Gravitational Particle Production and Dark Matter — Four Lectures 1. Dark Matter: Evidence and the Standard WIMP 2. Gravitational Particle Production (Schrödinger's Alarming Phenomenon) 3. GPP of Scalar Fields

. Beyond Scalar Fields

Rocky Kolb, University of Chicago

Cosmological Gravitational Particle Production (CGPP)

- In Minkowskian QFT, a particle is an IR of the Poincaré group.
- But, expanding universe not Poincaré invariant.
- Notion of a "particle" is approximate.

Schrodinger (1939); Parker (1965, 68); Fulling, Ford, & Hu; Zel'dovich; Starobinski; Grib, Frolov, Mamaev, & Mostepanenko; Mukhanov & Sasaki, Birrell & Davies...

covariant action

$$S[\varphi(x), g_{\mu\nu}(x)] = \int d^4x \sqrt{-g} \left[\frac{1}{2} g^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi - \frac{1}{2} m^2 \varphi^2 + \frac{1}{2} \xi R \varphi^2 \right]$$
 Gravity enters the picture

in spatially flat FRW background : $ds^2 = a^2(\eta)[d\eta^2 - dx^2]$ (η is conformal time)

$$S[\varphi(\eta, \boldsymbol{x})] = \int_{-\infty}^{\infty} d\eta \int d^{3}\mathbf{x} \left[\frac{1}{2} a^{2} (\partial_{\eta}\varphi)^{2} - \frac{1}{2} a^{2} (\nabla\varphi)^{2} - \frac{1}{2} a^{4} m^{2} \varphi^{2} + \frac{1}{2} a^{4} \xi R \varphi^{2} \right]$$

field rescaling

$$\phi(\eta, \boldsymbol{x}) = a(\eta)\varphi(\eta, \boldsymbol{x})$$

 $aH \to 0$ to zero at $\eta = \pm \infty$

action for canonically-normalized field

$$S[\phi(\eta, \boldsymbol{x})] = \int_{-\infty}^{\infty} d\eta \int d^{3}\mathbf{x} \left[\frac{1}{2} (\partial_{\eta} \phi)^{2} - \frac{1}{2} (\nabla \phi)^{2} - \frac{1}{2} m_{\text{eff}}^{2} \phi^{2} - \frac{1}{2} \partial_{\eta} (aH\phi^{2}) \right]$$

time-dependent effective mass

$$m_{\text{eff}}^2(\eta) = a^2(\eta) \left[m^2 + \left(\frac{1}{6} - \xi\right) R(\eta) \right]$$

cosmological expansion \Rightarrow time-dependent background \Rightarrow time-dependent Hamiltonian for spectator fields

Fourier mode decomposition:

$$\widehat{\phi}(\eta, \boldsymbol{x}) = \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \left[\widehat{a}_{\mathbf{k}} \chi_{\mathbf{k}}(\eta) e^{i\mathbf{k}\cdot\mathbf{x}} + \widehat{a}_{\mathbf{k}}^{\dagger} \chi_{\mathbf{k}}^*(\eta) e^{-i\mathbf{k}\cdot\mathbf{x}} \right]$$

Mode functions satisfy wave equation:

$$\partial_{\eta}^2 \chi_k(\eta) + \omega_k^2(\eta) \chi_k(\eta) = 0$$

but with a time-dependent dispersion relation

$$\omega_k^2(\eta) = k^2 + m_{\text{eff}}^2(\eta) \qquad m_{\text{eff}}^2(\eta) = a^2(\eta) \left[m^2 + \left(\frac{1}{6} - \xi\right) R(\eta) \right]$$
Vacuum state $|0\rangle$ defined as state where $\hat{a}_{\mathbf{k}}|0\rangle = 0$

Solutions to wave equation include both + and - frequency terms

$$\chi_k(\eta) = \frac{\alpha_k(\eta)}{\sqrt{2\omega_k(\eta)}} e^{-i\int\omega_k(\eta)d\eta} + \frac{\beta_k(\eta)}{\sqrt{2\omega_k(\eta)}} e^{+i\int\omega_k(\eta)d\eta}$$

