked with straightforward computations. Please notice that the matrix C

is unique in this case.

The maximal quaternionic Clifford algebras are those satisfying the

t− s = 5 mod 8 (5.5)

condition, while the maximal octonionic Clifford algebras are the subclass of

t− s = 1 mod 8 (5.6)

maximal Clifford algebras, obtained after erasing the series corresponding to the first row

in table 4 (i.e. t = s+ 1).

Just like the real case, non-maximal Clifford algebras are obtained after erasing a

certain number of Gamma matrices. The quaternionic equivalent of table 5 is given, in the

quaternionic case, by table 6. while, in the octonionic case, we have the table 7. Please

notice that the symbols appearing in the two tables 6 and 7 above have already been

explained when introduced the table 5.

We should mention that, to be consistent, in, let’s say, the octonionic realization

of a non-maximal Clifford algebra, all the seven matrices proportional to the imaginary

octonions must be present. Stated otherwise, the deleted matrices from the corresponding

maximal Clifford algebra are all real-valued.
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W NW

(4 mod 8) ⊂ (5 mod 8) (6 mod 8) ⊂ (5 mod 8)

(p, q) ⇐ (p+ 1, q) (p, q) ⇐ (p, q + 1)

(3 mod 8) ⊂ (5 mod 8) (7 mod 8) ⊂ (5 mod 8)

(p, q) ⇐ (p+ 2, q) (p, q) ⇐ (p, q + 2)

(2 mod 8) ⊂ (5 mod 8) (0 mod 8) ⊂ (5 mod 8)

(p, q) ⇐ (p+ 3, q) (p, q) ⇐ (p, q + 3)

(1 mod 8) ⊂ (5 mod 8)

(p, q) ⇐ (p+ 4, q)

Table 6: Explicit construction of the quaternionic irreps for non-maximal Clifford algebras from

the maximal ones.

W NW

(0 mod 8) ⊂ (1 mod 8) (2 mod 8) ⊂ (1 mod 8)

(p, q) ⇐ (p+ 1, q) (p, q) ⇐ (p, q + 1)

(7 mod 8) ⊂ (1 mod 8) (3 mod 8) ⊂ (1 mod 8)

(p, q) ⇐ (p+ 2, q) (p, q) ⇐ (p, q + 2)

(6 mod 8) ⊂ (1 mod 8) (4 mod 8) ⊂ (1 mod 8)

(p, q) ⇐ (p+ 3, q) (p, q) ⇐ (p, q + 3)

(5 mod 8) ⊂ (1 mod 8)

(p, q) ⇐ (p+ 4, q)

Table 7: Explicit construction of the octonionic realizations of non-maximal Clifford algebras from

the maximal ones.

For completeness, let us right down the values of the signs entering (5.3) for the

quaternionic and octonionic non-maximal Clifford algebra cases obtained by deleting a

single Gamma matrix. In all four cases below two inequivalent C matrices are present and

the suffix (S orA) specifies whether CS or CA is involved, while the signs α, ξ are given

by (5.2). Furthermore, in all four cases below we get

δS = (−1)t ,

δA = (−1)t+1 . (5.7)

The remaining signs are given by

1. in the quaternionic 4 mod 8 (W) case,

ρS = (−1)t(t+1)/2 ,

ρA = −(−1)t(t−1)/2 ,

σS = sin

(
(t− s)

3π

8

)
(−1)

t(t+1)
2 ,

σA = sin

(
(t− s)

3π

8

)
(−1)

t(t−1)
2 ,
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2. in the quaternionic 6 mod 8 (NW) case,

ρS = (−1)t(t+1)/2 ,

ρA = (−1)t(t−1)/2 ,

σS = sin

(
|t− s|

3π

4

)
(−1)t(t+1)/2+1 ,

σA = sin

(
|t− s|

3π

4

)
(−1)t(t−1)/2+1 ,

3. in the octonionic 0 mod 8 (W) case,

ρS = (−1)t(t+1)/2 ,

ρA = −(−1)t(t−1)/2 ,

σS = sin

(
(t− s)

3π

16

)
(−1)t(t+1)/2 ,

σA = sin

(
(t− s)

3π

16

)
(−1)t(t−1)/2 ,

4. and finally in the octonionic 2 mod 8 (NW) case,

ρS = (−1)t(t+1)/2 ,

ρA = (−1)t(t−1)/2 ,

σS = sin
(
|t− s|

π

4

)
(−1)

t(t+1)
2

+1 ,

σA = sin
(
|t− s|

π

4

)
(−1)

t(t−1)
2

+1 .

