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1 INTRODUCTION

According to present experimental constraints, the universe, nowadays, is almost spatially


at; moreover, the e�ect of the radiation term, in the Friedman's equation, is also neglige-

ble. However, one should distinguish between the description of the universe, as it appears

\now",and the description the description of how it was and how it will be.

Starting with recent experimental constraints ([6],[7],[4],[8]) on the density parameters



m
, 
�, we want to study analytically the whole history of the universe, i.e., how it was

(after the �rst few minutes) and how it wil be.

We restrict our attention to those cases that are compatible with recent observations

and present an analytic discussion.

We are not concerned, here, with the problem of in
ation (there are several theoretical

scenarios : : : ) as it is clear that, at such early periods, Friedman's equation is anyway not

expected to provide a good mathematical model of the evolution of the universe. It looks

however reasonable to suppose that there was a time, in some remote past, where the

universe was already almost homogeneous and still rather hot. One can then use Fried-

man's equation to extrapolate, back in time, to this early epoch. Putting arti�cially the

radiation term to zero is an unnecessary simpli�cation that would prevent one to perform

useful extrapolation towards this remote past. One can actually keep that term at no cost

since cosmological models with a non-zero cosmological constant and radiation pressure

can be studied analytically. Moreover, the experimental constraints on the radiation term

are quite well known thanks to the measurement of the Cosmic Microwave Background

radiation (CMB).

A similar comment can be made about the value of the constant parameter (k = �1 or

0) that allows one to distinguish between spatially closed (k = 1) and open (k = 0 or �1)

universes: it may be that the reduced cosmological curvature density 

k
is very small,

nowadays, and experimentally compatible with zero; however, this quantity is function of

time, and setting arti�cally the constant k to 0 prevents one from studying some possibly

interesting features in the history of the universe (for instance, the existence of an in
exion

point at some particular time during the expansion, requires k = 1).

For the above reasons we shall not drop, in general, the radiation term and will keep

k as an unknown discrete parameter with values �1 or 0. Our main purpose, however,

is to study the e�ects of a non zero (and positive) cosmological constant on the analytic

solutions describing the dynamics of our universe and on the large scale geometry.

In the coming section, we shall recall the relations between di�erent cosmological

quantities of interest. One should remark that experimentally available parameters do not

necessary coincide with the quantities that provide a good mathematical description for

the solutions of Friedman's equation.

In the following section we shall start with this equation (written with a \good" set

of variables), and shall analyse possible histories of our universe, both qualitatively (using

a well known associated mechanical model [14]) and analytically (using mathematical

techniques (that can be traced back to [1]) explained in [2] and used in [2], [3]).

Finally, in the last section, we investigate the in
uence of the selection of a cosmo-

logical model matters, on \changes of redshift charts". We answer the following question

(following again [2]): if some observer, located somewhere in the universe, plots the red-

shift of every celestial object against its direction, what is the redshift that would be

measured, for the same objects, by another observer, at the same moment of time (we

have an homogeneous cosmology!) but situated somewhere else { and possibly very far {

in the spatial universe ? These transformation laws involve not only the geometry of our
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universe (relative location of the two points) but also its dynamics (in particular the value

of the cosmological constant).

If the distribution of matter in the universe posesses some particular large scale features

(for instance a \symmetry" of some kind), our solution of the above problem becomes

phenomenologically relevant. Indeed, there is no reason to believe that our position (our

galaxy) is ideally located with respect to such putative elements of symmetry, and it

would therefore be necessary to perform a change of position to recognize such features.

For instance, the absence of matter in a three dimensional shell centered around some

particular point would not appear as such when analysed from a galaxy situated far away

from this special point (this was actually the hypothesis made in [10]).

We present two very di�erent types of results: one is concerned with analytical solutions

describing the dynamics of the universe, the other is concerned with large scale (and non-

euclidean) geometry of our 3-dimensional space manifold.

When the cosmological constant � is zero, the dynamics of our universe can be de-

scribed in terms of elementary trigonometric (circular or hyperbolic) functions. When �

is non zero, the corresponding Friedmann's di�erential equations, cannot be expressed in

terms of trigonometric functions. The remark made here , (see also ([2])) is that that this

equation may be handled with a somewhat more general class of periodic functions.

Di�erent explicit expressions can be found in papers by G. Lemâ�tre ([1]), but these

expressions, involving elliptic integrals, are not very transparent when written as a function

of cosmic time.

However, a simple trick {namely, writing Friedmann's di�erential equation for the

inverse \radius of the universe " in terms of conformal time rather than for the radius

in terms of cosmic time{ allows one to �nd explicit, analytical solutions, in terms of very

basic elliptic functions, namely, the Weierstrass elliptic function that have been arounds

for well over a century.

We should maybe stress the fact that the Weierstrass elliptic functions are very simple

(if not elementary!) objects, that generalize both circular and hyperbolic trigonometric

functions; for example, the Weierstrass P function is a doubly periodic function in the

complex plane (in the limit when one of the periods becomes in�nite, it can be expressed

in terms of usual trigonometric functions). It also satis�es interesting relations, such as a

duplication formula analogous to the one valid for trigonometric functions. This leads to

a relation between cosmological quantities measured at di�erent times (more about this

in section 4.2.2).

Another subject, mostly disconnected from the problem of �nding explicit analytical

solutions, is the description of large scale geometry of our three-dimensional (spatial) uni-

verse; this aspect of our work was already presented in the above introduction. However,

in order to dissipate possible misunderstandings, let us stress again the fact that the cor-

responding geometry involves the curvature of a 3-dimensional curved manifold (not like

the 2-dimensional sphere which is the object of spherical trigonometry), so that even if our

formulae (concerning e.g. arc-length of the sides of a geodesic triangle) are reminiscent

of usual spherical trigonometry, they are actually quite di�erent. This part of our work

can be considered as a physically relevant but not totally trivial mathematical exercise

in riemannian geometry. As a matter of fact, the corresponding formulae do not seem to

be available in mathematical treaties of di�erential geometry (probably because they are

\nothing else" than a particular example of calculations that one can do on any riemannian

manifold when its underlying space has the topology of a Lie group).

From the (astro) physical point of view, we do not believe that such formulae have
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been presented elsewhere.
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2 RELATIONS BETWEEN COSMOLOGICAL PARAM-

ETERS

2.1 Geometrical Background for Friedman-Lemâ�tre Models

Most of the present section is well known and can be found in standard textbooks. The

dimensionless temperature T (�) which seems preferable to the radius R(t)) if one wants to

perform an analytic discussion of Friedman's equation, was introduced by [2]. Our purpose

here is mostly to provide a summary of useful formulae and present our notations.

2.1.1 Units

We chall work in a system of units in which both ~ and c are set to 1. All quantities with

dimention are thus given as powers of length [cm].

In our units, energies are in [cm�1]. Since temperatures (to be denoted by ~
T in this

paper) appear only in products k
B

~
T (where k

B
is the Boltzmann constant), we can take

take the temperature as dimensionless, and k
B
as an energy.

2.1.2 Metric and Topological Considerations

As it is well known, these models assume that the universe is, in �rst approximation,

homogeneous and isotropic.

The metric There are three possibilities:

� k = 1, ds2 = �dt2 + R
2[d�2 + sin2 �(d�2 + sin2 �d�2)]

� k = �1, ds2 = �dt2 +R
2[d�2 + sinh2 �(d�2 + sin2 �d�2)]

� k = 0, ds2 = �dt2 + R
2[d�2 + �

2(d�2 + sin2 �d�2)]

The topology The �rst case k = 1, is sometimes called the \compact case" (closed

universe), since the spatial universe is then compact; the global topology for space-time

can be taken as S3�R but one should remember that the above expression for the metric

is only local, so that one could take, in place of S3, any quotient S3
=� of the 3-sphere by

a �nite group � operating without �xed point (for instance one of the binary tetrahedral,

octahedral or icosahedral subgroups of SU(2)). In the case of S3, the full isometry group is

SU(2)�SU(2) since S3 itself is homeomorphic with the group of unimodular and unitary

matrices.

