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Abstract

The connection of (split-)division algebras with Clifford algebras and super-
symmetry is investigated. At first we introduce the class of superalgebras con-
structed from any given (split-)division algebra. We further specify which real
Clifford algebras and real fundamental spinors can be reexpressed in terms of
split-quaternions. Finally, we construct generalized supersymmetries admitting
bosonic tensorial central charges in terms of (split-)division algebras. In particu-
lar we prove that split-octonions allow to introduce a split-octonionic M -algebra
which extends to the (6, 5) signature the properties of the 11-dimensional octo-
nionic M -algebras (which only exist in the (10, 1) Minkowskian and (2, 9) signa-
tures).
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1 Introduction

2 Split-division algebras revisited

The construction of split-division algebras in terms of the Cayley-Dickson doubling
procedure is reviewed in the Appendix. For later purposes it is useful to explicitly
present here the (split-)division algebras structure constants, conjugations and norms

in the case of quaternions (H), split-quaternions (H̃), octonions (O) and split-octonions

(Õ). Complex (C) and split-complex (C̃) numbers are immediately recovered as sub-
algebra of, let’s say, the split-quaternions.

Let us introduce at first the quaternions. The three imaginary quaternions ei ∈ H
(i = 1, 2, 3) satisfy the relations

ei · ej = −δij1 + εijkek (2.1)

(εijk is totally antisymmetric tensor, normalized s.t. ε123 = 1).
The conjugation and the norm are respectively given by

ei
∗ = −ei,

N(ei) = 1. (2.2)

For what concerns the octonions, we can introduce them as as O = H− (see Ap-
pendix). Therefore, the seven imaginary octonions Ei are recovered through the posi-
tions

Ei = (ei, 0)

E3+i = (0, ei)

E7 = −(0, 1). (2.3)

They satisfy the relations

Ei · Ej = −δij1 + CijkEk, (2.4)

while their conjugation and normalization are given by

Ei
∗ = −Ei,

N(Ei) = 1. (2.5)

In the above (2.4) formula the Cijk’s are the totally antisymmetric octonionic structure
constants, non-vanishing only for the triples∗

C123 = C147 = C165 = C246 = C257 = C354 = C367 = 1. (2.6)

∗The seven imaginary octonions can be associated to the points of the seven-dimensional projective
Fano’s plane, while the triples correspond to the seven lines of this plane, see [?] for details.
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With a similar procedure the split octonions can be expressed through the identificaion
Õ = H+. The seven imaginary split-octonions Ẽi are given, as before, by

Ẽi = (ei, 0)

Ẽ3+i = (0, ei)

Ẽ7 = −(0, 1). (2.7)

They satisfy the relations

Ẽi · Ẽj = −ηij1 + CijkηkrẼr, (2.8)

together with

Ẽ∗
i = −Ẽi,

N(Ẽi) = ηii. (2.9)

In the above formulas ηij denotes the diagonal matrix (+ + + − − − −) with three
positive and four negative eigenvalues (normalized to ±1).

The quaternionic subalgebra H of the split octonions is obtained by restricting the
imaginary split-octonions Ẽi to the values i = 1, 2, 3.

On the other hand, the split-quaternionic subalgebra H̃ is recovered by taking any
subset of three elements lying in the six other lines of the Fano’s projective plane
(namely, the triples (147), (165), (246), (257), (354) and (367)).

The split-quaternions subalgebra can be explicitly presented as follows, in terms of
the three generators ẽi (i = 1, 2, 3),

ẽi · ẽj = −ηij1 + εijkηkrẽr, (2.10)

with conjugation and norm given by

ẽ∗i = −ẽi,

N(ẽi) = ηii. (2.11)

ηij is now the diagonal matrix (−−+).
The split quaternions admit a faithful representation in terms of 2×2 real matrices

given by

τ1 =

(
0 1
1 0

)
τ2 =

(
1 0
0 −1

)
τA =

(
0 1
−1 0

)
12 =

(
1 0
0 1

)
(2.12)

The conjugate element of a generic split-quaternion X ∈ H̃ is represented by

X∗ = −τAXT τA. (2.13)
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3 Graded algebras from (split-)division algebras

The multiplication “·” of a composition algebra A induces on A the structure of a
(graded) algebra A × A → A of (anti)commutators. Namely, for a, b ∈ A, we can
introduce the algebra of graded brackets defined through

[a, b} = ab + (−1)εaεbba, (3.14)

where εa,b ≡ 0, 1 mod 2 corresponds to the Z2 grading of the generators a, b respectively.
The (anti)commutator algebra is a (graded) Lie algebra if the multiplication is asso-
ciative. If the multiplication is alternative (see the Appendix), the (anti)commutator
algebra is a (graded) Malcev algebra (see [2] for its definition).

