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1 Invariant off-shell actions. The N = 4 irreps.

“Smart” methods

i) The N = 4 (4, 4) case. We have:

Qi(x, xj;ψ, ψj) = (−ψi, δijψ − εijkψk; ẋi,−δijẋ+ εijkẋk)

Q4(x, xj;ψ, ψj) = (ψ, ψj; ẋ, ẋj) (1.1)

The most general invariant lagrangian L of dimension d = 2 constructed with the help
of the enveloping representation is given by

L = α(~x)[ẋ2 + ẋ2
j − ψψ̇ − ψjψ̇j] +

∂xα[ψψjẋj −
1

2
εijkψiψjẋk] +

∂lα[ψlψẋ+ ψlψjẋj +
1

2
εljkψjψkẋ− εljkψjẋkψ]−

−�α
1

6
εljkψψlψkψk (1.2)

ii) The N = 4 (3, 4, 1) case. We have:

Qi(xj;ψ, ψj; g) = (δijψ − εijkψk; ẋi;−δijg + εijkẋk;−ψ̇i)

Q4(xj;ψ, ψj; gj) = (ψj; g, ẋj; ψ̇)

(1.3)

The most general invariant lagrangian L of dimension d = 2 constructed with the
help of the enveloping representation is given by

L = α(~x)[ẋ2
j + g2 − ψψ̇ − ψjψ̇j] +

∂iα[εijk(ψψjẋk +
1

2
gψjψk)− gψψi + ψiψjẋj]−

−�α
6
εijkψψiψjψk (1.4)

iii) The N = 4 (2, 4, 2) case. We have:

Q1(x, y;ψ0, ψ1, ψ2, ψ3; g, h) = (ψ0, ψ3; ẋ,−g, h,−ẏ;−ψ̇1, ψ̇2)

Q2(x, y;ψ0, ψ1, ψ2, ψ3; g, h) = (ψ3, ψ0; ẏ,−h,−g, ẋ;−ψ̇2,−ψ̇1)

Q3(x, y;ψ0, ψ1, ψ2, ψ3; g, h) = (−ψ2, ψ1;h, ẏ − ẋ,−g;−ψ̇3, ψ̇0)

Q4(x, y;ψ0, ψ1ψ2, ψ3; g, h) = (ψ1, ψ2; g, ẋ, ẏ, h; ψ̇0, ψ̇3) (1.5)
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The most general invariant lagrangian L of dimension d = 2 constructed with the help
of the enveloping representation is given by

L = α(x, y)[ẋ2 + ẏ2 + g2 + h2 − ψψ̇ − ψjψ̇j] +

∂xα[ẏ(ψ1ψ2 − ψ0ψ3) + g(ψ2ψ3 − ψ0ψ1) + h(ψ1ψ3 + ψ0ψ2)] +

∂yα[−ẋ(ψ1ψ2 − ψ0ψ3)− g(ψ1ψ3 + ψ0ψ2) + h(ψ2ψ3 − ψ0ψ1)]−
−�αψ0ψ1ψ2ψ3 (1.6)

iv) The N = 4 (1, 4, 3) case. We have:

Qi(x;ψ, ψj, gj) = (−ψi; gi,−δijẋ+ εijkgk; δijψ̇ − εijkψ̇k),

Q4(x;ψ, ψj; gj) = (ψ; ẋ, gj; ψ̇j) (1.7)

The most general invariant lagrangian L of dimension d = 2 constructed with the help
of the enveloping representation is given by

L = α(x)[ẋ2 − ψψ̇ − ψiψ̇i + gi
2] +

α′(x)[ψgiψi −
1

2
εijkgiψjψk]−

α′′(x)

6
[εijkψψiψjψk] (1.8)

2 Invariant off-shell actions. The N = 8 irreps.

i) The (1, 8, 7) case has been discussed in the [1] paper. It is produced with the octo-
nionic covariantization from the (1, 4, 3) case. The general function α(x) is constrained
to be linear, i.e. α(x) = ax+ b, where a, b are constants.

ii) The (7, 8, 1) case has been analyzed within the octonionic covariantization pro-
cedure, starting from the (3, 4, 1) case. It implies a trivial (constant α) kinetic energy
invariant.

iii) The (8, 8) case can be analyzed within the octonionic covariantization procedure
starting from the (4, 4) case. The result will be produced next.

iv) Some of the remaining cases could be analyzed through a split octonionic co-
variantization procedure?