In cases k = 0 or k = �1, the space component is non compact (open) and the universe

is respectively called \
at" or \hyperbolic".

On intuitive grounds, and independently of experimental �ts, one could argue that the

model with k = 1 is preferable to the others since Friedman's equation was derived by

assuming homogeneity of the stress-energy, something that is hard to achieve in an open

universe if the total quantity of matter is �nite.

2.1.3 Friedman's Equation

This equation is obtained by writing Einstein's equation G
��

= 8�T
��

where T
��

is the

stress energy tensor of a perfect 
uid and where G
��

is the Einstein tensor associated with

the above metrics.

The average local energy splits into three parts :
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� Vacuum contribution �
vac

= �
8�G where � is the cosmological constant,

� Radiation contribution �
rad

such that R4(t)�
rad

(t) = const: = 3
8�G

C
r
,

� Averaged matter contribution �
m
such that R3(t)�

m
(t) = const: = 3

8�G
C
m
,

The evolution of R(t) is governed by the Friedman's equation

1

R
2
(
dR

dt

)2 =
C
r

R
4
+
C
m

R
3
�

k

R
2
+

�

3

It is convenient to introduce the conformal time � , de�ned, up to an additive constant by

d� =
dt

R

This variable is natural, both geometrically (it gives three-dimensional geodesic distances)

and analytically (as we shall see later). The quantities C
r
, C

m
and � have dimensions L2,

L, L�2 respectively. In order to replace R by a dimensionless quantity, we introduce the

characteristic length scale of matter

�
c
=

4

9C2
m

and replace R(�) by the reduced dimensionless temperature [2]

T (�) =
1

�
1=2
c R(�)

(1)

With this new variable, Friedman's equation becomes

(dT=d�)2 = �T
4 +

2

3
T
3 � kT

2 +
�

3
(2)

where

� =
�

�
c

and

� = C
r
�
c

are two constant dimensionless parameters.

The reason for calling T the \reduced dimensionless temperature" is that it is propor-

tionnal to the temperature ~
T of the black body radiation. Indeed, �

rad
= 4� ~T 4 where �

is the Stefan-Boltzmann constant. Since �
rad

= 3
8�G

��
c
T
4, one �nds

~
T
4 =

3

8�G

��
c

4�
T
4 (3)

This may be the right place to recall that Lemâ�tre ([1]) did, long ago, an analytic

study of the solutions of Friedman's equations; his discussion, made in terms of R and

t involves, of course, elliptic functions, but it is only when we express the cosmological

quantities in terms of T (�) (the reduced temperature, as a function of conformal time) that

these quantities can be written themselves as elliptic functions with respect to a particular

lattice (the associated Weierstrass P function appears then naturally). The fact that such

a direct link with the theory of Weierstrass can be established should be clear from the

fact that, with our parametrization, the right hand side of equation 2 is a polynomial of

degree four.
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The Hubble function decribing the rate of expansion is de�ned, as usual, by H =

R
�1(dR=dt) and can be written, in terms of T (�) as

H(�) = ��
1

2

c

dT

d�

Another useful quantity is the deceleration function q = �R(dR=dt)�2(d2R=dt2) that
can be expressed in terms of T (�) as follows:

q =
��

3
+ 1

3
T
3 + �T

4

�

3 � kT
2 + 2

3T
3 + �T

4

Actually, the choice of the sign (and of the name) turns out to be a historical mistake,

since the recent bounds on the cosmological constant lead to a negative value for q (an

accelerating expanding universe).

By multiplying Friedman's equation by �
c
=H

2, one obtains the famous relation :

1 = 

r
+


m
+


k
+ 
� (4)

with



k

= �kT 2 �c

H
2

(5)



m

=
2

3
T
3 �c

H
2

(6)


� =
�

3

�
c

H
2

(7)



r

= �T
4 �c

H
2

(8)

Notice that the famous \cosmic triangle" of [4] { a kind of cosmic Dalitz' plot, becomes

a triangle only if one decides to forget the radiation term (then, indeed, 1 = 

m
+


k
+
�).

In terms of the usual temperature ~
T , the radiation terms reads:



r
=

32�G

3

�
~
T
4

H
2

(9)

2.1.4 Description of the History of the Universe by the Reduced Temperature

Function T (�)

� Rather than using R(t), we describe [2] the history of the universe by the function

T (�). This function can be intuitively thought of as a dimensionless inverse radius; it

is proportionnal to the usual temperature ~
T . Because of the phenomenon of expan-

sion, these quantities T and ~
T decrease with � . The argument � itself, a dimensionless

arc length, measures time : for instance, if the spatial universe is (hyper)spherical,

� is a measure (in radians) of the length of the arc spanned by a photon that was

produced at the big bang. A given solution (a given \history" of a { dimensionless

{ universe) is fully characterized by the solution of a di�erential equation depending

on the two dimensionless parameters � and �. Of course, one has also to specify

some initial value data (one takes T (�)!1 when � ! 0). As we shall see in a later

section, T (�) is a particular elliptic function; the history of our universe is then also
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fully encoded by the two Weierstrass invariants (g2; g3), or, equivalently, by the two

periods !1; !2 of this elliptic function. The Weierstrass invariants are given, in terms

of parameters k, � and �, by the algebraic relations

g2 =
k
2

12
+
��

3
: (10)

g3 =
1

63
(k3 � 2�)�

��k

18
: (11)

The formulae giving the two periods !1; !2 in terms of the cosmological parameters

k, � and � (or g1; g2) involve elliptic integrals and will be given later.

� Dimensional quantities are obtained from T (�) thanks to the measurement of a single

function having dimensions of a length. Such a function is usually the Hubble function

H = H(�). The behaviour of R(t) is given by the two parametric equations R(�) and

t(�). As we shall see later, in all cases of physical interest, t(�) reaches a logarithmic

singularity for a �nite conformal time �
f
(the universe expands forever, but as t!1

the arc length associated with the path of a single photon goes to a �nite value �
f
).

� Finally, it remains to know \when" we are, i.e., the age of the universe. This can

be expressed in terms of the dimensionless quantity �
o
(a particular value of �) or,

more conventionally, in terms of t
o
= t(�

o
). Experimentally, one measures the Hubble

\constant" H
o
= H(�

o
), i.e., the value of the function H(�), now.

2.1.5 Cosmological Quantities

We just give here a list of most cosmological quantities of interest.

Dimensionless Quantities We have the constant parameters �, �, k = 0;�1, the

time-dependent dimensionless densities 

k
(�), 
�(�), 
m

(�), 

r
(�) and the reduced tem-

perature function T (�). Of interest also is the deceleration function q(�). Of course, the

conformal time � itself is a non-constant (!) dimensionless quantity. The black-body tem-

perature ~
T (temperature of the blackbody microwave radiation, experimentally expressed

in degree Kelvin ) is itself dimensionless { see our remark at the beginning of this section.

It is proportional to the dimensionless reduced temperature T (or to the inverse radius

R).

Dimensional quantities

� The Hubble function H(�). This quantity is usually chosen to �x the length scale.

� The critical length scale �
c
. It can be thought of as giving a measure of the \total

mass" of the universe. More precisely, if the universe is spatially closed and has

the topology and metric of a 3-sphere, its total mass is M = 4�2R3
�
m

so that

�
c
= ( �

2GM )2.

� The radius R. Intuitivelly, it is a measure of the \mesh" of our spatial universe.

� The age t of the universe (cosmic time).
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2.1.6 Expression of the Cosmological Quantities in Terms of the Hubble Func-

tion H and of the Dimensionless Densities 
�;
k
;


m
;


r

Since most experimental results are expressed in terms of the dimensionless densities


�;
k
;


m
;


r
, we express all other cosmological quantities of interest in terms of them.

Typically, dimensional quantities also involve the value of the Hubble function H(�). All

these formulae can be obtained by straightforward algebraic manipulations.