We remind that in the Weyl (W ) case, the projectors P± can be introduced through

P± =
1

2
(12d ± Γ) ,

Γ =

(
1d 0

0 −1d

)
(5.8)

and chiral (antichiral) spinors can be defined through

Ψ± = P±Ψ . (5.9)

It is worth ending this section writing down, symbolically, the most general spinorial terms

in a free lagrangian which can possibly (depending on the signature and dimensionality

of the space-time) be encountered in our theories. It is sufficient to list such terms in the

octonionic case. One trivially realizes how to employ the same symbols in the quaternionic

and real cases as well.

Different massive terms can be found in the Weyl (W ) case, i.e.3

M// = tr(Ψ†+AΨ+) ,

3Here “tr” denotes the projection onto the octonionic identity, tr(x0 + xiτi) = x0. It coincides with the

standard trace when we are restricting to the quaternionic subcase.
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M⊥ = tr(Ψ†+AΨ− +Ψ†−AΨ+) ,

M//T,S = tr(Ψ†+AΓT,SΨ+) ,

M⊥T,S = tr(Ψ†+AΓT,SΨ− +Ψ†−AΓT,SΨ+) ,

M//J = tr(Ψ†+AJΨ+) ,

M⊥J = tr(Ψ†+AJΨ− +Ψ†−AJΨ+) ,

M//F = tr(Ψ†+AFΨ+) ,

M⊥F = tr(Ψ†+AFΨ− +Ψ†−AFΨ+) , (5.10)

where ΓT , ΓS denote, in a non-maximal Clifford algebra case, the presence of an external

(deleted from the set of maximal Gamma’s) Gamma matrix of time, or respectively, space-

like type. Similarly, J denotes the product of two such matrices, either time-like or space-

like, while F denotes the product of three external matrices. No other massive symbols

need to be introduced, as it will appear from the tables given in the following. In a NW -

case, similar symbols can be introduced. However, since in this case no chiral (antichiral)

spinors are defined, full spinors are present in the r.h.s. and the “//” and “⊥” suffices must

be dropped.

In full analogy, the set of symbols in a Weyl (W ) kinetic case are given by4

K// =
1

2
tr[(Ψ†+AΓ

µ)∂µΨ+] +
1

2
tr[Ψ†+(AΓ

µ∂µΨ+)] ,

K⊥ =
1

2
tr[(Ψ†+AΓ

µ)∂µΨ−] +
1

2
tr[Ψ†+(AΓ

µ∂µΨ−)] +

+
1

2
tr[(Ψ†−AΓ

µ)∂µΨ+] +
1

2
tr[Ψ†−(AΓ

µ∂µΨ+)] ,

K//T,S =
1

2
tr[(Ψ†+AΓ

µΓT,S)∂µΨ+] +
1

2
tr[Ψ†+(AΓ

µΓT,S∂µΨ+)] ,

K⊥T,S =
1

2
tr[(Ψ†+AΓ

µΓT,S)∂µΨ−] +
1

2
tr[Ψ†+(AΓ

µΓT,S∂µΨ−)] +

+
1

2
tr[(Ψ†−AΓ

µΓT,S)∂µΨ+] +
1

2
tr[Ψ†−(AΓ

µΓT,S∂µΨ+)]