The Z2 grading implies for A the decomposition A = A0 ⊕ A1 such that, for non-
vanishing [a, b},

deg([a, b}) = deg(a) + deg(b) ≡ εa + εb (mod 2) (3.15)

We can easily list the set of admissible Z2 gradings for each one of the four division
algebras (the R case is trivial). As a corollary, this gives us the list of the admissible
superalgebras based on each division algebra. From the previous section results we
know that the split-division algebras structure constants are recovered, up to a nor-
malization factor, from the structure constants of their corresponding division algebra.
For this reason the list of the admissible Z2 gradings (and associated superalgebras)
of division algebras can also be regarded as the list of admissible Z2 gradings (and
associated superalgebras) of the split-division algebras . The identity is necessarily an
even (bosonic) element of the (super)algebra and corresponds to a central term. The

(split) imaginary numbers close graded subalgebras of dimension 1 (for C and C̃), 3

(for H and H̃) and 7 (for O and Õ).
It is worth noticing that we can regard the (anti)commutators algebras induced by

the composition law as abstract (super)algebras. In particular this implies that the Z2

superalgebra grading does not necessarily coincide with a Z2 grading of the composition
law (which requires satisfying deg(ab) = deg(a) + deg(b) mod 2). This point can be
better illustrated with an explicit example. Let’s take the three imaginary quaternions
ei’s. If we assign odd-grading (fermionic character) to e1 and e2, then e3, appearing on
the r.h.s. of the multiplication e1 ·e2, is necessarily even-graded (bosonic). On the other
hand, the anticommutator {e1, e2} is vanishing. As far as the anticommutators alone
are concerned, we can consistently assign odd-grading to e3 as well. In the following we
will denote as “compatible” the restricted class of (super)algebras whose Z2 grading is
an acceptable Z2 grading for the composition law.

The admissible Z2 gradings are expressed by the following table (the last column
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refers to the compatible superalgebras). We have

bosons/fermions (super)algebra compatibility

C, C̃ 1B + 0F yes yes
0B + 1F yes yes

H, H̃ 3B + 0F yes yes
2B + 1F no −
1B + 2F yes yes
0B + 3F yes no

O, Õ 7B + 0F yes yes
6B + 1F no −
5B + 2F no −
4B + 3F no −

3B + 4F (a) no −
3B + 4F (b) yes yes
2B + 5F no −
1B + 6F yes no
0B + 7F yes no

(3.16)

There are two distinguished 3B + 4F cases. The second one (b) corresponds to the
three bosonic elements lying on one of the seven lines corresponding to the triples in
(2.6). Without loss of generality, the three octonionic elements in the line can always

be chosen as E1, E2 and E3 (Ẽ1, Ẽ2, Ẽ3 for split-octonions). Without loss of generality

the case (a) can be obtained by taking the three bosonic elements as E1, E2, E4 (Ẽ1,

Ẽ2, Ẽ4 for split-octonions, respectively). There is no superalgebra associated to the
case (a), while a compatible superalgebra is found in the (b) case.

4 (Split-)division algebras, Clifford algebras

and spinors

It is well-known that the Clifford algebras are related to the R, C, H associative division
algebras. The Cl(s, t) Clifford algebra is defined as the enveloping algebra generated
by the gamma-matrices satisfying the relation

ΓiΓj + ΓjΓi = 2ηij, (4.17)

with ηij a diagonal matrix of (s, t) signature (i.e. s positive, +1, and t negative, −1,
diagonal entries).

The most general irreducible real matrix representation of a Clifford algebra is
classified according to the property of the most general S matrix commuting with all
the Γ’s ([S, Γi] = 0 for all i). If the most general S is a multiple of the identity, we
get the normal (R) case. Otherwise, S can be the sum of two matrices, the second one
multiple of the square root of −1 (this is the almost complex, C case) or the linear
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combination of 4 matrices closing the quaternionic algebra (this is the H case). We
obtain, for s, t ≤ 8, the following table, see [?]

s\t 0 1 2 3 4 5 6 7 8
0 R C H 2H H(2) C(4) R(8) 2R(8) R(16)
1 2R R(2) C(2) H(2) 2H(2) H(4) C(8) R(16) 2R(16)
2 R(2) 2R(2) R(4) C(4) H(4) 2H(4) H(8) C(16) R(32)
3 C(2) R(4) 2R(4) R(8) C(8) H(8) 2H(8) H(16) C(32)
4 H(2) C(4) R(8) 2R(8) R(16) C(16) H(16) 2H(16) H(32)
5 2H(2) H(4) C(8) R(16) 2R(16) R(32) C(32) H(32) 2H(32)
6 H(4) 2H(4) H(8) C(16) R(32) 2R(32) R(64) C(64) H(64)
7 C(8) H(8) 2H(8) H(16) C(32) R(64) 2R(64) R(128) C(128)
8 R(16) C(16) H(16) 2H(16) H(32) C(64) R(128) 2R(128) R(256)

The famous mod 8 property of Clifford algebras allows to extend the table above for
values s, t > 8.