Constant dimensionless quantities (parameters)

� =
27

4


�

2
m

j
3
k
j

(12)

� =
4

9



r
j


k
j


2
m

(13)

Time-dependent dimensionless quantities (assuming k 6= 0)

T = �k
3

2



m



k

=
3

2



m

j

k
j

(14)

q =


m

2
� 
� +


r
= 3



m

2
+ 


k
+ 2


r
� 1 (15)

The temperature of the CMB radiation:

~
T
4 =

3

8�G

1

4�


r
H

2

The conformal time � itself can be found numerically, once a value of T is known, by

solving the (non algebraic) equation expressing T as a function of � (see the next section).

Constant dimensional quantities (parameters)

� = 3H2
� (16)

�
c
=

4

9

j

k
j3


2
m

H
2 (17)

C
m
=



m

j

k
j3=2H

C
r
=



r

j

k
j2H2

Time-dependent dimensional quantities (assuming k 6= 0) Besides the Hubble

\constant" H itself, one has to consider also the radius

R =
1

T�
c

1=2
(18)

the cosmic time (the age of the universe corresponding to conformal time �) given by

t(�) = �
c

�1=2
Z

�

0

d�
0

T (� 0)
(19)

8



2.2 Dimensions of the Cosmological Quantities

In our system of units, all quantities are either dimensionless or have a dimension which

is some power of a lengh ([cm]). We gather all the relevant information as follows:

t � R � C
m
� [cm]

G � C
r
� [cm2]

H � k
B
� energy � [cm�1]

� � �
c
� [cm�2]

�
vac

� �
rad

� �
m
� � � [cm�4]

Here � denotes the Stefan constant (remember that degrees Kelvin are dimensionless).

Finally we list the dimensionless quantities:



m
� 
� � 


k
� 


r
� q � T � ~

T � � � � � � � [cm0 = 1]
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3 EXPERIMENTAL CONSTRAINTS

3.1 Experimental Constraints from High-redshift Supernovae and Cos-

mic Microwave Background Anisotropies

In general we shall add an index o to refer to present values of time-dependent quanti-

ties (like H
o
, 
o

k
, 
o

r
, 
o

m
, 
o

�, qo, To or ~
T
o
). Remember that k; �; �;�;�

c
are constant

parameters.

The analysis given by [8] (based on experimental results on the latest cosmic microwave

background anisotropy and on the distant Type Ia supernovae data [5] [6]) gives 0:13 <


o

m
< 0:43 and +0:40 < 
o

� < +0:80. In order to stay on the safe side, we do not

restrict ourselves to the more severe bounds that one can obtain by performing a combined

likelihood analysis that would use both sets of data coming from anisotropy of CMB

radiation and distant type Ia supernovae.

Moreover, many experiments, nowadays, give a present value of the Hubble function

close to H
o
= h 100 km sec

�1
Mpc

�1, with h ' 0:66, so that H�1
o

' 14:2 � 109 yr =

13:25 � 1027 cm. This is the value which we shall use in our estimations.

3.2 Implications of ExperimentalConstraints on Friedman-Lemâ�tre Pa-

rameters

With ~ = c = 1, the value of the Stefan-Boltzmann constant is � =
�
2
k
4

B

60
= 59:8cm�4, k

B

is the Boltzmann constant and the Newton constant is G = 2:61� 10�66cm2. Using the

above value for H
o
and formula 9 (with ~

T
o
= 2:73K), we obtain 
o

r
' 5:10� 10�5.

Using now the \cosmic triangle relation" (equation 4) together with the experimental

bounds on 
o

m
and 
o

� previously recalled, one �nds �0:23 < 
o

k
< 0:47. Remember that,

with the present conventions, 

k
< 0 when k = +1.

The formula 16 given in the last section leads to +0:68� 10�56 cm�2
< � < +1:36�

10�56 cm�2.
In order to obtain good estimates for the remaining quantities, one would need a

better measurement of the curvature density 
o

k
. Indeed, formulae 12, 13, together with

the previously given bounds on 
o

k
only imply the following for the dimensionless constant

parameters: � < 6:3� 10�4 and � > 0:44.

Notice that � is quite sensitive to the independent values of 
o

m
and 
o

� (indeed,



k
, appearing in the denominator of equation 12, can be very small); for instance, the

values 
o

m
= 0:13, 
o

� = 0:40 lead to � = 0:44 but 
o

m
= 0:13, 
o

� = 0:80 lead to � =

266:68. By the way, one should stress the fact that the behaviour of analytic solutions of

Friedman's equations is essentially determined by the value of the (dimensionless) reduced

cosmological constant �, which can be rather \big", even when the genuine cosmological

constant � (which is a dimensional quantity) is itself very \small".

As already mentionned, present experimental constraints only imply � > 0:44, but

one should remember that 

k
' 1 � 


m
� 
� should be negative for a spatially closed

universe (k = +1); therefore, if, on top of experimental constraints on 

m

and 
� we

assume that we live in a spatially closed universe (a {reasonable{ hypothesis that we shall

make later, for illustration purposes) then 

m
+
� > 1 and the constraint on �, as given

by equation 12 is more tight; an elementary variational calculation shows then that the

smallest possible value of �, taking into account both the experimental constraints and

the hypothesis k = +1, is obtained when both 

m

and 
� saturate their experimental

bounds (values respectively equal to 0:43 and 0:8), so that 

k
� �0:23 and � � 82:
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One should not think that the value of � could be arbitrary large: we shall see a little

later (next subsection) that, for experimental reasons, it has also to be bounded from

above (condition �� < � < �+).

Using equations 14, 15, one obtains easily the bounds T
o
> 0:41, �0:75 < q

o
< �0:18

and �
c
< 1:6 � 10�56cm�2 for the present values of the reduced temperature T and

deceleration function q and for the critical length scale �
c
.

In view of the experimental results (
o

r
small and 
o

k
compatible with zero), one maybe

tempted to make the simplifying hypothesis 1 = 
o

m
+
o

�, i.e., set both terms 
o

k
and 
o

r
to

zero in the relation 1 = 

m
+


k
+
�+


r
; notice however that assuming the vanishing of



k
+


r
at all times (without assuming the vanishing of each term, individually) is totally

impossible, as these densities are not constant and it is easy to see, from the de�nition of

these quantities, that such a relation can only hold at at a single moment; it is obvious

that the radiation contribution, 
o

r
, although small, is not strictly zero. Moreover, putting

arti�cially the constant k to zero is certainly compatible with the present experimental

data, but one should be aware of the fact that the curvature density 

k
is not a constant

quantity and that setting it to zero at all times is an arti�cial simpli�cation that was

probably not justi�ed when the universe was younger : : :

3.3 A Curious Coincidence

The parameters C
m
and C

r
appearing in Friedman's equation, and measuring respectively

the matter contribution and radiation contribution to the average local energy, are, a

priori , independent quantities. For this reason, the relation between ~
T (the temperature

of the cosmological background radiation) and T (the reduced temperature) involves C
m

and C
r
.

~
T
4 =

3

8�G

��
c

4�
T
4 =

3

8�G

C
r

24

34C4
m

4�
T
4

One may consider he special case of a universe for which the two functions T (�) and
~
T (�) coincide; this amounts setting

C
r

C
4
m

= 54�G� = 54�G
�
2
k
4
B

60
=

9

10
�
3
Gk

4
B

In this case, the present values of the densities 
o

m
and 
o

� are no longer independent:


o

r
= 5:1� 10�5 is, as usual, exactly known since ~

T
o
= 2:73K is known; again, as usual,

we have 
o

m
= 2

3
j
o

k
jT

o
but if we measure 
o

m
(for instance) and assume T

o
= ~
T
o
, we �nd

the value of j
o

k
j. Choosing then, for instance, k = +1 (a closed spatial universe), so that


o

k
= �j
o

k
j, we deduce 
� from the equation 
o

k
+
o

m
+ 
o

� + 
o

r
= 1.

We do not see any theoretical reason that would justify to set T = ~
T , since these two

quantities could very well be di�erent by several orders of magnitude (even with the rather

small value of the radiation density 
o

r
), nevertheless : : : by a curious coincidence, if one

takes the two densities 
o

m
and 
o

� to be numerically equal to their highest possible values

compatible with present experimental bounds (0:43 and 0:8), one �nds a value of T
o
equal

to 2:80; this is very near the experimental value 2:73 of the temperature ~
T
o
. We have no

explanation for this \cosmological miracle".