Assume start with only + frequency term: $\chi_k(\eta) = \frac{1}{\sqrt{2\omega_k(\eta)}} e^{-i\int \omega_k(\eta)d\eta}$

$$\partial_{\eta}^{2}\chi_{k}(\eta) + \omega_{k}^{2} \left[1 + 3\left(\frac{\partial_{\eta}\omega_{k}}{2\omega_{k}^{2}}\right)^{2} - \frac{\partial_{\eta}^{2}\omega_{k}}{2\omega_{k}^{3}} \right] \chi_{k}(\eta) = 0$$

Mixing of + and – frequency terms depends on "Adiabaticity parameter" A_k :

 $A_k \equiv \frac{\partial_{\eta} \omega_k}{\omega_k^2} \qquad \begin{array}{c} A_k \ll 1, \ + \ \text{frequency solution remains good} \\ A_k \gg 1, \ + \ \text{and} - \ \text{frequency terms mix} \end{array}$

Mode functions satisfy wave equation:

 $\partial_{\eta}^2 \chi_k(\eta) + \omega_k^2(\eta) \chi_k(\eta) = 0$

but with a time-dependent dispersion relation

$$\omega_k^2(\eta) = k^2 + m_{\text{eff}}^2(\eta)$$

Vacuum state $|0\rangle$ defined as state where $\hat{a}_{\mathbf{k}}|0\rangle = 0$

+ & - frequency modes

$$\chi_{\pm}^{(\text{early})}(\eta) \xrightarrow{\eta \to -\infty} \frac{1}{\sqrt{2k}} e^{\mp i k \eta}$$

 $\chi_{\pm}^{(\text{late})}(\eta) \xrightarrow{\eta \to +\infty} \frac{1}{\sqrt{2am}} e^{\mp i \int^{\eta} d\eta' am}$

leads to mode mixing

$$\begin{pmatrix} \chi_{k+}^{(\text{late})}(\eta) \\ \chi_{k-}^{(\text{late})}(\eta) \end{pmatrix} = \begin{pmatrix} \alpha_k & \beta_k \\ \beta_k^* & \alpha_k^* \end{pmatrix} \begin{pmatrix} \chi_{k+}^{(\text{early})}(\eta) \\ \chi_{k-}^{(\text{early})}(\eta) \end{pmatrix}$$

time-dependent Hamiltonian \Rightarrow mode mixing \Rightarrow - frequency modes from + frequency modes

Schrödinger's Alarming Phenomenon

Expansion of the universe causes explicit time dependence in action for "spectator" fields. Initial ~ de Sitter (early-time) vacuum may not evolve to final ~ Minkowski (late-time) vacuum, but to an excited state populated by particles.

Solutions to wave equation include both + and - frequency terms

$$\chi_k(\eta) = \frac{\alpha_k(\eta)}{\sqrt{2\omega_k(\eta)}} e^{-i\int\omega_k(\eta)d\eta} + \frac{\beta_k(\eta)}{\sqrt{2\omega_k(\eta)}} e^{+i\int\omega_k(\eta)d\eta}$$

If start with only outgoing waves, $\beta_k(\eta) = 0$, will generate incoming waves, $\beta_k(\eta) \neq 0$.

Comoving number density of particles at late time is

$$n a^3 = \frac{1}{(2\pi)^3} \int d^3k \, |\beta_k(\eta)|^2 = \frac{1}{2\pi^2} \int \frac{dk}{k} \, k^3 |\beta_k(\eta)|^2$$
$$n_k \equiv \frac{1}{2\pi^2} k^3 |\beta_k(\eta)|^2 \qquad \text{Spectral density}$$

Scalar field $\boldsymbol{\varphi}$ in FRW background

$$m_{\rm eff}^2(\eta) = a^2(\eta) \left[m^2 + \left(\frac{1}{6} - \xi\right) R(\eta) \right]$$

Abrupt changes in $a(\eta)$ leads to nonadiabatic changes in $\omega_k(\eta)$, which *adulterates* positive and negative frequency modes, leading to of particle creation in the expanding universe.