The suffix “ 2” in the s − t = 1 mod 8 entries is introduced to take into account
that, for such coupled values of s, t, a faithful representation of the Clifford algebra is
obtained as a direct sum of its two inequivalent irreducible representations, see [?] for
details.

Following [?] we have another possibility of understanding the connection between
Clifford algebras and division algebras. We can simply state that a Clifford algebra
is of R, C or H type if its fundamental irreducible representation is realized in terms
of matrices with entries in the corresponding division algebra. A constructive way of
proving the above statement makes use of the two lifting algorithms [?], expressing the
Cl(s + 1, t + 1) and Cl(t + 2, s) Clifford irreps in terms of the Clifford irreps of Cl(s, t)
(given by the s + t gamma matrices γi’s). The s + t + 2 gamma matrices Γj are given,
in the two cases, by

Γi ≡
(

0 γi

γi 0

)
,

(
0 1d

−1d 0

)
,

(
1d 0
0 −1d

)
(4.18)

and, respectively,

Γj ≡
(

0 γi

−γi 0

)
,

(
0 1d

1d 0

)
,

(
1d 0
0 −1d

)
(4.19)

The spinors carry a representation of the Spin(s, t) spin group (see [?]), whose Lie
algebra generators are given by the gamma matrices commutators. As a result, the
division algebra structure of Gamma matrices extends to spinors. There is, however, for
certain signatures of the space-time, a mismatch between division-algebra properties
of the fundamental spinors and their associated Clifford algebras, see [?] and [?]. The
mismatch is due to the existence of a Weyl-projection. We recall that, following [?], the
fundamental spinors belong to the representation of the spin group admitting maximal
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division algebra structure. A table, presenting the division-algebra properties of spinors
for s, t ≤ 8, is here produced

s\t 0 1 2 3 4 5 6 7 8
0 RW CW H HW H(2)W C(4)W R(8) R(8)W

1 R RW R(2)W C(2)W H(2) H(2)W H(4)W C(8)W R(16)
2 CW R(2) R(2)W R(4)W C(4)W H(4) H(4)W H(8)W C(16)W

3 HW C(2)W R(4) R(4)W R(8)W C(8)W H(8) H(8)W H(16)W

4 HW H(2)W C(4)W R(8) R(8)W R(16)W C(16)W H(16) H(16)W

5 H(2) H(2)W H(4)W C(8)W R(16) R(16)W R(32)W C(32)W H(32)
6 C(4)W H(4) H(4)W H(8)W C(16)W R(32) R(32)W R(64)W C(64)W

7 R(8)W C(8)W H(8) H(8)W H(16)W C(32)W R(64) R(64)W R(128)W

8 R(8)W R(16)W C(16)W H(16) H(16)W H(32)W C(64)W R(128) R(128)W

The “W” denotes the presence of the Weyl projection. The numbers denote to the
dimensionionality of the spinors. Just like the previous table, the division algebra
properties of fundamental spinors for s, t > 8 are recovered from the mod 8 property
of Clifford algebras.

The same type of analysis leading to the division-algebra properties of, respectively,
Clifford algebras and fundamental spinors, can be repeated when investigating split-
division algebra properties. The interesting case is that of split-quaternions (H̃) since,
unlike the division-algebra case, split complex numbers and split quaternions are both
represented in terms of 2 × 2 real matrices (complex numbers are represented by two
2 × 2 real matrices and quaternions by 4 × 4 real matrices). The basic example is
provided by the Cl(2, 1) Clifford algebra, whose fundamental relation (4.17) can be
realized in terms of the three split-quaternions of (2.10). The application of the lifting
algorithms (4.18) and (4.19) allows to induce a split-quaternionic structure for the
Cl(s, t) Clifford algebras with

s = 2 + k , t = 1 + 8m + k, for m, k = 0, 1, 2, . . . (4.20)

and

s = 3 + 8m + k , t = 2 + k, for m, k = 0, 1, 2, . . . (4.21)

These Clifford algebras are the “oxidized forms” (according to [?]). In analogy with
the construction in [?], reduced split-quaternionic Clifford algebras are obtained for
Cl(s− 1, t) and Cl(s− 2, t), where s, t are either given by (4.20) or by (4.21).
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At the end we obtain the table of split-quaternionic Clifford algebras given by

s\t 1 2 3 4 5 6 7 8

1 H̃ 0 0 0 0 0 0 0

2 2H̃ H̃(2) 0 0 0 0 0 H̃(16)