11



4 ANALYTIC BEHAVIOUR OF SOLUTIONS

4.1 Qualitative Behaviour of Solutions

Equation (2) can be written

(
dT

d�

)2 + V
�;k

(T ) =
�

3

with

V
�;k

(T ) = ��T 4 �
2

3
T
3 + kT

2

This is the equation of a one-dimensional mechanical system with \coordinate" T, potential

V
�;k

(T ) (shown in Fig 1) and total energy �=3. The kinetic energy beeing non negative,

the associated mechanical system describes a horizontal line in the (V (T ); T ) plane but

never penetrates under the curve V
�;k

(T ) (that would correspond to � imaginary). The

length of the vertical line segment between a point belonging to the curve and a point

with same value of T but belonging to the horizontal line �=3 (described by the associated

mechanical system) is a measure of (dT
d�

)2.

For a given value of � (the radiation parameter), and for k = �1, the curve V
�;k

(T ) has

typically two bumps (two local maxima). For k = 1 (closed universe), the right maximum

occurs for a positive value of T and V (T ) whereas, for k = �1 (hyperbolic case), this

maximum is shifted to T = 0 and V (T ) = 0. For k = 0 (
at case), the right maximum

disappears and we are left with an in
ection point at T = 0; V (T ) = 0.

In this paper,we almost always suppose that � is non zero; however, one should notice

that if � = 0, the curve V (T ) becomes a cubic (Fig. 2) and the left hand side maximum

disappears (it moves to �1 as � goes to 0).

Notice that �gure 1 describes only the qualitative features of our space-time history,

since, for reasonable values of � and � (�.e. values compatible with experimental con-

straints), the vertical coordinate of the left hand side maximum should be at least 1000

times higher than the vertical coordinate of the right hand side maximum.

The experimental constraints also show not only that � is positive (since 
� is) but that

it is bigger than ��=3 (the vertical coordinate of the right maximum) and, at the same time

much smaller than �+=3 (the vertical coordinate of the left maximum). Indeed, for small

values of �, the positions of the extrema (cf. next section) are given by �� ' k(1� 3�k)

and �+ ' 1
16�3

(1 + 12k�); the previous bounds on � show then directly that � > ��;
moreover, the inequality � < �+ is equivalent to 
3

r
<

27
256


4
m
=
�, and this clearly holds.

Unfortunately, this does not lead to a stringent constraint on � istself since the bound

� < 6:3� 10�4 only implies �+ > 2:5� 108.

The associated mechanical system is therefore such that it describes an horizontal line

like the one displayed on Fig. 1. Typically, a given universe starts from the right of the

picture (T ! 1 corresponding to the big bang), moves to the left (slowing down), until

it reaches the vertical axis (T = 0). This actually takes place in a �nite conformal time

�
f
but, as we shall see, it corresponds to a cosmic time t ! 1, so that, for the universe

in which we live, history stops there. However, the solution can be continued for T < 0 (a

negative radius R) until the system bumps against V (T ) to come back to right in�nity;

the system then jumps to left in�nity, follows the horizontal line (to the right) till it bumps

on V (T ) again, and comes back. This round trip of the associated mechanical system is

done in a (conformal) time 2!
r
{ a period of the corresponding elliptic function. Let us

stress the fact that only the �rst part of the motion (from right in�nity to the intersection

with the vertical axis) is physically relevant for ordinary matter.

12
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Figure 1: Potential for the associated mechanical system. Case � 6= 0
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Figure 2: Potential for the associated mechanical system. Case � = 0

Since the radius R is proportionnal to 1=T (see equation 1), the discussion, in terms

of R is of course di�erent: the system starts with R = 0 (big bang), and expands forever;

moreover the expansion speeds up in all three cases k = �1, k = 0. The only particularity

of the case k = 1 is that there is an in
exion point (coming from the existence of a positive

right hand side maximum for the curve V (T )) : the expansion speeds up anyway, but there

is a time �
I
for which the rate of expansion vanishes.

4.2 The Elliptic Curve Associated with a Given Cosmology

4.2.1 General Features

Let us call Q(T ) the fourth degree polynomial that appears at the right hand side of

Friedman's equation (eq. 2). Let T
j
be any one of the (possibly complex) roots of the

equation Q(T ) = 0, then the fractional linear transformation

y =
Q
0(T )

4

1

T � T
j

+
Q
00(T )

24
(20)

brings (2) to the form

(
dy

d�

)2 = P (y)
:

= 4y3 � g2y � g3 (21)

where g2 and g3 are the two Weierstrass invariants given in eqs. (10,11). The solution to

the previous equation is well known: y = P(� ; g2; g3) where P is the elliptic Weierstrass

function associated with the invariants g2 and g3. One should remember that, given a

lattice L in the complex plane, an elliptic function f with respect to L is non constant

meromorphic function that is bi-periodic, with respect to L (so that f(� + u) = f(�)

whenever u belongs to the lattice L). It is known (since Liouville) that if a is an arbitrary

14
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Figure 3: An elementary periodicity cell

complex number (including in�nity), the number of solutions of the equation f(�) = a is

independent of a, if multiplicities are properly counted; this number is called the order

of f . It is useful to know that any rational function of an elliptic function is also elliptic

(with respect to the same lattice) but that its order will coincide with the order of f only

if the transformation is fractional linear (like the transformation (20)). Finally, one should

remember that the order of an elliptic functions is at least two and that the Weierstrass P

function corresponding to a given lattice is de�ned as the elliptic function of order 2 that

has a pole of order 2 at the origin (and consequently at all other points of L) and is such

that 1=�2 � P(�) vanishes at � = 0. The two elementary periods generating the lattice L

can be expressed in terms of g2 and g3, but conversely, the Weierstrass invariants can be

expressed in terms of the elementary periods of the lattice L.

These old theorems of analysis lead directly to the fact that T (�) is an elliptic function

of order 2 and that other quantities that are rational functions of T (like the Hubble

function H , the deceleration function q or all the cosmological densities 

m
, 


r
, 


k
, 
�)

are also elliptic with respect to the same lattice (but they are not of order 2). In this sense,

one can say that our universe is fully described by the elliptic curve x2 = 4y3 � g2y � g3

characterized by the two Weierstrass invariants g2, g3, or, alternatively, by two elementary

periods generating the lattice L.

In this (physical) case, the elementary periodicity cell is a rhombus (�gure 3) with

vertices f0; !
r
� i!

i
; 2!

r
; !

r
+ i!

i
g. Another standard notations for periods are 2!2

:

= 2!
r
,

�2!3
:

= !
r
+ i!

i
and

�2!1
:

= !
r
� i!

i

(so that !1+!2+!3 = 0). The transformation expressing the half-periods !1;2;3 in terms

of the Weierstrass invariants g2 and g3 (or conversely) can be obtained, either from a direct

numerical evaluation of elliptic integrals (see below) or from fast algorithms described in

[11]; one can also use the Mathematica function WeierstrassHalfPeriods[fg2; g3g] as

well as the opposite transformation WeierstrassInvariants[f!1; !2g]. In the case � = 0,

the value � = !
r
turns out to be a global minimum of T (�), therefore another possibility

to get !
r
in that case is to �nd numerically the �rst zero of the equation dT (�)=d� = 0.

4.2.2 Neglecting Radiation : the Case � = 0

When � = 0, the two poles of T (�) coincide, so that the dimensionless temperature, up

to shift and rescaling, coincides with the Weierstrass P-function iself (the fractional linear

15



transformation 20 takes the simple form T = 6y+k=2). Notice that P is an even function

of � .

In that case

T (�) = 6[P(� ; g2; g3) + k=12] (22)

A typical plot of T (�) for experimentally reasonable values of the cosmological parameters

is given in �gures 4 (closed universe: k = 1) and 5 (open universe: k = �1).