K//J =
1

2
tr[(Ψ†+AΓ

µJ)∂µΨ+] +
1

2
tr[Ψ†+(AΓ

µJ∂µΨ+)] ,

K⊥J =
1

2
tr[(Ψ†+AΓ

µJ)∂µΨ−] +
1

2
tr[Ψ†+(AΓ

µJ∂µΨ−)] +

+
1

2
tr[(Ψ†−AΓ

µJ)∂µΨ+] +
1

2
tr[Ψ†−(AΓ

µJ∂µΨ+)] ,

K//F =
1

2
tr[(Ψ†+AΓ

µF )∂µΨ+] +
1

2
tr[Ψ†+(AΓ

µF∂µΨ+)] ,

K⊥F =
1

2
tr[(Ψ†+AΓ

µF )∂µΨ−] +
1

2
tr[Ψ†+(AΓ

µF∂µΨ−)] +

+
1

2
tr[(Ψ†−AΓ

µF )∂µΨ+] +
1

2
tr[Ψ†−(AΓ

µF∂µΨ+)] . (5.11)

Please notice that, due to the non-associativity of the octonions, in the kinetic case we have

to correctly specify the order in which the operations are taken. There is no such problem

4As before, analogous symbols are employed in the NW -case, by dropping the suffices “//” and “⊥”.
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0 1 2 3

1 K K,M M

2 MS K K, KS , M KS , M, MS

3 MS1, MS2, MJ , KJ K,MJ K, KS1,KS2,M KS1,KS2,KJ ,M, MS1,MS2

5 K K,M M

Table 8: Type of kinetic and massive terms allowed in different spacetimes: the real W-case.

0 1 2 3

0 K// M//, K⊥ M⊥
4 K// M//, K⊥ M⊥
6 K//T1, K//T2, M//J , K//, M//T1,M//T2, M//, K⊥, M⊥T1, K//J , M⊥

K⊥J K⊥T1, K⊥T2, M⊥J M⊥T2

7 K//T K//, M//T ,K⊥T M//, K⊥, M⊥T M⊥

Table 9: Type of kinetic and massive terms allowed in different spacetimes: the real NW-case.

in the massive case since the matrices ΓT , ΓS , J and F can always be chosen, without loss

of generality, real. Therefore in (5.10) at most bilinear octonionic terms are present and

the non-associativity of the octonions plays no role.

6. The real case revisited

In reference [16] the Majorana condition for complex spinors was analyzed and the list of

different signature spacetimes allowing for kinetic, pseudokinetic, massive and/or pseudo-

massive terms in the free-Majorana spinors lagrangians were presented. A slight general-

ization of these results can be produced in this section, based of the classification of real

spinors that we have previously discussed (we notice,en passant, that the spinors we are

dealing with here are, by construction, real, so that no Majorana condition, referring to a

previous complex structure, needs to be imposed).

It is just a matter of lengthy, but straightforward computations, to produce a set of

tables of the allowed, non-vanishing, free kinetic and massive terms in each given signature

space-times. In the following tables, the columns are labeled by t mod 4, while the rows

by t − s mod 8. The entries represent, simbolically, the allowed kinetic and/or massive

terms (the precise meaning of the symbols is discussed at the end of the previous section).

An empty space means that, neither a kinetic, nor a massive term is allowed for the

corresponding space-time.

The first table 8 is produced for the real NW case.

The second table 9 is for the real W (Weyl) case.

7. Quaternionic spinors and their free dynamics. A classification

In this section we present the tables of allowed free kinetic and massive terms for quater-

nionic spinors. As in the previous section 6, the columns are labeled by t mod 4 and the rows

by t− s mod 8, while the symbols used in the entries are explained at the end of section 5.
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0 1 2 3

0 KJj
, KF , MSj

, MJj
K, KF , MJj

K, KSj
, M , MF KSj

, KJj
, M , MSj

, MF

5 K K, M M

6 MS K K, KS , M KS , M , MS

7 KJ , MSi
,MJ K, MJ K, KSi

, M KSi
,KJ , M , MSi

Table 10: Type of kinetic and massive terms allowed in different spacetimes: the quaternionic

W-case.

0 1 2 3

1
K//Tj

,K⊥Jj
,

M//Jj

K//,K⊥Tj
,

M//F ,M//Jj
,M⊥Jj

K//F ,K⊥,

M//,M⊥F ,M⊥Tj

K⊥F ,K//Jj
,

M⊥

2
K//Ti

,K⊥J ,

M//J

K//,K⊥Ti
,

M//Ti
,M⊥J

K⊥,

M//,M⊥Ti

K//J ,

M⊥

3 K//T
K//,K⊥T ,

M//T

K⊥,

M//,M⊥T M⊥

4 K//
K⊥,

M// M⊥

Table 11: Type of kinetic and massive terms allowed in different spacetimes: the quaternionic

NW-case.