3 Invariant off-shell actions. The N = 9 irreps.

This case involve 16 bosons and 16 fermions. It is hopefully that an octonionic co-
variantization procedure could produce results for some of the multiplets. The most
interesting one, see later, seems to be the (9, 16, 7), see [2].
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4 Use of brute-force method to construct off-shell

invariant actions.

Steps: take the most general lagrangian Li term of dimension d = i and check under
which condition the action Si =

∫
dtLi is invariant under the whole set of supersym-

metry transformations.
For our purposes the most interesting invariant actions are
i) L2, the “kinetic term”,
ii) L1, the “potential term”,
iii) L0, the “quartic term”.
The invariant actions Ld of mass-dimension d > 2 admit higher-order derivatives.

They can be associated either with Born-Infeld non-linear lagrangians, or non-local
perturbative corrections in the ~ expansion beyond the tree level and so on.

5 Dimensional analysis and dimensional reduction.

There are three fundamental constants in physics:
i) the velocity of light c,
ii)the Planck’s constant ~,
iii) the Newton’s gravitational constant GN .
c is the realm of special relativity. Its constancy implies that we can trade length

and time. In natural units we can set c = 1 and use either centimeters or seconds to
measure both space and time.

~ is the realm of quantum mechanics. Setting ~ = 1 we can interchange the unit of
energy (or mass) with the unit of time (the second).

Relativistic quantum mechanics implies that in physics there is only one type of
dimension (call it length, time, or energy) which can be measured, interchangeably, in
centimeters, seconds or GeVs.

The gravitational constant GN is a dimensional constant which corresponds, in
natural units, to

i) 10−33 centimeters, or
ii) 10−43 seconds, or
iii) 1019 GeV.
These numbers have been produced by playing with the whole set of the three

fundamental constants c, ~, GN . They are therefore related with the (unknown) full
theory of relativistic quantum gravity. They represent the scale of magnitude where
relativistic quantum gravity should be appreciated. We have, respectively,

i) at probing distances of the order 10−33 cm (the atomic distance is of the order of
10−13 cm),

ii) at 10−43 seconds “after” the Big Bang, whatever this means (the present age of
the universe is of the order of 10 billion years),

iii) at “very” hypotethical (and totally unphysical) colliders working at 1019 Gev
(the energy we can presently achieve are of the order of 102 − 103 Gev). Even if some
“smart” scenarios (involving branes) can be produced to lower the scale of relativistic
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quantum gravity at the order of the Tev, making them palatable, being on the range
of foreseeable future experiments, we should not forget that the huge, physically inac-
cessible, value of 1019 Gev is the natural order of magnitude of relativistic quantum
gravity. It comes to no surprise then that the quantum unification of all interactions
comes at a scale which makes physical predictions at the experimentable scale of length
if not totally impossible, at least extremely hard. The golden rule to find a quantum
unifying theory of all interactions is replaced from adherence to experiments to math-
ematical consistency conditions (see e.g. the role of the anomalies in assigning the
charges, separately for leptons and quarks and for each three families). Coming back
to the three fundaental numbers above, they will be referred to, respectively, as

i) the Planck’s length lP = 10−33 cm,
ii) the Planck’s time tP = 10−43 sec,
iii) the Planck’s energy (mass) MP = 1019 GeV.
In the following, we will fix the mass as the standard unit of reference. In natural

units, GN is dimensionful, with mass dimension [Gn] = −2.

6 Dimensional analysis of dimensionally reduced the-

ories

We make here dimensional analysis of the following theories:
i) the free particle in one (time) dimension (D = 1) and,
for the ordinary Minkowski space-time (D = 4) the
iia) the scalar boson theory (with quartic potential λ

4!
φ4),

iib) the Yang-Mills theory and,
iic) the gravity theory (expressed in the vierbein formalism).
We further make the dimensional analysis of the above three theories when dimen-

sionally reduced (à la Scherk) to a one (time) dimensional D = 1 quantum mechanical
system.