In both cases, the physically relevant part of the curve is given by the interval 0 < � <

�
f
since � = 0 corresponds to the big bang (in�nite temperature) and � = �

f
to the end of

conformal time: the cosmic time t = t(�) reaches a logarithmic singularity when � ! �
f
,

so that when t! 1, the arc length described by a photon born with the big bang tends

toward the �nite value �
f
; for values of � compatible with recent observations, this limit

is strictly less than 2� so that it will never be possible to see the \back of our head", even

if the universe is closed and if we wait in�nitely many years : : : .

Notice that both curves show the existence of an in
exion point denoted by �
I
on the

graphs; however, in the case k = �1 (open universe), this in
exion point is located after

the end of conformal time (� > �
f
) and is therefore physically irrelevant. The existence

of such a point is of interest only in the case of a spatially closed universe. Notice that in

that case, the experimental observations tell us that the present value �
o
of � (i.e., todays'

date) is bigger than �
I
(and, of course, smaller than �

f
).

The values �
f
< � < �

g
correspond to a classicaly forbidden region (negative dimen-

sionless temperature). The values �
g
< � < 2!

r
correspond to universe in contraction,

ending with a big crush : : : Finally, one should remember that T is a (doubly) periodic

function, so that the same analysis can be performed in all the intervals [2p!
r
; 2(p+1)!

r
].

Let us repeat that � is a conformal time and that t ! 1 when � ! �
f
, so that, in

both cases k = �1 we are indeed in a ever expanding universe starting with a big bang.

The curve obtained for k = 0 has the same qualitative features, but for the fact that the

in
ection point moves to the end of conformal time: �
I
= �

f
in that case.

The shape of T (�), as given by �gures 4 and 5 is in full agreement with the qualitative

discussion given in the previous section. Such plots were already given in [2] where Weier-

strass functions had been numerically calculated from the algorithms obtained in the same

reference. The same plots can now be obtained easily using for instance Mathematica, (the

last versions of this program incorporate routines for the Weierstrass functions P ; � and

�). Note, however, that intensive calculations involving such functions should probably

make use of the extremely fast algorithms described in reference [11]; these algorithms

use, for the numerical evaluation of these functions, a duplication formula known for the

Weierstrass P function. Moreover, evaluation of elliptic integrals (for instance caculation

of periods in terms of invariants) can also be done by an iterative procedure (based on

classical properties arithmetic-geometric mean), this is also described in reference [11].

The duplication formula reads:

P(2z) = �2P(z) +

�
6P3(z)� g2=2

�2
4 [4P3(z)� g2P(z)� g3]

Therefore, one obtains a relation between the values of the reduced temperature T at

(conformal) times � and 2� which, in the case k = +1, reads

T (2�)�
1

2
= �2(T (�)�

1

2
) +

[(T (�)� 1
2
)3 � 3

2
]2

4[4(T (�)� 1
2
)3 � 3(T (�)� 1

2
)� (1� 2�)]
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Figure 4: Evolution of the reduced temperature. Closed case.
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Figure 5: Evolution of the reduced temperature. Open case.

When the universe is very young (� near zero), one may approximate the P(z) function

by 1=z2 and therefore the reduced temperature T (�) by 6=�2.

It may be useful to notice, at this point, that when the cosmological constant is zero

(so that we have also � = 0 for the reduced cosmological constant), one obtains

T (�) =
3

2 sin2 �

2

whereas, when the cosmological constant � is equal to the critical value �
c
(so that � = 1),

one obtains

T (�) = 1 +
3

2 sinh2 �

2

As already discussed previously, recent measurements imply that � > 1, so that T (�)

is given by formula 22.
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4.2.3 Not Neglecting Radiation : the Case � 6= 0

This case, technically a little bit more di�cult, is detailed in Appendix 1.

4.3 Determination of all Cosmological Parameters: a Fictitious Case

Here we summarize the procedure that should (ideally!) be followed, in order to specify

all cosmological parameters of interest.

4.3.1 A Simple Procedure

� From experimental results on the present values of the Hubble function H
o
and of the

temperature ~
T
o
of the cosmic background radiation, calculate the radiation density


o

r
(use formula 9).

� Improve the experimental bounds on the present values of matter density 
o

m
and

cosmological constant density 
� (so, without assuming that k is zero, of course).

� From the \Cosmic triangle relation" (eq. 4) obtain the present value of the curvature

density function 
o

k
. The sign of this quantity determines also the opposite of the

constant k = �1 (or 0).

� From these results on densities 
's, compute the dimensionless constant parameters

� and � (use equations 13 and 12).

� From � and � compute the two Weierstrass invariants g2 and g3 that characterize

the elliptic curve associated with our universe (use equations 10 and 11).

� The present value of T
o
= T (�0) of the reduced temperature is obtained from equation

14.

� If one decides to neglect radiation (� ' 0), one can plot directly the reduced

temperature in terms of the conformal time T (�) = 6[P(� ; g2; g3) + 1=12], where

P is the Weierstrass elliptic function, by using, for instance, Mathematica. The

present value �
o
of conformal time is obtained by solving numerically the equation

T
o
= 6[P(�

o
; g2; g3) + 1=12]. Other interesting values like �

f
(the end of confor-

mal time) or �
I
(in
ection point, only interesting if k = +1) can be determined

numerically; for instance �
f
is obtained, with Mathematica, thanks to the function

FindRoot (remember that �
f
is the �rst positive zero of T (�)). The value of the

half-periof !
r
can be found by evaluation of an elliptic integral but it is simpler

to determine it by solving numerically the equation
dT (�)

d�

= 0 since � = !
r
corre-

sponds to a global minimum. Another possibility, still with Mathematica, is to use

the function WeierstrassHalfPeriods[fg2; g3g] (this function returns a set of two

elementary periods, and twice our !
r
coincides with the real part of one of them).

� If one decides to keep � 6= 0, one has to use the results of Appendix 1 and determine

�
f
and �

g
�rst; these two real zeros of T (�) (within a periodicity cell) are given by

the elliptic integrals given in Appendix 1; they have to be evaluated numerically (the

value �
g
was just equal to 2!

r
� �

f
in the case with no radiation, but here, it has

to be determined separately). The dimensionless temperature T (�) is then given, in

terms of the Weierstrass � function, by formula 32.

� In all cases, the present value of the deceleration function (a bad name since it is

experimentally negative!) q
o
is given by equation 15.
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Figure 6: Evolution of the reduced temperature in a neighborhood of �
o

� The value of Hubble constant allows one to determine all the dimensional quantities,

in particular the critical length parameter �
c
(formula 17), the cosmological constant

� (= ��
c
), and the present values of the the cosmic scale (or \radius") R

o
(formula

18) and of the cosmic time t
o
(formula 19).

4.3.2 An Example

Here we follow the previous procedure assuming fully determined values for the Hubble

constant and density parameters 

m

and 
�. Of course, such precise values are not

yet experimentally available and we have to make a random choice (compatible with

observational bounds) in order to illustrate the previous \simple procedure" leading to

the determination of all cosmological parameters of interest. In other words, what we are

describing here is only a possible scenario. For simplicity reasons; we shall neglect the

in
uence of radiation (so � ' 0).

We take experimental densities 

m

= 0:4 and 
� = 0:8. Then 

k
= �0:2 and

k = +1. The reduced cosmological constant is � = 108. The Weierstrass invariants are

g2 = 1=12 and g3 = �1:00463. The evolution of the dimensionless temperature is T (�) =

6P(�; fg2; g3g)+1=12 and its present value turns out to be equal to T
o
= 3; this is a curious

coincidence (see section 3.3) since T
o
has no reason, a priori , to be equal to the temperature

of the cosmological black body radiation ~
T
o
. The present value of the conformal time,

obtained by solving numerically the equation T (�
o
) = T

o
is �

o
= 1:369. The end of

conformal time, obtained by solving numerically the equation T (�
f
) = 0 is �

f
= 1:858.