In the NW case we have 10.

In the W (Weyl) case we have 11. Please notice that in the two tables above the suffix

“j” denotes the existence of three inequivalent choices for the corresponding matrices (e.g.,

the three distinct space-like matrices Sj), while the suffix “i” denotes the existence of two

inequivalent choices. As previously discussed, this is in accordance with the signature of

the given space-time. Therefore, the let’s say, t − s = 0 mod 8, t = 2 mod 4 spacetime

admits, besides the K kinetic term, three extra kinetic terms KSj
associated to the three

external space-like Gamma matrices Sj, j = 1, 2, 3, existing in this case.

8. Octonionic spinors and their free dynamics. A classification

Here we present the tables of allowed free kinetic and massive terms for octonionic spinors.

As in the two previous sections, the columns are labeled by t mod 4 and the rows by

t− s mod 8, while the symbols used in the entries are explained at the end of section 5.

In the NW case we have 12. In the W (Weyl) case we have 13. As in the previous

section, the suffices “i” and “j” takes two and respectively three distinct values. With

these last tables we completed the classification of the allowed free lagrangians for spinors

in different space-times.

9. Identities for higher rank antisymmetric octonionic tensors

As we have seen in the previous sections, octonionic spinors are associated with octonionic

Clifford algebras. In their turn, these ones are given by the maximal octonionic Clifford
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0 1 2 3

1 K K, M M

2 MS K K, KS , M KS , M , MS

3 KJ ,MSi
,MJ K, MJ K, KSi

, M KSi
, KJ , M , MSi

4 KJj
, KF , MSj

, MJj
K, KF , MJj

, MF K, KSj
, M , MF KSj

, KJj
, M , MSj

Table 12: Type of kinetic and massive terms allowed in different spacetimes: the octonionic W-

case.

0 1 2 3

0 K//
K⊥,

M// M⊥

5
K//Tj

,K⊥Jj
,

M//Jj
,M⊥F

K//,K⊥Tj
,

M//Tj
,M⊥Jj

K⊥,K//F ,

M//,M⊥Tj

K//Jj
,K⊥F ,

M⊥,M//F

6
K//Ti

,K⊥J ,

M//J ,

K//,K⊥Ti
,

M//Ti
,M⊥J

K⊥,

M//,M⊥Ti

K//J ,

M⊥

7 K//T
K//,K⊥T ,

M//T

K⊥,

M//,M⊥T M⊥

Table 13: Type of kinetic and massive terms allowed in different spacetimes: the octonionic NW-

case.

algebras, specified by the two sets of octonionic realizations for the signatures

CO(m, 7 + 8n+m) , CO(9 + 8n+m,m) , (9.1)

with n,m ≥ 0, together with the class of octonionic non-maximal Clifford algebras obtained

from (9.1) by deleting a certain number of real-valued Gamma matrices. The reality restric-

tion on these extra Gamma matrices (which cannot therefore contain imaginary octonions)

puts a constraint on the space-time signatures admitting an octonionic description. For

later convenience, it is useful to present the list of the whole class of octonionic space-

times recovered from the maximal Clifford algebras of space-time dimension D = t + s

up to D = 13. The following table can be produced, with the columns labeled by D,

the dimensionality of the spacetime. The maximal Clifford algebras are underlined. In

each entry the octonionic dimensionality dΨ of the fundamental spinors is also reported.