We further repeat the dimensional analysis for the supersymmetric version of these
theories and end up with the dimensional analysis of the

iii) string theory.
Case i) - the D = 1 free particle It is described by a dimensionless action S given

by

S =
1

m

∫
dtϕ̇2 (6.9)

The dot denotes, as usual, the time derivative. Since the time t has the inverse of a
mass-dimension ([t] = −1), assuming ϕ being dimensionless ([ϕ] = 0), an overall con-
stant (written as 1

m
) of mass dimension −1 has to be inserted to make S adimensional.

Summarizing we have, for this D = 1 model

[t]D=1 = −1,

[
∂

∂t
]D=1 = 1,
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[ϕ]D=1 = 0,

[m]D=1 = 0,

[S]D=1 = 0. (6.10)

The suffixD = 1 has been added for later convenience, rmembering that the dmensional
analysis corresponds to the one-dimensional model (this will be useful later on, when
discussing the dimensional reduction of higher dimensional theories).

Case iia) -the D = 4 scalar boson theory The action can be given by

S =

∫
d4x

(
1

2
∂µΦ∂µΦ− 1

2
M2Φ2 − 1

4!
λΦ4

)
, (6.11)

An adimensional action S is obtained by setting, in mass dimension

[Φ]D=4 = 1,

[∂µ]D=4 = 1,

[M ]D=4 = 1,

[λ]D=4 = 0. (6.12)

Case iib) -the D = 4 pure QED or Yang-Mills theories.
The gauge-invariant action is given by

S =
1

e2

∫
d4xTr (FµνF

µν) , (6.13)

where the antisymmetric stress-energy tensor Fµν is given by

Fµν = [Dµ,Dν ] (6.14)

with Dµ the covariant derivative, expressed in terms of the gauge connection Aµ

Dµ = ∂µ − eAµ (6.15)

e is the charge (the electric charge for QED). The action is adimensional, provided that

[Aµ]D=4 = 1,

[Fµν ]D=4 = 2,

[e]D=4 = 0. (6.16)

iic) -The pure gravity case.
The action is constructed, see [?] for details, in terms of the determinant E of the

vierbein eµ
a and the curvature scalar R. It is given by

S =
−6

8πGN

∫
d4xER (6.17)

The overall constant (essentially the inverse of the gravitational constant GN) is now
dimensional ([GN ]D=4 = −2). The adimensional action is recovered by setting

[eµ
a]D=4 = 0,

[R]D=4 = 2. (6.18)
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Let us now discuss the dimensional reduction from D = 4 ⇒ D = 1. Let us suppose
that the three space dimensions belong to some compact manifold M (e.g. the three-
sphere S3) and let us freeze the dependence of the fields on the space-dimensions
(the application of the time derivative ∂0 leads to non-vanishing results, while the
application of the space-derivatives ∂i, for i = 1, 2, 3 gives zero). Our space-time is now
given by R×M. We get that the integration over the three space variables contributes
just an overall factor, the volume of the three-dimensional manifold M. Therefore∫

d4x ≡ V olM ·
∫
dt (6.19)

Since

[V olM]D=4 = −3 (6.20)

we can express V ol ≡ 1
m3 , where m is a mass-term. A factor 1

m
contributes as the

overall factor in the one-dimensional theory, while the remaining part 1
m2 can be used

to rescale the fields. We have, e.g., for the dimensional reduction of the scalar boson
theory that

ϕD=1 ≡ 1

m
φD=4 (6.21)

The dimensional reduction of the scalar boson theory ii a is given by

S =
1

m

∫
dt

(
1

2
ϕ̇2 − 1

2
M2ϕ2 + λD=1

1

4!
ϕ4

)
(6.22)

where we have

[ϕ]D=1 = 0,

[M ]D=1 = 1,

[λ1]D=1 = 2 (6.23)

The D = 1 coupling constant λ1 is related to the D = 4 adimensional coupling constant
λ by the relation

λ1 = λm2. (6.24)

We proceed in a similar way in the case of the Yang-Mills theory. We can rescale the
D = 4 Yang-Mills fields Aµ to the D = 1 fields Bµ = 1

m
Aµ. The D = 1 charge e is

rescaled to e1 = em. We have, symbolically, for the dimensional reduced action, a sum
of terms of the type