The (real) half-period !
r
of the function T (�) may be obtained by solving numerically the

equation T (�)0 = 0 is !
r
= 2:662. The conformal time for which T (�) has an in
exion point

is obtained by solving numerically the equation T (�)00 = 0 and is �
I
= 1:691. Notice that in

that particular universe, we have �
o
< �

I
(< �

f
), so that we have not reached the in
exion

point, yet. Using now the value of the Hubble constant H
o
= (13:25 � 1027)�1cm�1,

we �nd a characteristic length scale of matter equal to �
c
= 1:266� 10�58cm�2 so that

the cosmological constant itself is equal to � = 1:367 � 10�56cm�2. Finally we �nd

the cosmic scale R
o

:

= R(�
o
) = 2:96 � 1028 cm = 3:14 � 1010 yrs and the cosmic time

t
o
= t(�

o
) = 1:24 � 1028cm. Figure 6 gives the behaviour of T (�) in a neighborhood of

�
o
In this example we neglected the in
uence of radiation described by the dimensionless

parameter � (given by equation 13); using the experimental value of the density parameter



r
= 5:1 � 10�5, one �nds � = 2:77 � 10�5. This does not modify T

o
but modi�es the

values of the Weierstrass invariants g2 and g3; also, the behaviour of T (�) is not the same.
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Taking this value into account together with the results of Appendix 1 leads to a slight

modi�cation of the values of �
o
and therefore of t

o
.
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5 INFLUENCE OF THE COSMOLOGICAL CONSTANT

ON THE REDSHIFT. LARGE SCALE STRUCTURES

AND GEOMETRY OF THE UNIVERSE.

5.1 Cosmological Constant Dependence of the Redshift Function

We shall now discuss the redshift, z, as function of �
o
and of the di�erence

� = �
o
� �

where � is parameter time (conformal time) � of the emitter and parameter time, and �
o

the parameter time of the observer. The redshift is given by

z =
R(�

o
)

R(�)
� 1 =

T (�)

T (�
o
)
� 1

Assuming, as before, that we are in the situation � > 1; � = 0, which is compatible with

recent observations, we obtain immediately, from equation 22, the expression

z = C[P(�
o
� �) +

1

12
]� 1 (23)

with

C = [P(�
o
) +

1

12
]�1 (24)

Remember that the Weierstrass elliptic function P is characterized by the two Weierstrass

invariants g2 = 1
12 and g3 = 1

63
(k3 � 2�). In order to illustrate the in
uence of the

cosmological constant on the behaviour of the redshift function, we continue our previous

example (section 4.3.2), therefore taking k = +1 (a spatially closed universe), �
o
= 1:3694,

� = 108 and plot z as a function of � (see �gure 7). The value � = �
o
(i.e., � = 0)

corresponds to a photon that would have been emitted at the Big Bang whereas � = 0 (i.e.,

� = �
o
) corresponds to a photon emitted by the observer himself (no redshift). The dashed

curve (the lower curve) gives the corresponding redshift when the cosmological constant

is absent (� = 0). It is clear from these two curves that the in
uence of the cosmological

constant becomes stronger and stronger when the geodesic distance � increases.

5.2 Observer Dependence of Redshift Values and Large Scale Geometry

of the universe

As already announced in the introduction, we now want to consider the problem of com-

parison of \redshift charts": Given two observers, far apart in the universe, how do we

compare the redshift that they will record if they look at the same astronomical object ?

Actually, one may consider (at least) two very di�erent situations. The �rst is to

assume that the two observers perform their measurement at the same time (a meaningful

notion since we are in a homogeneous space-time), in that case, it is clear that the photons

that they are receiving were not emitted at the same time by the cosmological source

that they are studying. The other situation is to assume that both are interested in the

same cosmological event (a star belonging to a distant galaxy turning to a supernova, for

example) and our two observers record the redshifted light coming from this event when

the light reaches them (but in general this light will not reach them at the same time).
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Figure 7: Cosmological constant dependence of the redshift function

5.2.1 Comparison of Measurements Made at the Same Time

We �rst suppose that both observers perform their observation at the same time. It is

natural to specify events by a pair (�; S) where S is a point in space (Sun for instance)

and � a particular value of the conformal time of the universe. Astronomers on earth

(S), nowadays (�
o
), may decide to observe and record the redshift z of an astronomical

object X (a quasar, say). At the same time �
o
, astronomers located in the neighborhood

of a star P belonging to a distant galaxy may decide to observe the same astronomical

object X and record its redshift Z. The problem is to compare z and Z. Of course both

z and Z are given by the previous general formula expressing redshift as a function of

the time di�erence between emission and reception, but this value is not the same for S

and for P . In order to proceed, we need a brief discussion involving the geometry of our

three-dimensional space manifold.

For de�nitness, we suppose that we are in the closed case (k = 1), i.e., the spatial

universe is a three-sphere S3. The reader will have no di�culties to generalize our formulae

to the open case (essentially by replacing trigonometric functions by the corresponding

hyperbolic ones). The fact that universe expands is taken into account by the evolution

of the reduced temperature as a function of conformal time � and, as far as geometry is

concerned, we may analyse the situation on a �xed three-sphere of radius 1. The choice of

the point P { we shall call it the \Pole" but it is an arbitrary point { allows one to de�ne a

notion of equator and of cosmic latitude: the equator, with respect to P , is the two-sphere

(a usual sphere) of maximal radius, centered on P and the cosmic latitude `(S) of the Sun

S is just the length of the arc of great circle between S and the equator; this great circle

is the geodesic going through the two points P and S (that we suppose not antipodal!).

The astronomical object X under simultaneous study of P and S is also characterized by

a cosmic latitude `(X). It is obvious that `(P ) = �

2
. It is also clear that the (conformal)

time di�erence � = �
o
� � between observation (by S at time �

o
) and emission of light

(by X at time �) is nothing else than a measure of the arc of geodesic de�ned by the two

points S and X on the unit three-sphere. We have therefore a \triangle" PXS whose

\edges" are arcs of great circles and the lengths of these three arcs are b = �

2
� `(S)
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(from P to S), a = �

2 � `(X) (from P to X) and c = � (from S to X). The last piece

of information that we need is a measure � of the angle1, as seen from Sun (S) between

the direction of P and the direction of X . It is a priori clear (draw a triangle !) that

there is a relation between `(S), `(X), � and �, a relation that generalizes the well known

formula a2 = b
2+ c

2 � 2bc cos� valid for an arbitrary triangle in euclidean space. Here is

the formula that we need:

sin `(X) = cos � sin `(S)� sin � cos� cos `(S) (25)

The proof of this formula is given in Appendix 2 and uses the fact the three-sphere S3

carries a group structure: it can be identi�ed with SU(2) or with the unit sphere in the

non-commutative �eld of quaternions H . The uninterested reader may take the above

formula for granted but the technique used in our proof is of independent interest and

may be used by the reader to solve problems of similar nature.

The formula 25 gives in particular the (conformal) time di�erence � between S and X ,

when all the points of our spatial universe are characterized in terms of cosmic latitude

with respect to an arbitrary reference point P (the pole). The equation giving � should

be solved numerically in general, but notice that the equation simpli�es, and give rises to

an analytic expression, when we choose X on the equatorial two-sphere de�ned by P . In

that particular case, `(X) = 0 and

� = arctan(
tan `(S)

cos(�)
) (26)

Coming back to our problem of comparing redshifts, we �nd that the redshift of the

object X , as observed by P at conformal time �
o
, is

Z = C[P(�
o
� (�=2� `(X))) +

1

12
]� 1

with C still given by equation 24, whereas the redshift of the same object X , as observed

by S (Sun) at the same time �
o
is given by equation 23, with � determined by equation

25; as before, `(X) and `(S) refer to the cosmic latitude of X and S with respect to the

reference point P (pole) and � is the angle between the sighting directions SP and SX .

