JORNADA PCI/CBPF APRESENTAÇÃO DE PÔSTER - 2019/2020

RESUMO

Os trabalhos existentes na literatura indicam que a presença do *spin-glass* (SG), concomitantemente a presença de outras fases magnéticas, pode induzir a presença do exchange-bias espontâneo (sponateous exchange bias – SEB) em perovskitas-duplas. Nesse sentido, esse projeto propõe uma investigação minuciosa da relação existente entre o SG e o SEB. Para isso, foram realizadas mudanças estruturais por meio de dopagens com diferentes íons no composto $La_{2-x}A_{x}CoMnO_{6}$ (A = Ba, Ca, Sr; x = 0 e 0,5), de modo a verificar sua influência nas propriedades magnéticas. As amostras foram obtidas nas formas mono e policristalinas e investigadas estruturalmente por difração de raios X (DRX) aliado ao refinamento Rietveld. Os resultados revelaram a formação das fases de perovskitas duplas tanto para os compostos policristalinos quanto para os monocristalinos. As propriedades magnéticas foram estudadas por medidas de magnetização em função do campo magnético [M(H)] e da temperatura [M(T)]. Essas medidas, nas amostras monocristalinas, revelam transições ferromagnéticas que variam de acordo com a dopagem, além da ausência de SEB.

PROCEDIMENTOS EXPERIMENTAIS

Co ₃ O ₄ +	4			
La ₂ O ₃				
+				
MnO	Maceração e	Calcinação em 🖡	Maceração e	Macer
+	mistura dos	800°C/12h	Calcinação em	Calcina
BaCO.	reagentes		1400°C/12h	1400

Figura 1: Ilustração do processo de síntese das amostras policristalinas usando o método de reação do estado sólido convencional.

Figura 2: Ilustração do processo de síntese das amostras monocristalinas usando o método floating zone.

RESULTADOS E DISCUSSÃO

A Figura 3 apresenta as medidas de DRX para a amostra policristalina La_{1.5}Ba_{0.5}CoMnO₆ produzida por reação do estado sólido. A medida realizada após a primeira etapa de calcinação (800°C/12h) revelou a formação de La_2O_3 e Co_3O_4 . Já as medidas realizadas após a segunda e terceira etapa de calcinação revelou a

A:	Jônathas Rafael de Jesus
	jonathasrafael@gmail.com
SOR:	Eduardo Matzenbacher Bittar
DO PROJETO:	Estudo da relação entre spin-gla Ba, Ca, Sr; x = o e o,5)

espacial R-3c. A última etapa de calcinação foi necessária para garantir uma boa homogeneidade da amostra.

Figura 3: Medidas de DRX para a amostra La_{1.5}Ba_{0.5}CoMnO₆ policristalina em suas diferentes etapas da síntese. Esse amostra foi escolhida como representativa para todas dopagens propostas no trabalho.

amostras policristalinas La₂CoMnO₆, de partir das A La_{1.5}Sr_{0.5}CoMnO₆ e La_{1.5}Ca_{0.5}CoMnO₆, foram preparados monocristais usando o método do forno de zona flutuante. A formação e qualidade de monocristais foram confirmadas através do método de Laue (Figura 4(a)-(c)). As medidas de DRX de cada monocristal são exibidas na Figura 4(e) e sugerem a formação de da simetria simetria ortorrômbica e grupo espacial Pnma para as amostras LCMO e LCCMO, enquanto a amostra LSCMO possui simetria romboédrica e grupo espacial R-3c.

Figura 4: Fotografia de retro reflexão de raios X (método Laue) mostrando a orientação [001] para as amostras (a) LCMO (b) LCCMO e (c) LSCMO. (d) Amostra LCCMO após o crescimento do monocristal usando o floating zone. (e) Medidas de DRX para as amostras monocristalinas de $La_{15}Sr_{05}CoMnO_6$, La_2CoMnO_6 e $La_{15}Ca_{05}CoMnO_6$.

A Figura 5(a) exibe medidas de magnetização em função da temperatura nos modos *zero field cooling* (ZFC) e *field cooling* (FC) para os monocristais com campo aplicado de 100 Oe paralelo a direção cristalográfica [001]. Em todas as medidas são observadas

MINISTÉRIO DA **CIÊNCIA, TECNOLOGIA E INOVAÇÕES**

ass e exchange bias em perovskitas duplas do tipo La_{2} , A, CoMnO₆ (A =

formação da perovskita dupla com simetria romboédrica e grupo

temperaturas de transição ferromagnética (T_c) em torno de 155 K (LCMO), 171 K (LCCMO) e 205 K (LSCMO) que podem estar relacionadas ao acoplamento Co²⁺-O-Mn⁴⁺. Na Figura 5(b) podem ser visualizadas medidas de magnetização em função do campo realizadas em 5 K. Essas exibem uma magnetização de saturação e a presença de magnetização remanente e campo coercivo, característicos material comportamento de com um predominantemente ferromagnético. Além disso, não são observados deslocamentos horizontais do ciclo de histerese, indicando a ausência de SEB.

Figura 5: Medidas de magnetização na direção cristalográfica [001] para os monocristais LCMO, LCCMO e LSCMO. (a) Medidas M(T) nos modos ZFC-FC com campo aplicado de 100 Oe e (b) medidas de M(H) realizadas em 5 K.

CONCLUSÕES

Os resultados parciais revelam que as rotas de sínteses foram eficientes para a produção das perovskitas duplas em suas formas poli e monocristalinas e puderam ser confirmadas através dos métodos de DRX e Laue. Além disso, as medidas de M(T) nos modos ZFC-FC revelaram comportamentos semelhantes ao já observados em trabalhos prévios para amostras policristalinas. Nesse caso, por exemplo, temos variação da T_c como sendo atribuída à mudança sistemática dos raios iônicos dos dopantes, que por sua vez causam mudanças no ângulo entre Co²⁺-O-Mn⁴⁺, cuja interação, de acordo com as regras de Goodenough-Kanamori-Anderson, é ferromagnética. Ainda, diferentemente do que foi observado nesses trabalhos para amostras policristalinas, os monocristais não apresentaram SEB. Medidas e análises adicionais devem ser realizadas para entender a ausência de SEB nessas amostras.