The signatures admitting, for each given spacetime dimension D, spinors of minimal octo-

nionic dimensionality are denoted with a “∗”. Finally, the chain of reductions from a given

maximal Clifford algebra is sketchily reported (please notice that the chain of reductions

is not necessarily unique, for instance the (10, 1) signature can be produced by erasing a

single Gamma matrix either from (11, 1) or from (10, 2)). We get 14. We have already

recalled in section 4 that for the (t, s) space-times allowing an octonionic description, due

to octonionic non-associative identities, the algebra generated by the commutators between

Gamma matrices is not the SO(t, s) Lorentz algebra, but its G2 coset SO(t, s)/G2 [14]. We

present here a generalization of this result consisting of a list of higher-rank antisymmetric

octonionic tensorial identities. It is worth mentioning that these identities have striking

applications which we shall discuss in the next section.
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7 8 9 10 11 12 13

(0, 7)∗, 1

(7, 0)∗, 1 (8, 0)∗ , 1 (9, 0)∗,2

(0, 8)∗,1 (1, 8)∗,2

(7, 1),2 (8, 1)∗,2

(10, 0),4

(9, 1)∗,2
(10, 1)∗,4

(0, 9)∗,2

(2, 7),4

(1, 9)∗,2

(2, 8),4
(2, 9)∗,4

(7, 2),4 (8, 2),4

(11, 0),8

(9, 2)∗,4

(11, 1),8

(10, 2)∗,4
(11, 2)∗,8

(0, 10),4

(3, 7),8

(1, 10)∗,4

(3, 8),8

(2, 10)∗,4

(3, 9),8
(3, 10)∗,8

Table 14: The octonionic space-times induced by the maximal octonionic Clifford algebras (un-

derlined).

D = 7 (0, 7), (7, 0)

D = 8 (0, 8), (8, 0)

D = 9 (0, 9), (9, 0), (1, 8), (8, 1)

D = 10 (1, 9), (9, 1)

D = 11 (1, 10), (10, 1), (2, 9), (9, 2)

D = 12 (2, 10), (10, 2)

D = 13 (3, 10), (10, 3), (2, 11), (11, 2)

Table 15: The D-dimensional octonionic space-times admitting minimal octonionic spinors.

The identities under consideration are applicable to the space-time signatures which,

for a given total dimension D, admit spinors of minimal octonionic dimensionality (up to

D = 13, these are the signatures denoted with a “∗” in the table above). The generalization

of this construction to dimensions D > 14 is straightforward. Here however, both for

simplicity and for physical relevance, we limit ourselves to discuss such identities up to

D = 13, namely for the following spacetimes 15. Please notice that in D = 8, 10, 12

dimensions we are dealing with fundamental Weyl spinors.

It is worth mentioning that the above table has been complemented, for D = 13, with

the non-maximal octonionic Clifford algebras (10, 3), (2, 11), arising from the maximal ones

at the level D = 15.

In the above cases for D = 7, 8 the fundamental spinors are 1 (octonionic)-dimensional,

2-dimensional for D = 9, 10, four-dimensional for D = 11, 12 and finally 8-dimensional for

D = 13. The total number of octonionic hermitean H (antihermitean A) components in a

squared matrix of dΨ size is therefore given by 16.

The antisymmetric product of k > 2 octonionic Γ-matrices must be consistently spec-

ified to take into account the non-associativity of the octonions. As we soon motivate,

the correct prescription is taking the antisymmetrized product of k octonionic matrices Γi
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(i = 1, 2, . . . , k) to be given by

[Γ1 · Γ2 · · · · · Γk] ≡
1

k!

∑

perm.

(−1)εi1...ik (Γi1 · Γi2 · · · · Γik) , (9.2)

where (Γ1 · Γ2 . . . · Γk) denotes the symmetric product

(Γ1 · Γ2 · · · · · Γk) ≡
1

2
(.((Γ1Γ2)Γ3 · · ·)Γk) +

1

2
(Γ1(Γ2(· · ·Γk)).) . (9.3)

The usefulness of this prescription is due to the fact that the product

A[Γ1 · Γ2 · . . . · Γk] , (9.4)

with A the matrix (product of the time-like Gamma matrices)
H A

D = 7, 8 1 7

D = 9, 10 10 22

D = 11, 12 52 76

D = 13 232 280

Table 16: Total number of

hermitian and antihermitian

octonionic bosonic compo-

nents in D odd-dimensional

spacetimes.

introduced in section 5 has a definite (anti)-hermiticity prop-

erty. The different (9.4) tensors, for different choices of the

Gamma’s, are all hermitean or antihermitean, depending only

on the value of k (not of the Γ’s themselves).