In the particular case of an astronomical object X belonging to the two-sphere which

is equatorial with respect to the reference point P , the formulae can be simpli�ed: The

redshift of X as, recorded by P is then

Z =
[P(�

o
� �=2) + 1

12
]

[P(�
o
) + 1

12
]

� 1 (27)

whereas, as recorded by S, it is

z =
[P(�

o
� arctan(

tan `(S)

cos(�)
)) + 1

12
]

[P(�
o
) + 1

12
]

� 1 (28)

The redshift of equatorial objectsX , as seen from P , can be numerically computed from

equation 27, and it is a direction-independent quantity. The redshift of the same equatorial

objects, as seen from S is clearly direction dependent. The existence of a direction-

independent signi�cative gap in the distribution of quasars, as seen from a particular point

1This symbol � has of course nothing to do with the one that was previously used to denote the radiation

parameter
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P of the Universe, around the value Z of the redshift, would certainly be an example of

a (remarkable) large scale structure, but such a gap would become direction dependent

as seen from another point S (the Sun); the previously given formulae would then be

necessary to perform the necessary change of redshift charts allowing one to recognize the

existence of these features. 2

Notice however that, in this particular example (X equatorial with respect to P ) we

have to suppose �
o
> �=2 since, in the opposite case, the light coming from X cannot be

recorded by P . Such an hypothesis is not necessarily satis�ed and actually is not satis�ed

when we use the values given in our numerical example of section 4.3.2 since we found,

in that case, �
o
= 1:369 < �=2. In such a situation, if we want to compare measurements

between S and P made at the same time, we have to look at an object X which is not

equatorial with respect to P but is such that its light can reach both S and P at time

�
o
; the �rst condition (observability from P ) gives �=2� `(X) < �

o
i.e., `(X) > �=2� �

o

whereas the second one (observability from S) reads � < �
o
, but � is still given by 25, so

that this condition translates as a condition on the angle � between the sighting directions

of X and of P as seen from S : this angle should be small enough with a maximal value

obtained by replacing � by �
o
in equation 25 and solving for �.

Another possibility to illustrate the above formulae is to compare the redshifts of X

measured at time �
o
from two positions S1 and S2 that should have small enough cosmic

latitudes since the two conditions on �1 and �2 (the geodesic distances between X and

these two positions) are �1 < �
o
and �2 < �

o
. To simplify the calculation we suppose that

S1 and S2 belong to the same meridian (going through P ) of our spatial hypersphere,

and call �1 (resp. �2) the angle made between the sighting directions of X and of P ,

as seen from S1 (resp. from S2). Using the technique explained in Appendix 2 (write

S2X = S2S1S1X), the reader will have no di�culty to prove the following formula that

generalizes equation 25:

�2 = arccos(cos(`(S2)� `(S1)) cos�1 � sin(`(S2)� `(S1)) sin �1 cos�1 (29)

To simplify even further the calculation, we takeX equatorial with respect to the reference

point P ; therefore the previous inequalities on �1 and �2, using equation 26, give, in turn,

the following two conditions on the cosmic latitudes of the two observers: tan `(S1) <

tan �
o
cos�1 and tan `(S2) < tan �

o
cos�2. The redshift z1 of X as measured by S1 is

still given by equation 23 but we can use the particular equation 26, valid for equatorial

objects, therefore z1 = C[P(�
o
� �1) +

1
12 ] � 1 with �1 = arctan(

tan `(S1)

cos(�1)
) whereas z2 =

C[P(�
o
� �2) +

1
12 ]� 1 and �2 given by equation 29.

In order to illustrate these results in the study of large scale structures, we choose,

for the cosmological parameters, the particular values given in section 4.3.2; furthermore

we �x the values of `(S1) (take �=6) and of �1 (take �=4). Then �1, is given by 26, and

the redshift of X , as measured by S1 is z1 = 3:42. The redshift z2 of X , as measured

by S2 is given by the above formula, but since everything else is �xed, it becomes a

function of the cosmic latitude `(S2) only. For de�nitness we choose P , S1 and S2 in

the same hemisphere. The following �gure (8) gives z2 as a function of `(S2) in the range

[�=6� �=12; �=6+ �=12]; of course this curve intersects the horizontal line z1 = 3:42 when

`(S2) = `(S1) = �=6.

2existence of such a gap was investigated in references [10]
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Figure 8: Dependence of the redshift function on the cosmic latitude of an observer

5.2.2 Comparison of Measurements Relative to a Single Event

We now examine the situation where both observers (take P and S) are interested in the

same cosmological event (a star belonging to a distant galaxy turning to a supernova, for

example) and record the redshifted light coming from this event when the light reaches

them (both measurements are not usually performed at the same time). Here we do not

have to assume that �
o
> �=2, even if X is equatorial with respect to P since the light

emitted by X will reach P anyway, in some future. Keeping the same notations as before,

the cosmological event of interest took place at conformal time �
o
� �, and the light will

reach P at time �
o
� � + �=2� `(X). The redshift measured by S is, as before, given by

equation 23 i.e.,

z =
[P(�

o
� �) + 1

12
]

[P(�
o
) + 1

12 ]
� 1

but the redshift measured by P is

Z =
[P(�

o
� �) + 1

12
]

[P(�
o
� � + �=2� `(X)) + 1

12
]
� 1
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A The Case With Radiation (� 6= 0). Analytic Solution.

General features When � 6= 0, the two poles of T (�) are distinct (and each of them

is of �rst order). The three roots e1; e2; e3 of the equation P (y) = 0 (21) add up to zero.

They are given by �A+B
2

� i

p
3
2
(A� B) and A+B, where

A = 1=2[g3+
p
��=27]1=3 (30)

B = 1=2[g3�
p
��=27]1=3 (31)

and where � is the discriminant

� = g
3
2 � 27g23 = 3�3�3�(�� �+)(�� ��)

with

�� =
1

32�3
(24k2�2 + 12k�+ 1� (8k�+ 1)3=2)

As �! 0, we have

�! 2�43�3�(1� �)

indeed, �+ !1 and �� ! 1 and, to �rst order in �, we have

�+ '
1

16�3
(1 + 12k�)

�� ' k(1� 3�k)

If � = 0 { something that is nowadays ruled-out experimentally but that used to be called

the \physical case" ! { two zeroes of P (�) coincide (then also, two zeroes of Q(�)); in

this situation one of the two periods becomes in�nite and the elliptic function degenerates

to trigonometric or hyperbolic functions. The analytic study, in that situation, is well

known.

We know assume that � 6= 0 and �� < � < �+ This is the situation that seems to

be in agreement with the recent experiments (see the discussion given previously). For

such values of �, the polynomial Q(T ) has two negative roots T
a
< T

b
< 0 (see �g 1).

Here g3 < 0 and the discriminant � is (strictly) negative, as well. The three roots of the

equation P (y) = 0 can be written

e1 = a� ib

e2 = �2a

e3 = a+ ib

with a > 0 and b > 0.

In the case � 6= 0, it is of course still possible to express T in terms of y (using the

fractionally linear transformation 20, with y = P(� ; g2; g3), the Weierstrass P-function.

This is actually not very convenient and it is much better to use either the Weiertrass

�-function �(�) or the Weierstrass �-function �(�).

The function �(�) { which is an odd function of � is not elliptic but it is de�ned by

d�

d�

= �P(�)

and the requirement that 1=� � �(�) vanishes at � = 0. Although � is not elliptic, the

di�erence �(� � u) � �(� � v) is elliptic of order 2, with poles at u and v, when u 6= v
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Figure 9: Typical evolution of the reduced temperature (case with radiation)

are two arbitrary complex numbers. In terms of �, the quantities R(�) and T (�) read

immediately: r
�

3
R(�) =

r
�

3

1

T (�)
= �(� � �

g
) + �(�

g
)� �(� � �

f
)� �(�

f
) (32)

where the two zeros of T (�), 0 < �
f
< �

g
< 2!

r
are given by (use �gure 1) :

�
f
=

Z 1

0

dTp
Q(T )

�
g
= �

f
+ 2

Z 0

Tb

dTp
Q(T )

The quantities T
a
and T

b
are de�ned on the graph given on �gure 1; they are numerically

determined by solving the equation V
�k
(T ) = �

3
(for instance use the function FindRoot

of Mathematica). The curve T (�), in the closed case, has the shape given by �gure 9 in

full agreement with the qualitative discussion given in section 4; of course, only the �rst

branch of this curve, from the big bang (� = 0) to the �rst zero �
f
of T (�) (the end of

conformal time) is physically relevant. It is instructive to compare this function with with

the � = 0 case (no radiation), given in �gure 4. In both cases, we see that the function

T (�) is negative between �
f
and �

g
(its next zero), but here, it becomes in�nite again for

a value �
f
+ �

g
of conformal time which is strictly smaller than 2!

r
; after this singularity,

we have a negative branch (a novel feature of the case with radiation) in the interval

]�
f
+ �

g
; 2!

r
[; the period, on the real axis is, as usual, denoted by 2!

r
. One shows that

2!
r
= �

f
+ �

g
+ �

c
where

�
c
= 2

Z
Ta

�1

dTp
Q(T )

Such plots were already given in [2] where Weierstrass functions had been numerically

calculated from the algorithms obtained in the same reference.

