Recursive construction of D + 2 spacetime dimensional Cli®ord algebras from the D-dimensional ones.

Let $^{\circ}_{i}$'s denotes the d-dimensional Gamma matrices of a D = p + q spacetime with (p;q) signature. 2d-dimensional D + 2 Gamma matrices (denoted as $_{ij}$) of a D + 2 spacetime are produced according to either

or

Remark 1. The two-dimensional real-valued Pauli matrices ξ_A , ξ_1 , ξ_2 which realize the Cli®ord algebra C(2;1) are obtained by applying either (??) or (??) to the number 1, i.e. the one-dimensional realization of C(1;0). We have indeed

Remark 2. All Cli®ord algebras are obtained by recursively applying the algorithms (??) and (??) to the Cli®ord algebra C(1;0) ($^{\prime}$ 1) and the Cli®ord algebras of the series C(0;3+4m) (m non-negative integer), which must be previously known. This is in accordance with the scheme illustrated in the table below.

Table with the maximal Cli^{\otimes} ord algebras (up to d = 256).

1	¤	2	¤	4	¤	8	¤	16	¤	32	¤	64	¤	128	¤	256	¤
(1; 0))	(2; 1))	(3,2))	(4,3))	(5,4))	(6,5))	(7,6))	(8,7))	(9,8))
				(0,3)	%	(1,4)	ļ	(2,5)	!	(3,6)	!	(4,7)	ļ	(5,8)	ļ	(6,9)	!
				(0,3)	&												
						(5,0)	!	(6,1)	!	(7,2)	!	(8,3)	!	(9,4)	!	(10,5)	!
						(0.7)	%	(1,8)	!	(2,9)	!	(3,10)	!	(4,11)	!	(5,12)	!
						(0,7)	&										
								(9,0)	ļ	(10,1)	!	(11,2)	!	(12,3)	ļ	(13,4)	ļ
													%	(1,12)	!	(2,13)	!
												(0,11)	&				
														(13,0)	ļ.	(14,1)	į
															%	(1,16)	!
														(0,15)	&		
																(17,0)	ļ

Remark 1: The columns are labeled by the matrix size d of the maximal Cli®ord algebras. Their signature is denoted by the (p; q) pairs.

Remark 2: The underlined Cli®ord algebras in the table are called the primitive maximal Cli®ord algebras. The remaining maximal Cli®ord algebras appearing in the table are the maximal descendent Cli®ord algebras. They are obtained from the primitive maximal Cli®ord algebras by iteratively applying the two recursive algorithms i) and ii).

Remark 3: Any non-maximal Cli®ord algebra is obtained from a given maximal Clifford algebra by deleting a certain number of Gamma matrices.

Remark 4: Cli®ord algebras in even-dimensional spacetimes are always non-maximal.

Example: Explicit construction of the D = p+q spacetime dimensional Cli®ord algebras for D = 11.

(p;q)	type	d
(11,0)	1/2 (11,2)	64
(10,1)	M	32
(9,2)	1/2 (11,2)	64
(8,3)	M	64
(7,4)	1/2 (7,6)	64
(6,5)	M	32
(5,6)	1/2 (7,6)	64
(4,7)	M	64
(3,8)	1/2 (3,10)	64
(2,9)	M	32
(1,10)	1/2 (3,10)	64
(0,11)	M	32

Comments: the maximal Cli®ord algebras are labeled by M. The size of the matrix representation is given by the number on the right (d).

Explicit construction of the primitive maximal Cli®ord algebras of the quaternionic series C(0; 3 + 8n) and the octonionic series C(0; 7 + 8n).

With the help of the three Pauli matrices (??) we construct at $\bar{\ }$ rst the 4 £ 4 matrices realizing the Cli®ord algebra C(0;3) and the 8 £ 8 matrices realizing the Cli®ord algebra C(0;7). They are given, respectively, by

and

The three matrices of C(0;3) will be denoted as $\overline{\zeta}_i$, = 1; 2; 3. The seven matrices of C(0;7) will be denoted as $\dot{\zeta}_i$, $i=1;2;\ldots;7$.

Comment. By applying the (??) algorithm to C (0; 7) we construct the 16 £ 16 matrices realizing C (1; 8) (the matrix with positive signature is denoted as ${}^{\circ}_{j}$, ${}^{\circ}_{j}{}^{2} = 1$, while the eight matrices with negative signatures are denoted as ${}^{\circ}_{j}$, j = 1; 2:::; 8, with ${}^{\circ}_{j}{}^{2} = i$ 1).

We are now in the position to explicitly construct the whole series of primitive maximal Cli®ord algebras C(0; 3 + 8n), C(0; 7 + 8n) through the formulas

$$\frac{\overline{\zeta}_{1} - \circ_{9} - :::}{1_{4} - \circ_{j} - 1_{16} - :::} ::: - 1_{16};$$

$$C(0; 3 + 8n) = 1_{4} - \circ_{9} - \circ_{j} - 1_{16} - ::: ::: - 1_{16};$$

$$1_{4} - \circ_{9} - \circ_{9} - \circ_{j} - 1_{16} - ::: ::: - 1_{16};$$

$$\vdots ::: ::: - \circ_{9} - \circ_{j};$$

$$1_{4} - \circ_{9} - ::: ::: - \circ_{9} - \circ_{j};$$
(6)

and similarly

Comment. The tensor product of the 16-dimensional representation is taken n times. The total size of the (??) matrix representations is then 4 ± 16^{n} , while the total size of (??) is 8 ± 16^{n} .