 $\frac{\partial_{\eta}\omega_k}{\omega_k^2}$ Adiabatic deep in quasi-de Sitter phase Adiabatic at late time after inflation

Nonadiabatic: $\begin{cases} \xi = 0: \begin{cases} k/a \ll H \text{ when mode exits horizon during inflation. Super-Hubble.} \\ k/a \gg H \text{ at end of inflation. Sub-Hubble radius.} \end{cases}$

Standard Inflationary Picture

Quasi-de Sitter Phase driven by vacuum energy of inflaton displaced from potential minimum, expansion rate H_e roughly constant

Matter-dominated phase due to inflaton oscillations about minimum of potential

Inflaton decays and leads to radiation-dominated phase characterized by a reheat temperature $T_{\rm RH}$

Conformal time $-\infty < \eta < 0$ de Sitter and $0 < \eta < \infty$ matter-dominated \rightarrow radiation-dominated

<u>Analytic</u>	inflation	matter-dominated	(a_e , H_e are values at end of inflation
	$a = \frac{a_e}{a_e}$	$a = a_e (1 + \frac{1}{2}\eta)^2$	
	$^{\omega}=1-\eta$	H_{-} H_{e}	
	$H = H_e$	$II = \frac{1}{(1 + \frac{1}{2}\eta)^3}$	

Standard Inflationary Picture

We can normalize the scale factor a such that $a_eH_e=1$

A momentum mode of comoving value k. It has physical wavenumber k/a

At the end of inflation it is k/a_e .

Ratio of the physical wavenumber to H_e is k/a_eH_e , or simply k.

k < 1 corresponds to modes that are super-Hubble radius at the end of inflation.

k > 1 corresponds to modes that are sub-Hubble radius at the end of inflation.

Bardard Inflationary Picture, but not Standard Inflationary Model

But there is a "simple" inflationary model: single-field with quadratic inflaton potential:

$$V(\varphi) = \frac{1}{2}\mu^2\varphi^2$$

Simple model ruled out by CMB measurements. But CMB measurements probe inflaton potential 60 or so e-folds before the end of inflation. For our studies we will often be interested in inflaton potential near the end or after inflation ends when φ is close to the minimum of its potential and quadratic description may be a good approximation.

Example 1 Standard Inflationary Picture, but not Standard Inflationary Model

Chaotic Model Analytic vs. Numerical

Adiabticity Parameter A_k

Mixing of + and – frequency terms depends on "Adiabaticity parameter" A_k :

$$\begin{split} A_k &\equiv \frac{\partial_\eta \omega_k}{\omega_k^2} & A_k \ll 1, \ + \text{ frequency solution remains good} \\ A_k &\gg 1, \ + \text{ and } - \text{ frequency terms mix} \end{split}$$
$$\omega_k^2 &= k^2 + a^2(\eta) \left[m^2 + \left(\frac{1}{6} - \xi\right) R(\eta) \right] \end{split}$$

Define some dimensionless parameters

$$\begin{split} &\alpha \equiv a/a_e \\ &\mu \equiv m/H_e \\ &h \equiv H/H_e \end{split} \qquad A_k = \frac{\alpha^3 \mu^2 h + \alpha^3 h(R/H_e^2)(1/6 - \xi) - \frac{1}{2}\alpha^2 (R'/H_e^2)(1/6 - \xi)}{[k^2 + \alpha^2 \mu^2 + \alpha^2 (R/H_e^2)(1/6 - \xi)]^{3/2}} \end{split}$$

Conformal and Minimal Couplings Very Different

Mode equation:

 $\partial_{\eta}^2 \chi_k(\eta) + \omega_k^2(\eta) \chi_k(\eta) = 0$

 $\omega_k^2 < 0$ Possible for minimal coupling—expect growth

Why should ξ be constant? There should be an RG flow for ξ .