The same reduced temperature can be expressed in terms of the Weierstrass function

�(�). The even function �(�) is not elliptic either and is de�ned by

1

�(�)

d�

d�

= �(�)
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and the requirement that �(�) should be an entire function vanishing at � = 0. Although

not elliptic, the quotient
�(��u1)�(��u2)
�(��u3)�(��u4) is elliptic of order 2, with poles at u3, u4 and zeroes

at u1, u2, whenever u1; u2; u3; u4 are complex numbers such that u1 + u2 = u3 + u4 . In

terms of �, the quantity T (�) reads immediately:

T (�) = c:

�(� � �
f
)�(� � �

g
)

�(�)�(� � �
f
� �

g
)

where the constant c is given by

c = T
b

�
2(

�g+�f
2

)

�
2(

�g��f
2

)
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B Geometrical Relations in a Geodesic Triangle

The unit three-sphere S3 will be here identi�ed with the unit sphere in the non-commutative

�eld of quaternions H ' R4. To each X 2 S
3 � R4, X = (X0; X1; X2; X3) we associate

the quaternion

X = X0 +X1i+X2j +X3k (33)

We shall use the non commutative multiplication rules i2 = j
2 = k

2 = �1, ij = �ji = k,

jk = �kj = i and ki = �ik = j. The norm square of X is given by jX j2 = XX = X
2
0 +

X
2
1+X

2
2 +X

2
3 where X is the quaternionic conjugate of X ( with i = �i; j = �j; k = �k).

It is convenient to write X in a form analoguous to the representation X = e
i� =

cos � + i sin � of a complex number of unit norm; in this elementary situation, the angle

� is the geodesic distance (arc length) between the unit 1 and the complex X , whereas

i (unit norm) can be considered as the tangent (sighting) direction from 1 to X along

an arc of geodesic (since i represents the vector (0; 1) tangent to the unit circle at the

point (1; 0)). In the three dimensional situation, the unit 1 is a particular point of the

three-sphere S3 and we shall write, in the same way

X = e
X̂� = cos � + X̂ sin � (34)

where � is the geodesic distance (arc length) between the unit 1 and the quaternion X ,

while X̂ is a quaternion of square �1 and unit norm representing the three dimensional

vector tangent to S3 at the point 1 in the direction Y (sighting direction). More precisely,

let X̂
`
, ` = 1; 2; 3, be this three dimensional unit vector (X̂2

1 + X̂
2
2 + X̂

2
3 = 1) and call

X̂

:

= X̂1i+ X̂2k + X̂3k

Then X̂X̂ = �1 and X̂X̂ = +1. Comparing equations 33 and 34 gives

X̂
`
=

X
`

sin �
(35)

and

cos � = X0 (36)

Take �!u and �!v two three-dimensional vectors (not necessarily of unit norm), call

u = u1i + u2j + u3k, v = v1i + v2j + v3k the corresponding quaternions and û, v̂ the

corresponding normalized unit vectors. An elementary calculation, using the previous

multiplicative rules, leads to uv = � cos� + �!
u � �!v , but j�!u � �!v j = j�!u j j�!v j sin �, so

that

u v = j�!u j j�!v j(� cos�+ \�!u � �!v sin�)

where � is the angle between vectors �!u , �!v , and \�!u � �!v is the normalized vector product

of these two three-dimensional vectors. For normalized vectors, we have in particular

(uv)0 = � cos�, or better,

(uv)0 = +cos� (37)

Now, let P (a reference point \Pole"), S (Sun) and X (a quasar) three points of

S
3 � H ' R4 that we represent by quaternions also denoted by P , S and Y . We call `(S),
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resp. `(X), the latitude of S (resp. of X) with respect to P , counted positively whenever

P and S (resp. X) are in the same hemisphere, and counted negatively otherwise.

Let Y
:

= SX . From equations 35 and 36, we �nd that the geodesic distance � between

X and S (or between 1 and Y ) is such that cos � = Y0 so,

� = arccos(SX)0 (38)

and that the sighting direction from S to X is given by a unit vector Ŷ with three

components

Ŷ
`
=

SX
`

sin �
(39)

We have

Y = SX = cos � + Ŷ sin � = cos � +dSX sin �

Notice that, in the same way,

PS = cos(
�

2
� `(S)) + sin(

�

2
� `(S))dPS = sin(`(S)) + cos(`(S))dPS

and

PX = sin(`(X)) + cos(`(X))dPX
Using the fact that SS = 1, we remark that

PX = PSSX

This last equality provides the clue relating the three sides of our geodesic triangle. It

implies in particular (PX)0 = (PSSX)0. The left hand side is given by (PX)0 = sin(`(X))

and the right hand side comes from

(PS)(SX) = (sin(`(S)) + cos(`(S))dPS)(cos � + sin �dSX)

= sin `(S) cos � + cos `(S) sin �dPSdSX +

sin `(S) sin �dSX + cos `(S) cos �dPS
((PS)(SX))0 = sin `(S) cos � + cos `(S) sin �(dPSdSX)0

By equation 37, we know that the cosine of the angle � between vectors
�!
SP and

�!
SX,

respectively represented by the quaternions SP and SX, is given by the 0-component of

the quaternionic product [(SP )(dSX) = (dPS)(dSX).

To conclude, one �nds the following formula relating the lengths of the three sides of

the geodesic triangle SXP , together with the angle �:

sin(`(X)) = sin `(S) cos � � cos `(S) sin � cos�
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[1] G. Lemâ�tre: Ann. Soc. Sci. Bruxelles A 53 (1933), 51.

[2] R. Coquereaux and A. Grossmann: Ann. of Phys. 143, No. 2 (1982), 296-356. and

Ann. of Phys. Erratum 170 (1986) 490.

[3] M. D�abrowski and J. Stelmach: Ann. of Phys. 166 (1986), 422-442.

[4] N.A. Bahcall, J.P. Ostriker, S. Perlmutter and P. Steinardt: astro-ph/9906463,

Science 284 (1999) 1481-1488.

[5] Riess et al. AJ, 116, 1009 (1998)

[6] S.Perlmutter et al.: astro-ph/9812133, Astrophys. J. 517 (1999), 565-586. .

[7] S.Perlmutter et al.: astro-ph/9812473, Bull. Am. Astron. Soc. 29 (1997), 1351.

[8] G. Efstathiou et al.: astro-ph/9904356 To appear in Mon.Not.R.Astron. (1999).

[9] F.J. Dyson : Rev. Mod. Phys. 51, No 3 (1979), 447-460

[10] H.H. Fliche, J.M. Souriau and R. Triay: Astron. Astrophys. 108 (1982), 256-264

[11] R. Coquereaux, A. Grossmann and B. Lautrup: IMA Jour. of Numer. Anal. 10 (1990),

119-128.

[12] S. Weinberg: Rev. Mod. Phys. 61 (1989), 1-23.

[13] S.M. Carroll: The cosmological constant. Living Rev. Relativ. 4 (2001), 2001-1, 80pp.

(electronic).

[14] C.W. Misner, K.S. Thorne and J.A. Wheeler, \Gravitation", Freeman, San Francisco.

31


