Recursive construction of D +2 spacetime dimensional Cli®ord algebras from
the D-dimensional ones.

Let °;'s denotes the d-dimensional Gamma matrices of a D = p + g spacetime with
(p;q) signature. 2d-dimensional D + 2 Gamma matrices (denoted as j;) of a D + 2
spacetime are produced according to either
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Remark 1. The two-dimensional real-valued Pauli matrices ;a, é1, ¢ Which realize the
Cli®ord algebra C(2;1) are obtained by applying either (??) or (??) to the number 1,
I.e. the one-dimensional realization of C(1;0). We have indeed
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Remark 2. All Cli®ord algebras are obtained by recursively applying the algorithms
(??) and (??) to the Cli®ord algebra C(1;0) (T 1) and the Cli®ord algebras of the series
C(0;3 + 4m) (m non-negative integer), which must be previously known. This is in
accordance with the scheme illustrated in the table below.



Table with the maximal Cli®ord algebras (up to d = 256).
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Remark 1: The columns are labeled by the matrix size d of the maximal Cli®ord alge-
bras. Their signature is denoted by the (p;q) pairs.

Remark 2: The underlined Cli®ord algebras in the table are called the primitive max-
imal Cli®ord algebras. The remaining maximal Cli®ord algebras appearing in the ta-
ble are the maximal descendent Cli®ord algebras. They are obtained from the primitive
maximal Cli®ord algebras by iteratively applying the two recursive algorithms i) and ii).

Remark 3: Any non-maximal Cli®ord algebra is obtained from a given maximal Clif-
ford algebra by deleting a certain number of Gamma matrices.

Remark 4: Cli®ord algebras in even-dimensional spacetimes are always non-maximal.



Example: Explicit construction of the D = p+q spacetime dimensional Cli®ord algebras

for D = 11.
(p;q) type d
(11,0) ¥ (11,2) |64
(10,1) M 32
(9,2) % (11,2) | 64
(8,3) M 64
(74) Y% (7,6) |64
(6,5 M 32
(5,6) % (7,6) |64
47) M 64
(3,8) % (3,10) | 64
(2,9) M 32
(1,10) % (3,10) | 64
(0,11) M 32

Comments: the maximal Cli®ord algebras are labeled by M.

The size of the matrix representation is given by the number on the right (d).

Explicit construction of the primitive maximal Cli®ord algebras of the quater-

nionic series C(0;3 +8n) and the octonionic series C(0;7 + 8n).

With the help of the three Pauli matrices (??) we construct at rst the 4 £ 4 matri-
ces realizing the Cli®ord algebra C(0;3) and the 8 £ 8 matrices realizing the Cli®ord
algebra C(0; 7). They are given, respectively, by
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The three matrices of C(0;3) will be denoted as 7j, = 1;2;3. The seven
.

C(0;7) will be denoted as ¢, 1=1;2;:::
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Comment. By applying the (??) algorithm to C(0; 7) we construct the 16 £ 16 matrices
realizing C(1;8) (the matrix with positive signature is denoted as °g, ®9> = 1, while the
eight matrices with negative signatures are denoted as °j, j = 1;2:::;8, with °j2 = j1).

We are now in the position to explicitly construct the whole series of primitive max-
imal Cli®ord algebras C(0; 3+ 8n), C(0;7 + 8n) through the formulas
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Comment. The tensor product of the 16-dimensional representation is taken n times.
The total size of the (??) matrix representations is then 4 £ 16", while the total size of

(??) is 8 £ 16M.