S =
1

m

∫
dt

(
Ḃ2 + e1ḂB

2 + e1
2B4

)
(6.25)

where

[B]D=1 = 0,

[e1]D=1 = 1. (6.26)
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The situation is different for what concerns the gravity theory. In that case, the
overall factor V olM/GN produces the dimensionally correct 1

m
overall factor of the

one-dimensional theory. This implies that we do not need to rescale the dimensionality
of the vierbein eµ

a and of the curvature. Summarizing we have the following results

scalar boson Φ : [Φ]D=4 = 1 ⇒ [Φ]D=1 = 0
gauge connection Aµ : [Aµ]D=4 = 1 ⇒ [Aµ]D=1 = 0

vierbein eµ
a : [eµ

a]D=4 = 1 ⇒ [eµ
a]D=1 = 0

electric charge e : [e]D=4 = 0 ⇒ [e]D=1 = 1

(6.27)

Let us now discuss the N = 1 supersymmetric version of the three D = 4 theories
above. The chiral multiplet, described in [?], in terms of the chiral superfields Φ, Φ
admits the following field

chiral multiplet : Φ, Φ
fields content : (2, 4, 2)

D = 4 dimensionality : [1, 3
2
, 2]D=4

D = 1 dimensionality : [0, 1
2
, 1]D=1

vector multiplet : V = V †

fields content : (1, 4, 6, 4, 1)
D = 4 dimensionality : [0, 1

2
, 1, 3

2
, 2]D=4

D = 1 dimensionality : [−1,−1
2
, 0, 1

2
, 1]D=1

vector multiplet : V in the WZ gauge
fields content : (3, 4, 1)

D = 4 dimensionality : [1, 3
2
, 2]D=4

D = 1 dimensionality : [0, 1
2
, 1]D=1

supergravity multiplet : eµ
a, ψµ

α

fields content : (16, 16)
D = 4 dimensionality : [0, 1

2
]D=4

D = 1 dimensionality : [0, 1
2
]D=1

gauged sugra multiplet : eµ
a, ψµ

α, bi

fields content : (6, 12, 6)
D = 4 dimensionality : [0, 1

2
, 1]D=4

D = 1 dimensionality : [0, 1
2
, 1]D=1

(6.28)

Case iii) - the bosonic string.
The action is given by

S = − 1

2πα′

∫
dτdσ

(
(ẊµX ′

µ)2 − (ẊµẊ
µ)(Xν

′Xν ′)
)

(6.29)

There are two space-times here: the two-dimensional world-sheet and the target space-
time. Therefore there are two dimensional quantities whether we look at the object
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from the two-dimensional or the target manifold point of view. We can assign [·]ws and
[·]trg dimensions. We have

[τ ]ws = [σ]ws = −1,

[Xµ]ws = 0,

[α′]ws = 0 (6.30)

and

[τ ]trg = [σ]trg = 0,

[Xµ]trg = −1,

[α′]trg = −2. (6.31)

7 The Fano’s plane (some fun with Fano)

The seven dimensional Fano’s plane FP is the simplest example of finite projective ge-
ometry. All points are equivalent. 7 points (labeled 1, 2, . . . , 7) and 7 lines consisting of
3 points (3 lines intersect at each point). For the octonions we need to introduce arrows
on the line. We can say that the corresponding Fano’s plane is oriented. Some ques-
tions: how many inequivalent ways do exist of embedding R7 in FP? Call x1, . . . , x7

the oriented sets of coordinates of R7. Without loss of generality we can fix x1 ≡ 1
and x2 ≡ 2. There are 5 inequivaent choices to put one of the remaining points in 3.
Once set, let us call y1, y2, y3, y4 the rordered set of reaining points. Without loss of
generality we can set y1 ≡ 4. Now there are 6 inequivalent choices to set y2, y3, y4 in
the Fano’s position 5, 6 and 7.

Therefore there are 30 inequivalent configurations for the arrangement of 7 ordered
points in the Fano’s plane.

The total number of permutations of seven points is 7!. The number of permutations
resulting in an equivalent arrangement of points in FP is given by 7!/30 = 168. This
number corresponds to the order of the finite group of automorphisms of the Fano’s
plane, the projective group PSL(2, 7) of 168 elements. It is a simple non-abelian finite
group (the unique simple group of order 168). It is the second largest nonabelian finite
group after the alternating group A5 of order 60.