Might set ξ to 0 or 1/6 at some scale (say $M_{\rm Pl}$?) but at other scales there should be log corrections.

 $ho = T^0_{\ 0}$ expressed in conformal time and in terms of field variable $\chi = a\phi$

$$2a^{4}\rho = (\partial_{\eta}\chi)^{2} + (\nabla\chi)^{2} + a^{2}m^{2}\chi^{2} - 4\xi \left[\chi\nabla^{2}\chi + (\nabla\chi)^{2}\right] + (1 - 6\xi) \left\{a^{2}H^{2}\chi^{2} - aH \left[\chi\partial_{\eta}\chi + (\partial_{\eta}\chi)\chi\right]\right\}$$

Even though the kinetic term in the action is canonically normalized for the comoving field χ the energy density still has a mixed term.

Using the mode expansion and the commutation relations for \hat{a} and \hat{a}^{\dagger} , we can express the energy density $\rho = \langle 0 | \hat{T}^0{}_0 | 0 \rangle$ in terms of the mode functions. For instance, χ^2 term:

$$\left\langle 0 \left| \int \frac{d^3k}{(2\pi)^3} \int \frac{d^3q}{(2\pi)^3} \left[\hat{a}_k \,\chi_k(\eta) \, e^{ik \cdot x} + \hat{a}_k^{\dagger} \,\chi_k^*(\eta) \, e^{-ik \cdot x} \right] \left[\hat{a}_q \,\chi_q(\eta) \, e^{iq \cdot x} + \hat{a}_q^{\dagger} \,\chi_q^*(\eta) \, e^{-iq \cdot x} \right] \left| 0 \right\rangle \right.$$

$$\left\langle 0 \left| \int \frac{d^3k}{(2\pi)^3} \int \frac{d^3q}{(2\pi)^3} \left[\hat{a}_k \,\chi_k(\eta) \, e^{ik \cdot x} + \hat{a}_k^\dagger \,\chi_k^*(\eta) \, e^{-ik \cdot x} \right] \left[\hat{a}_q \,\chi_q(\eta) \, e^{iq \cdot x} + \hat{a}_q^\dagger \,\chi_q^*(\eta) \, e^{-iq \cdot x} \right] \right| 0 \right\rangle$$

Has terms proportional to $\langle 0 | \hat{a}_k \hat{a}_q | 0 \rangle$, $\langle 0 | \hat{a}_k^{\dagger} \hat{a}_q | 0 \rangle$, $\langle 0 | \hat{a}_k^{\dagger} \hat{a}_q^{\dagger} | 0 \rangle$, $\langle 0 | \hat{a}_k \hat{a}_q^{\dagger} | 0 \rangle$, $\langle 0 | \hat{a}_k \hat{a}_q^{\dagger} | 0 \rangle$

Only last term nonvanishing. Normal order: $\langle 0 \left| \hat{a}_k \hat{a}_q^{\dagger} \right| 0 \rangle \rightarrow (2\pi)^3 \delta^3 (k-q)$ with result

$$\int \frac{d^3k}{(2\pi)^3} |\chi_k|^2$$

Following similar procedure for the rest of the terms yields

$$2a^{4}\rho = \int \frac{d^{3}k}{(2\pi)^{3}} \left\{ \left| \partial_{\eta}\chi_{k} \right|^{2} + \omega_{k}^{2} \left| \chi_{k} \right|^{2} + (1 - 6\xi) \left[\left(a^{2}H^{2} - \frac{1}{6}a^{2}R \right) \left| \chi_{k} \right|^{2} - 2aH \operatorname{Re}\left[\chi_{k} \partial_{\eta}\chi_{k}^{*} \right] \right] \right\}$$

$$2a^{4}\rho = \int \frac{d^{3}k}{(2\pi)^{3}} \left\{ \left| \partial_{\eta}\chi_{k} \right|^{2} + \omega_{k}^{2} \left| \chi_{k} \right|^{2} + (1 - 6\xi) \left[\left(a^{2}H^{2} - \frac{1}{6}a^{2}R \right) \left| \chi_{k} \right|^{2} - 2aH \operatorname{Re}\left[\chi_{k} \partial_{\eta}\chi_{k}^{*} \right] \right] \right\}$$

