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and DarlkMatter — Four Lectures

1. Dark Matters Evidence and:t the Standard WIMP -
2. Gravitational RParticle Productlon (Schrodinger’s Alarmlng Phenomenon)
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Cosmological Gravitational Particle Production (CGPP)

* In Minkowskian QFT, a particle is an IR of the Poincaré group. Schrodinger (1939); Parker (1965, 68); Fulling, Ford, & Hu;
* But, expanding universe not Poincaré invariant. ﬁggg;:e nitjfol\%lfr':;ng\:'ggii‘( gf:}gfg"féviesm
* Notion of a “particle” is approximate.

cosmological
expansion

time-dependent
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+ and —frequency modes mix
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Scalar field ¢ in FRW background

covariant action

1 1 1 -
4 v Gravity enters
S[o(®), g ()] = / d*ay/=g [59“ Oupdup — 5m?e® + SERY’ e

in spatially flat FRW background : ds?= a*(n)[dn?— dx?] (77 is conformal time)
1
p(n, x ]—/ dn/d3 [—a Onp)” — —a 2(Vp)? = sa'm?” + a4€R90]

field rescaling

o(n, ) = a(n)p(n, x)

action for canonically-normalized field

o)) = [ dn [ x| 50,0 - 5(V0) - Grido? - 30,(aHe?)

aH — 0 to zero at n = £o0

time-dependent effective mass - -
cosmological expansion =

mgﬁ(n) — g2 (77) [m2 + (% — f) R(n)] time-dependent background =

time-dependent Hamiltonian for spectator fields




Scalar field ¢ in FRW background

Fourier mode decomposition:

n d3k ~ tk-x AT % —i1k-x
¢(n,w)=/<%)3 {akxk(n)ek + Ak (n)e ™

Mode functions satisfy wave equation:

02xk(n) + wi(n)xk(n) =0

but with a time-dependent dispersion relation

o) = +min) el = o) [ + (5 - €

Vacuum state |0) defined as state where @y |0) = 0



Scalar field ¢ in FRW background

Solutions to wave equation include both + and — frequency terms

075 (77) 6—ifwk(n)d77 + Bk(n) €—|—z'fwk(n)dn

Xk(n) =
QWk(U) 2wk(n)
1 —1 | w
Assume start with only + frequency term:  Xx(17) = e~ ) wr(n)dn
2wp (1)
2ntn) + o | 143 (L) 2 D) o

Mixing of + and — frequency terms depends on "Adiabaticity parameter” 4, :

Onwi, A, < 1, + frequency solution remains good
w3 A, > 1, + and — frequency terms mix

AkE



Scalar field ¢ in FRW background
Mode functions satisfy wave equation:
Opxk(n) + wi(mxe(n) =0
but with a time-dependent dispersion relation
wi(n) = k* +mgg(n)

Vacuum state |0) defined as state where @y |0) = 0

+ & — frequency modes
(early) (77) 17— —00 ein'kn

oy

(late) (77) 77—>‘|‘OO> 1 o Tl [T dn'am

Ak V2am

leads to mode mixing

late earl
<X1(<;+t )(77)> _ (Oék Bk) (X;(H_ ) (77)> time-dependent Hamiltonian = mode mixing

(late) * * (early) _
Xk — (n) Be Qg X (n) = — frequency modes from + frequency modes



Schrodinger’s Alarming Phenomenon

Expansion of the universe causes explicit time dependence in action for “spectator” fields.
Initial ~ de Sitter (early-time) vacuum may not evolve to final ~ Minkowski (late-time) vacuum,
but to an excited state populated by particles.

X(t)+ (1) x(1)=0

Spring constant varied Spring constant varied
slowly (adiabatically) abruptly (nonadiabatically)
|4 |4
U A U
an
excited
state




Scalar field ¢ in FRW background

Solutions to wave equation include both + and — frequency terms

A (77) e—z’fwk (n)dn + Bk (77) e—{—ifwk.(n)dn
2wy () 2wi ()

Xk(n) =

If start with only outgoing waves, £(7) =0,

will generate incoming waves, [ (7n) # 0.
ae

Comoving number density of particles at late time is

1 1 dk
3 _ d3]€ 2 _ k3 2
ng = %k3|5k(n)|2 Spectral density

2T



Scalar field @ in FRW background
el = ) [ + (§ € ) Rn)

Abrupt changes in a(7) leads to nonadiabatic changes in @,(7), which adulterates positive and
negative frequency modes, leading to of particle creation in the expanding universe.

Nonadiabaticity proportional to On

Nonadiabatic: <

Wk Adiabatic deep in quasi-de Sitter phase

w3 Adiabatic at late time after inflation

r

5o O'{ k/a < H when mode exits horizon during inflation. Super-Hubble.

k/a > H at end of inflation. Sub-Hubble radius.