In the presence of the Weyl spinors, the above (9.4) tensors

can be bracketed with the P+ projection operator, see (5.8),

to give

P+A[Γ1 · Γ2 · . . . · Γk]P+ . (9.5)

Once taken into account, from the algorithmic table 4 applied

to the octonionic Clifford algebras, that out of the D Gamma matrices, 7 are proportional

to the imaginary octonions, while the remaining D − 7 are purely real, it is a matter of

straightforward computations to check the number of independent octonionic components

both for (9.4) (in the NW spacetimes) and for (9.5) (in the Weyl spacetimes).

In odd-dimensions D we get the table 17, whose columns are labeled by the antisym-

metric tensors rank k. The hermitean components are underlined.

Similarly, in the even-dimensional Weyl case, we have 18.

The above tables show the existence of identities relating higher-rank antisymmetric

octonionic tensors. Let us discuss a specific example, which is perhaps the most physically

relevant. In D = 11 dimensions the 52 independent components of an octonionic hermitean

(4 × 4) matrix can be expressed either as a rank-5 antisymmetric tensors (simbolically

denoted as “M5”), or as the combination of the 11 rank-1 (M1) and the 41 rank-2 (M2)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

D = 7 1 7 7 1 1 7 7 1

D = 9 1 9 22 22 10 10 22 22 9 1

D = 11 1 11 41 75 76 52 52 76 75 41 11 1

D = 13 1 13 64 168 267 279 232 232 279 267 168 64 13 1

Table 17: Number of hermitian (antihermitian) bosonic components for octonionic antisymmetric

tensors in different space-times: the W-case.
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0 1 2 3 4 5 6 7 8 9 10 11 12

D = 8 1 0 7 0 1 + 1 0 7 0 1

D = 10 0 10 0 22 0 10 + 10 0 22 0 10 0

D = 12 1 0 52 0 75 0 52 + 52 0 75 0 52 0 1

Table 18: Number of hermitian (antihermitian) bosonic components for octonionic antisymmetric

tensors in different space-times: the NW-case.

tensors. The relation between M1 +M2 and M5 can be made explicit as follows. The 11

vectorial indices µ are split into 4 real indices, labeled by a, b, c, . . . and 7 octonionic indices

labeled by i, j, k, . . .. We get, on one side,

4 M1a
7 M1i
6 M2[ab]

4× 7 = 28 M2[ai]

7 M2[ij] ≡M2i

while, on the other side,

7 M5[abcdi] ≡M5i
4× 7 = 28 M5[abcij] ≡M5[ai]

6 M5[abijk] ≡M5[ab]

4 M5[aijkl] ≡M5a

7 M5[ijklm] ≡ M̃5i

which shows the equivalence of the two sectors, as far as the tensorial properties are

concerned. Please notice that the correct total number of 52 independent components is

recovered

52 = 2× 7 + 28 + 6 + 4 . (9.6)

The octonionic equivalence of different antisymmetric tensors can be symbolically ex-

pressed, in odd space-time dimensions, through 19.

We end up this section by commenting that, for
D = 7 M0 ≡M3

D = 9 M0 +M1 ≡M4

D = 11 M1 +M2 ≡M5

D = 13 M2 +M3 ≡M6

D = 15 M3 +M4 ≡M0 +M7

Table 19: The equivalence of the dif-

ferent octonionic M-sectors in D odd-

dimensional space-times.

non-minimal spinors, the dependance on the rank

k alone of the hermitean or antihermitean charac-

ter of (9.4) and (9.5) is not mantained. To be ex-

plicit, in D = 8 space-time dimension, the spinors

associated to the (1, 7) signature are non-minimal

(the number of their components is twice the num-

ber of components for fundamental (8, 0) and (0, 8)

spinors). The (1, 7) Clifford algebra is obtained from

the (1, 8) Clifford algebra after deleting a spacelike

matrix ΓS . For what concerns tensors, e.g. two sets of vectors are found, the ones ob-

tained from Γµ (µ a vector index in (1, 7)) are hermitean, while the ones obtained from the

commutators [Γµ,Γs] are antihermitean.
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10. An application of the octonionic spinors. The octonionic M-algebra

and the generalized supersymmetries

We shortly review here what is perhaps the most promising application of the octonionic

spinors, i.e. their connection with the octonionic M -algebra (and superconformal M alge-

bra, see [8, 9]), a specific example of a generalized octonionic supersymmetry. The identities

for antisymmetric octonionic tensors play in this case a special role.