Infinite before renormalization (duh, it's field theory). Introduce UV cutoff $\Lambda_{
m UV}$

Leads to time-dependent and time-independent counterterms $\Lambda_{\rm UV}^4$, $H^2 \Lambda_{\rm UV}^2$, & $H^4 \log \Lambda_{\rm UV}$ Renormalize divergences by requiring $\langle 0|\hat{T}_{00}|0\rangle = 0$ in Minkowski vacuum.

Since we will be interested in the asymptotic value of ρ where H and R vanish

$$\lim_{\eta \to \infty} a^4 \rho^{\text{ren}} = \int \frac{dk}{k} \frac{k^3}{2\pi^2} \lim_{\eta \to \infty} \left(\frac{1}{2} \left| \partial_\eta \chi_k \right|^2 + \frac{1}{2} \omega_k^2 \left| \chi_k \right|^2 - \frac{1}{2} \omega_k \right)$$

$$\lim_{\eta \to \infty} a^4 \rho^{\text{ren}} = \int \frac{dk}{k} \frac{k^3}{2\pi^2} \lim_{\eta \to \infty} \left(\frac{1}{2} \left| \partial_\eta \chi_k \right|^2 + \frac{1}{2} \omega_k^2 \left| \chi_k \right|^2 - \frac{1}{2} \omega_k \right)$$

At late time in the NR limit $\omega_k \rightarrow am$ and $\rho = m n$

$$\lim_{\eta \to \infty} a^3 n = \int \frac{dk}{k} \ n_k = \int \frac{dk}{k} \ \frac{k^3}{2\pi^2} \ \left[\frac{1}{am} \lim_{\eta \to \infty} \ \left(\frac{1}{2} \left| \partial_\eta \chi_k \right|^2 + \frac{1}{2} \omega_k^2 \left| \chi_k \right|^2 \right) - \frac{1}{2} \right]$$

In terms of Bogoliubov coefficients:

$$\lim_{a \to \infty} n a^3 = \int \frac{dk}{k} \lim_{a \to \infty} n_k = \int \frac{dk}{k} \frac{k^3}{2\pi^2} \lim_{\eta \to \infty} \frac{\omega_k}{am} |\beta_k|^2 = \int \frac{dk}{k} \frac{k^3}{2\pi^2} \lim_{\eta \to \infty} |\beta_k|^2$$

Phew!

Three (equivalent) ways to calculate relic abundance:

- 1. Integrate EOM: $\partial_{\eta}^2 \chi_k = -\omega_k^2 \chi_k$ (2nd-order equation for complex χ_k)
- 2. Integrate two 1st-order equations for complex α_k and β_k

$$\begin{split} \chi_{k}(\eta) &= \frac{\alpha_{k}(\eta)}{\sqrt{2\omega_{k}(\eta)}} e^{-i\Phi_{k}(\eta)/2} + \frac{\beta_{k}(\eta)}{\sqrt{2\omega_{k}(\eta)}} e^{i\Phi_{k}(\eta)/2} \\ \partial_{\eta}\chi_{k} &= -i\omega_{k} \left(\frac{\alpha_{k}(\eta)}{\sqrt{2\omega_{k}(\eta)}} e^{-i\Phi_{k}(\eta)/2} - \frac{\beta_{k}(\eta)}{\sqrt{2\omega_{k}(\eta)}} e^{i\Phi_{k}(\eta)/2} \right) \\ \Phi_{k}(\eta) &\equiv 2 \int_{\eta_{i}}^{\eta} d\eta' \; \omega_{k}(\eta') \qquad \text{Phase} \\ \partial_{\eta}\alpha_{k} &= \frac{1}{2}A_{k} \; \omega_{k} \; \beta_{k} \; e^{i\Phi_{k}} \\ \partial_{\eta}\beta_{k} &= \frac{1}{2}A_{k} \; \omega_{k} \; \alpha_{k} \; e^{-i\Phi_{k}} \end{split}$$
(for imaginary ω_{k} analytic continuation cumbersome)