\5: 1/6: at end of inflation. Sub-Hubble radius.



Standard Inflationary Picture

Quasi-de Sitter Phase driven by vacuum energy of inflaton displaced from potential minimum,
expansion rate H, roughly constant

Matter-dominated phase due to inflaton oscillations about minimum of potential

Inflaton decays and leads to radiation-dominated phase characterized by a
reheat temperature Try

Conformal time —oco < 7 <0 de Sitter and 0 < 77 < o0 matter-dominated - radiation-dominated

Analytic inflation matter-dominated (a,, H, are values at end of inflation)
L Ge a:ae(l—F%n)Q
1—mn H
H = o

H = H, (1+ 3m)?



Standard Inflationary Picture
We can normalize the scale factor a such that a.fH. =1
A momentum mode of comoving value k. It has physical wavenumber k/a
At the end of inflation it is k/a, .
Ratio of the physical wavenumber to H, is k/a ,H,, or simply k.
k <1 corresponds to modes that are super-Hubble radius at the end of inflation.

k > 1 corresponds to modes that are sub-Hubble radius at the end of inflation.



4 Standard Inflationary Picture, but not Standard Inflationary Model

But there is a “simple” inflationary model:
single-field with quadratic inflaton potential:

V(p) = %u%z
Simple model ruled out by CMB
measurements. But CMB measurements
probe inflaton potential 60 or so e-folds
before the end of inflation. For our studies
we will often be interested in inflaton
potential near the end or after inflation ends
when ¢ is close to the minimum of its
potential and quadratic description may be a
good approximation.

Pe

@ CMB



4 Standard Inflationary Picture, but not Standard Inflationary Model

But there is a “simple” inflationary model:
single-field with quadratic inflaton potential:

1
V(p) = su¢’

2
EOM: @ +3Hp+ 0,V (p) =0
Slow roll during inflation (¢ = 0): 3H¢p = -0,V ()

Inflation is accelerated expansion: d o< —(p + 3p)

p=15"+V(p)
p=2¢"—V(p)

i o< —(p+3p) x V(p) — ¢

P

¢CMB
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Chaotic Model Analytic vs. Numerical
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Adiabticity Parameter 4,

Mixing of + and — frequency terms depends on “Adiabaticity parameter” 4 :

Opwi, A, K 1, + frequency solution remains good

Ay = A, > 1, + and — frequency terms mix

%
2 2 2 2 1
ot =K+ @) {m+ G~ ¢) RO
Define some dimensionless parameters

,(LXL 2 :Jn//a;—] A, = a?’,th + a3h(R/He2)(1/6 — ,S) _ %O‘2(R//He2)(1/6 B f)
h=H/H, 2+ %2 + o2(R/H2)(1/6— )7




Adiabaticity Parameter A4,

¢€=1/6

k=10.01

f=1.0
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Adiabaticity Parameter A4,
£=0 k=001 p=1.0
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Conformal and Minimal Couplings Very Different

Mode equation:

02xk(n) + wi(n)xk(n) =0

w,% < 0 Possible for minimal coupling—expect growth

Why should & be constant? There should be an RG flow for &.

Might set £to 0 or 1/6 at some scale (say Mp;?) but at other scales there should be log
corrections.



Energy Density & Number Density in Terms of Mode Functions

0= TO0 expressed in conformal time and in terms of field variable y = a¢
2a"p =(0px)* + (VX)* + a®m’x* — 4¢ [XV2>< + (Vx)ﬂ
+ (1= 68) {a®H*x* — aH [x0px + (9yx) x] }

Even though the kinetic term in the action is canonically normalized for the comoving
field y the energy density still has a mixed term.

Using the mode expansion and the commutation relations for a and a', we can express
the energy density p = (0 !Tool()) in terms of the mode functions. For mstance, 7% term:

dsk d3 A tk-x —ik-x A 1q-x AT N F —1q-T
are xe(m) €™ + aj xi () e ag Xq(n) € 4 ag xy(n) € 0




Energy Density & Number Density in Terms of Mode Functions

dgk d3 A ik-x AT % —ik-x A 1q-x AT % —iq-x
5 |k xk(n) ™" + g xi(n) e Gq Xq(n) €™ + ag xg(n) e

Has terms proportional to (0 |axa,| 0) ,<O

Only last term nonvanishing. Normal order: <O ]dk&q > — (2m)36°(k — ¢) with result

Pr
(27_‘_)3 |Xk|

Following similar procedure for the rest of the terms yields

d3k 1 %
2atp = [ 55 {1l + e bl + (1= 00) | (@12 = Ga*R) bl — 20 Re s 0| |



Energy Density & Number Density in Terms of Mode Functions

dk 1
2atp = [ {lomal® + o bl + (1= 66) | (17 = 3aR) hul® - 201t Re ol |

Infinite before renormalization (duh, it’s field theory). Introduce UV cutoff Ay
Leads to time-dependent and time-independent counterterms Ay, H*A%y,, & H*log Ayvy
Renormalize divergences by requiring <O]TOO|O> = 0 in Minkowski vacuum.