The generalized space-time supersymmetries are the ones going beyond the standard

HÃLS scheme [7]. This implies that the bosonic sector of the Poincaré or conformal super-

algebra no longer can be expressed as the tensor product structure Bgeom ⊕ Bint, where

Bgeom describes space-time Poincaré or conformal algebras and the remaining generators

spanning Bint are Lorentz-scalars.

In the particular case of the minkowskian D = 11 dimensions, where the M -theory

should be found, the following construction is allowed. The spinors are real and have 32

components.

As recalled in section 2, by taking the anticommutator of two such spinors the most

general expected result consists of a 32 × 32 symmetric matrix with 32 + 32·31
2 = 528

components. On the other hand, the standard supertranslation algebra underlining the

maximal supergravity contains only the 11 bosonic Poincaré generators and by no means

the r.h.s. saturates the total number of 528. The extra generators that should be expected

in the right hand side are obtained by taking the totally antisymmetrized product of k

Gamma matrices (the total number of such objects is given by the Newton binomial
(
D

k

)
).

Imposing on the most general 32× 32 matrix the further requirement of being symmetric,

the total number of 528 is obtained by summing the k = 1, k = 2 and k = 5 sectors, so that

528 = 11+55+462. The most general supersymmetry algebra in D = 11 can therefore be

presented as

{Qa, Qb} = (AΓµ)abP
µ + (AΓ[µν])abZ

[µν] + (AΓ[µ1...µ5])abZ
[µ1...µ5] (10.1)

(where A is the real matrix introduced in section 5).

Z [µν] and Z [µ1...µ5] are tensorial central charges, of rank 2 and 5 respectively. These

two extra central terms on the right hand side correspond to extended objects [24, 25], the

p-branes. The algebra (10.1) is called the M -algebra. It provides the generalization of the

ordinary supersymmetry algebra recovered by setting Z [µν] ≡ Z [µ1...µ5] ≡ 0.

On the other hand, in the same 11-dimensional minkowskian spacetime, we can impose,

as we have seen, an octonionic structure, with fundamental spinors assumed to be 4-

component octonionic valued. The generalized supersymmetry algebra (2.3) admits on the

r.h.s. a hermitean 4× 4 octonionic-valued matrix with up to 52 independent components.

They can be expressed, from the previous section results, either as the 11 + 41 bosonic

generators entering

Zab = P µ(AΓµ)ab + Zµν
O (AΓµν)ab , (10.2)

or as the 52 bosonic generators entering

Zab = Z
[µ1...µ5]
O (AΓµ1...µ5

)ab . (10.3)
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Differently from the real case, the sectors specified by (10.2) and (10.3) are not indepen-

dent [8], leading to an unexpected and far from trivial new structure in the octonionic

M -algebra.

The octonionic results contained in the present paper should be regarded as the nec-

essary background towards a classification of the octonionic generalized supersymmetries

which is at present still missing.

It is worth mentioning that the equation (2.3) with Zab given by (10.2) corresponds to

just an octonionic supertranslation algebra. However in [9] its octonionic superconformal

algebra has been explicitly computed. It is the octonionic counterpart of the OSp(1, 64)

generalized superconformal algebra of the M -theory. This superalgebra contains in par-

ticular an SO(2, 11) bosonic subalgebra which, by dimensional reduction to SO(2, 10) and

further Inonü-Wigner contraction, produces Poincaré in 11 dimensions. Even if the Inonü-

Wigner contraction has not been explicitly written down in the octonionic case, it is nev-

ertheless a completely straightforward procedure to be carried out. As already recalled,

in the octonionic case the Lorentz algebra is broken, but not arbitrarily. We obtain in its

place the G2 coset, SO(p, q)/G2. At least in special cases, the latter admits a geometrical

interpretation (the seven-dimensional case is associated with the seven-sphere S 7, described

by unit octonions, see the discussion contained in the section 4).