The next question is: how many inequivalent ways do we have to embed R8 in
the octonionic space O. The latter is given by a single element (corresponding to
the identity) plus the seven imaginary octonions arranged in an ordered Fano’s plane
(the lines now have arrows). We get the following numbers: 8 ways of setting the x’s
in the identity. Call y1, . . . , y7 the remaining points. Without loss of generality we
can set y1 and y2 in the positions 1 and 2 (in 2 inequivalent ways, due to the arrow
linking 1 and 2. There remains, as before 5 choices to put the another coordinate
in 3. The remaining 4 points , labeled now as z1, . . . , z4 have to be put in position
4, 5, 6 and 7. Take z1, one can easily verifies that setting it in the above positions
leads to inequivalent configurations. We have therefore 4! possibilities to arrange the
remaining 4 points. The total number of inequivalent configurations is therefore given
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by 8 × 2 × 5 × 4! = 1920. The finite group of transformations leaving invariant O is
given by 8!/1920 = 21 elements. It corresponds to the group Z3 ⊗ Z7. It is given by
the seven permutations of the position of the point 1 and the even cyclic permutations
of the three lines converging at each point.

8 Connection between Grassmann algebra, Clifford

algebra and N-extended D = 1 supersymmetry

algebra

The Grassmann algebra is the enveloping algebra generated by the N generators θa

(a = 1, . . . , N) satisfying the relation

θaθb + θbθa = 0. (8.32)

The Clifford algebra is the enveloping algebra generated by the N generators γi (i =
1, . . . , N) satisfying the relation

γiγj + γjγi = 2ηij1. (8.33)

where ηij is a diagonal matrix and 1 is the identity operator.
In order to “promote” the basic relation of the Clifford algebra as the constituent

relation of a (super)Lie algebra G (with a mapping G × G → G we have to interpret
the N γi generators on the l.h.s. as the odd elements of a super-Lie algebra (we will
call them Qi’s) , and we have to add the identity 1 as an even element of the super-
algebra corresponding at a central extension z (since 1 commutes with the γi’s. We
are led to a superalgebra (the N -extended (pseudo)susy algebra) with total number of
N odd elements Qi and a single even element, the central extension z. The N -susy
superalgebra is defined by the relations

{Qi, Qj} = ηijz,

[Qi, z] = 0 (8.34)

If ηij ≡ δij the N -extended pseudo superalgebra is called the one-dimensional N ex-
tended supersymmetry algebra (from now on, for short, N susy).

In physics, the central extension z is denoted with H and called the hamiltonian.

9 some miscellanea’s facts about invariants and longer

length multiplets

The N = 16-susy algebra admits irreps of order 128 + 128 (bosons+fermions). It
is obtained from Cl(0, 15). The latter can be reconstructed through the structure
constants of the sedenions.

Our classificatory result in [1] implies as a corollary that, for sufficiently large
values of N (N ≥ 10 there exists irreducible multiplets which can accommodate fields
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of dimensions 0, 1
2
, 1, 3

2
, 2. In ordinary invariant off-shell lagrangians (whose terms have

dimensions 0, 1 and 2, the longest fields of dimension 3
2

and 2 can only enter as lagrange
multipliers.

The (3, 4, 1) “vector” multiplet of N = 4 admits the standard (constant) kinetic
term corresponding to the dimensional reduction of the pure super-QED action. There
exists in one dimension a 1-dimensional term, which can enter an invariant lagrangian,
which is only N = 1 invariant. It is given by

Ld=1 = ψψjxj −
1

2
gxj

2. (9.35)

What is the situation for the N = 8 (5, 8, 3) vector multiplet and theN = 9 (9, 16, 7)
vector multiplet? For (5, 8, 3) we expect, by dimensional reduction considerations, that
it admits an N8 invariant term of dimension 1 (trilinear in the fields and proportional
to the charge e) and an N = 8 invariant term of dimension 0 (quartilinear in the fields
and proportional to e2).

10 The BRST complex of the N-susy

Following [?] we can specialize the formulas to the N -susy algebra. We get

11 The oxidation program

12 Dictionary on N-extended susy irreps

References

[1] Z. Kuznetsova, M. Rojas and F. Toppan, hep-th/0511274. To appear in JHEP.

[2] N. Berkovits, Phys. Lett. B 318 (1993) 104. In hep-th/9308128.

11