3 H̃(2) 2H̃(2) H̃(4) 0 0 0 0 0

4 0 H̃(4) 2H̃(4) H̃(8) 0 0 0 0

5 0 0 H̃(8) 2H̃(8) H̃(16) 0 0 0

6 0 0 0 H̃(16) 2H̃(16) H̃(32) 0 0

7 0 0 0 H̃(32) 2H̃(32) H̃(64) 0

8 0 0 0 0 0 H̃(64) 2H̃(64) H̃(128)

Similarly, the split-quaternionic table for fundamental spinors is given by

s\t 1 2 3 4 5 6 7 8

1 0 H̃W 0 0 0 0 0 0

2 H̃ H̃W H̃(2)W 0 0 0 0 0

3 0 H̃(2) H̃(2)W H̃(4)W 0 0 0 0

4 0 0 H̃(4) H̃(4)W H̃(8)W 0 0 0

5 0 0 0 H̃(8) H̃(8)W H̃(16)W 0 0

6 0 0 0 0 H̃(16) H̃(16)W H̃(32)W 0

7 0 0 0 0 0 H̃(32) H̃(32)W H̃(64)W

8 0 0 0 0 0 0 H̃(64) H̃(64)W

Both tables above can be extended for s, t > 8 due to the mod 8 property of Clifford
algebras.

5 Split-division algebras and generalized supersym-

metries

6 Conclusions

Appendix

We collect here for convenience, following [19] and [20], the main properties and
definition of (split-)division algebras.

An algebra A over the reals (R) is a composition algebra if it possesses a unit
(denoted as 1A) and a non-degenerate quadratic form (norm) N satisfying

N(1A) = 1,

N(xy) = N(x)N(y), ∀x, y ∈ A. (A.1)

8



A composition algebra is alternative if the following left and right alternative properties
are satisfied [21]

(x2)y = x(xy),

yx2 = (yx)x. (A.2)

A positive definite quadratic form is a mapping N : A → R+ s.t.

N(x) = 0 ⇔ x = 0. (A.3)

A composition algebra with positive quadratic form is a division algebra, satisfying the
property

xy = 0 ⇒ x = 0 ∨ y = 0. (A.4)

Due to the Hurwitz’s theorem, the only division algebras are R, C, H and O.
A ∗-algebra possesses a conjugation (i.e. an involutive automorphism A → A) s.t.,

denoted as x∗ the conjugate of x ∈ A, we have

(x∗)∗ = x,

(xy)∗ = y∗x∗. (A.5)

The norm N(x) of an element of a division algebra is expressed as

N(x) = xx∗. (A.6)

Besides division algebras, we can introduce their split forms [19] as a new set of algebras.
The split-division algebras are ∗-algebras with unit. The quadratic form N is no longer
positive-definite and the property (A.4) is no longer valid. The algebras of split complex

numbers, split quaternions and split octonions are respectively denoted as C̃, H̃ and Õ.
The total number of inequivalent (split)-division algebras over R is 7 (the 4 division
algebras and their 3 split forms above).

(Split)-division algebras find a unified description through the Cayley-Dickson dou-
bling construction. Given an algebra A over R, possessing a “ · ” multiplication, a
“ ∗” conjugation and a norm N , the Cayley-Dickson doubled algebra A2 over R is
defined in terms of the operations in A. Multiplication, conjugation and norm in A2

are respectively given by

i) multiplication in A2: (x, y) · (z, w) = (xz + εw∗y, wx + yz∗),
ii) conjugation in A2: (x, y)∗ = (x∗,−y),
iii) norm in A2: N(x, y) = N(x)− εN(y).

The unit element 1A2 of A2 is represented by 1A2 = (1A, 0).
In the above formulas ε is just a sign (ε = ±1).

It is convenient to denote the Cayley-Dickson’s double of an algebra A by writing
the ε sign on the right of the original algebra. For division algebras ε is always negative
(ε = −1). We can therefore write

C = R−,
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H = C− = R−−,
O = H− = C−− = R−−−.

The split division algebras are obtained by taking a positive (ε = +1) sign. We have

C̃ = R+,
H̃ = C+ = R−+
Õ = H+ = C−+ = R−−+.
Other choices of the sign produce, at the end, isomorphic algebras. We can, e.g.,

also write H̃ = R + +, as well as Õ = R + ++.
All (split-)division algebras over R are obtained by iteratively applying the Cayley-

Dickson’s construction starting from R.
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