The higher-rank antisymmetric octonionic tensor identities have been classified for the

first time in the present paper (a very special case was used, but not explicitly written,

in [8]). Not only in the physical, even in the mathematical literature these identities have

not been discussed (at least, no obvious reference can be found). We feel that a careful in-

vestigation is deserved to check whether octonionic spinors indeed play a role in association

with M -theory, as well as the arising of exceptional structures, exceptional Lie and Jordan

algebras, in this context. On the other hand, octonionic spinors have already found applica-

tion in the context of string theory (see e.g. [11]). It is quite natural to find out, as done here,

the consistency conditions for the octonionic spinors free dynamics. Due to the lack of asso-

ciativity of the octonions, octonionic spinors have never been systematically investigated as

in the present paper. However, it is worth remembering that our results can find immediate

application in connection with field theories defined on the seven sphere S 7 (or, higher-

dimensional field theories admitting the seven sphere S7 as a compactification space).

Finally, for what concerns the 1D octonionic supersymmetries [26] applied to octonionic

quantum mechanics, a classification is now available [27].

11. Conclusions

In this paper we made a systematic investigation of real, quaternionic and octonionic-

valued Clifford algebras and spinors, presenting their classification, as well as constructive

formulas to iteratively produce them. Tables have been given with the most general free

dynamics satisfied by real, quaternionic and octonionic spinors in each space-time which

supports them. All kinetic and massive terms have been listed.

For what concerns the octonionic case, by far the most intriguing due to the non-

associativity, we further presented the systematic construction and derived a series of ta-
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bles expressing the identities among higher rank antisymmetric octonionic tensors. We

motivated this line of research with the attempt at classifying the generalized octonionic

supersymmetries. A first example, hopefully physically relevant, consists of the octonionic

M -algebra, with its striking properties induced by the mentioned identities.

For what concerns the quaternionic spinors, they also can appear in connection with

generalized supersymmetries. One can read, e.g., from the results here presented, that

in the euclidean D = 11 dimensions quaternionic-valued spinors are allowed. It looks

promising to employ them to construct a quaternionic euclidean version of the M algebra

(we are in fact planning to address this problem in the future).

Coming back to the octonionic spinors, we mention a further list of topics where they

can possibly find application. At the end of section 3 we pointed out that the octonionic

realization of the 7-dimensional euclidean Clifford algebra is related with the geometry of

the seven sphere S7. A question, which deserves being investigated, can be raised. Is the

octonionic description of the M -theory somehow related to the particular compactification

of the 11-dimensional M -theory down to AdS4 × S7? This compactification corresponds

to a natural solution for the 11-dimensional supergravity [28]. It would be interesting to

check whether the tensorial identities found in the octonionic construction find a counter-

part also in the AdS4 × S7 special compactification geometry. On the other hand, one

should try to understand the physical implications of the octonionic M -algebra also from a

purely algebraic point of view. Being expressed by a 4-dimensional octonionic matrix, it is

outside a Jordan algebra scheme [29]. This raises the question of its quantum-mechanical

consistency, which implies understanding whether, and to which extent, is it possible to

adapt the prescription of [29] to the present situation.

It is worth mentioning a different dynamical system [17], which can be called a “Jor-

dan Matrix Chern-Simon theory”, proposed as a unique model, being associated with the

exceptional Jordan algebra J3(O) of 3×3 hermitean octonionic matrices. In this context it

seems relevant addressing, for octonionic fields, the status of the spin-statistic theorem, in

order to carefully revise it. Throughout this paper we have assumed the octonionic spinors

being Grassmann, anticommuting fields. However, it cannot be a priori excluded that in

the octonionic case this assumption could be relaxed.

We finally mention that the octonions can be held responsible for the existence of

a bunch of exceptional structures in Mathematics. As an example the 5 exceptional Lie

algebras can all be produced from the octonions via the Tits’ construction [18]. A lot of

activity is currently devoted to explore the relevance for Physics of these exceptional struc-

tures [19], see also [20]. The octonions seem the right tool to investigate such connections,

see e.g. [21]. The recognized importance of this line of research strongly motivated us to

systematically present here the fundamental properties of octonionic fields and spinors, as

well as their non-trivial relations, as the ones discussed in section 9.
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