Since we will be interested in the asymptotic value of p where H and R vanish
4 ren __

: dk k* : 1 2 1 2 2 1
nlggloap ~ | T o2 nlggo (§|anXk‘ +§Wk;|Xk| —§Wk)



Energy Density & Number Density in Terms of Mode Functions

lim a*p™" = ik k. lim (1|8 2+ Lw? |2—lw)
1n— 00 P = % on n—oo \ 2 n Ak 2%k I Xk 2%k

At late time in the NR limit w;, > am and p=m n

dk dk k3 1
lim a°n = [— ng = / [ lim (% yﬁnXk‘Q + %wi ’XHQ) — %]

17— 00 k k 212 |am n—oo

In terms of Bogoliubov coefficients:

dk dk k3 W dk k3
. 3 _ |G .. R . Wk 2 _ [P . 2
alglgona ]k alglgo Tk k 2m2 nlggo am B k 2n2 nlglgo 5|

Phew!



Finally, Calculation of Relic Abundance

Three (equivalent) ways to calculate relic abundance:

1. Integrate EOM: 83)(;3 = _Wl%Xk: (2"d-order equation for complex y;)

2. Integrate two 1%-order equations for complex ¢; and f;

Xk( ) (095 (77) e—z'CI)k(n)/Q 4+ Bk(n) ei¢k(n)/2
2wi(n) 2w (1)
O X = —iwn a(n) Pk (n)/2 _ Br(n) i ()2
ka (”) ka(n)

n
®p(n) = 2/ dn’ wg(n')  Phase
"

7

— 1 1P : : : : ,
Opar = 5 Ak Wi Pr e (for imaginary ;. analytic continuation cumbersome)
8776k:

1Py

%Ak Wg O €



Finally, Calculation of Relic Abundance

Three (equivalent) ways to calculate relic abundance:

3. Define q; and b, to avoid calculating @, (two 1%-order equations for complex a; and b,):

ax(n) = ag(n) =M/ and  Br(n) = by(n) e 1ExM/2

By01(n) = ik (n) i (n) + 5 Ax(m) i ()b ()
1

Oybr (1) = Ficor (1) br(n) + 5 A (1) wi(n)ax (1)



Finally, Calculation of Relic Abundance

1
Initial Conditions: as a — 0, frequency w; = k* 4 a*(n) [mQ + (6 — 5) R(n)] — k2 motivates

“Bunch-Davies” initial conditions for y;, and 0,

—— 00 ]- —i
Xk (1) —— x5" (1) &

—00 . k —i
OnXk(N) 1777, —@\/;6 &

as n — oo the physical momentum is much larger than A and the field should not “feel” the

curvature of spacetime.

NO APOLOGIES!



Finally, Calculation of Relic Abundance

So just integrate EOM (either using 1, 2, or 3) with BD initial conditions and extract | 5,|* at late

time and calculate spectral density and comoving number density.

k3 1 /1 5 1 5 1 k3
_— — a — 2 —_— —_ — 2
k= on2 [am (2 Oxi]” + 9k X ) 2] 272 B

dk
na’ = [— ng

k
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1074

liHla—>c>o ng

E=1/6

m/H,

= 0.1

Notice spectrum is BLUE, by which |
mean spectrum vanishes as k — 0
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For conformally-coupled
scalar, conformal symmetry
only broken by mass term.

Since metric is conformally
Minkowski, massless,
conformally-coupled scalar
field does not feel
expansion.



Conversion of na? to Qh?

After inflation universe dominated by coherent oscillations of inflaton. Energy density decreases
as a matter-dominated universe. Eventually inflaton decays, “reheating” the universe to some
“reheat” temperature Ty, after which the universe evolves as a radiation-dominated universe,

eventually becoming matter dominated around z = 30,000, then dark-energy dominated at a
redshift = 1.

All the while na3 remaining constant.

Qn°  m H, 2( Ton jlima%wna
0.12 H,\10°GeV ) (10°GeV 107

We don’t know H, or Ty, but the above values are “representative” choices.

3

So na® = 107> seems desirable.



CGPP & Dark Matter

Inflation indicates a new mass scale

In most models, m; q410n ®

H.

1

nflation ~ 1012_ 1014 Ge\/'P

Hi q.i0n detectable via primordial gravitational waves in CMB

(1) expect other particles with mass = m;,g,0n

all produced a la
Schrodinger’s
alarming
phenomenon

<

-

Mass

Minflaton

lightest stable? Dark Matter “WIMPzilla”
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