Three (equivalent) ways to calculate relic abundance:

3. Define a_k and b_k to avoid calculating Φ_k (two 1st-order equations for complex a_k and b_k):

$$\alpha_k(\eta) = a_k(\eta) e^{i\Phi_k(\eta)/2} \quad \text{and} \quad \beta_k(\eta) = b_k(\eta) e^{-i\Phi_k(\eta)/2}$$
$$\partial_\eta a_k(\eta) = -i\omega_k(\eta) a_k(\eta) + \frac{1}{2}A_k(\eta) \omega_k(\eta)b_k(\eta)$$
$$\partial_\eta b_k(\eta) = +i\omega_k(\eta) b_k(\eta) + \frac{1}{2}A_k(\eta) \omega_k(\eta)a_k(\eta)$$

Initial Conditions: as $a \to 0$, frequency $\omega_k^2 = k^2 + a^2(\eta) \left[m^2 + \left(\frac{1}{6} - \xi \right) R(\eta) \right] \to k^2$ motivates "Bunch-Davies" initial conditions for χ_k and $\partial_{\eta} \chi_k$:

$$\chi_k(\eta) \xrightarrow{\eta \to -\infty} \chi_k^{\rm BD}(\eta) \equiv \frac{1}{\sqrt{2k}} e^{-ik\eta}$$
$$\partial_\eta \chi_k(\eta) \xrightarrow{\eta \to -\infty} -i\sqrt{\frac{k}{2}} e^{-ik\eta}$$

as $\eta \to \infty$ the physical momentum is much larger than H and the field should not "feel" the curvature of spacetime.

NO APOLOGIES!

So just integrate EOM (either using 1, 2, or 3) with BD initial conditions and extract $|\beta_k|^2$ at late time and calculate spectral density and comoving number density.

$$n_k = \frac{k^3}{2\pi^2} \left[\frac{1}{am} \left(\frac{1}{2} \left| \partial_\eta \chi_k \right|^2 + \frac{1}{2} \omega_k^2 \left| \chi_k \right|^2 \right) - \frac{1}{2} \right] = \frac{k^3}{2\pi^2} |\beta_k|^2$$

$$n a^3 = \int \frac{dk}{k} n_k$$

Conversion of na^3 to Ωh^2

After inflation universe dominated by coherent oscillations of inflaton. Energy density decreases as a matter-dominated universe. Eventually inflaton decays, "reheating" the universe to some "reheat" temperature $T_{\rm RH}$, after which the universe evolves as a radiation-dominated universe, eventually becoming matter dominated around z = 30,000, then dark-energy dominated at a redshift ≈ 1 .

All the while na^3 remaining constant.

$$\frac{\Omega h^2}{0.12} = \frac{m}{H_e} \left(\frac{H_e}{10^{12} \,\text{GeV}}\right)^2 \left(\frac{T_{\text{RH}}}{10^9 \,\text{GeV}}\right) \frac{\lim_{a \to \infty} n \, a^3}{10^{-5}}$$

We don't know H_e or $T_{\rm RH}$, but the above values are "representative" choices.

So $na^3 \approx 10^{-5}$ seems desirable.

CGPP & Dark Matter

- Inflation indicates a new mass scale
- In most models, $m_{\text{inflaton}} \approx H_{\text{inflation}} \approx 10^{12} 10^{14} \text{ GeV}$?
- $H_{\text{inflation}}$ detectable via primordial gravitational waves in CMB
- (I) expect other particles with mass $\approx m_{\text{inflaton}}$

Gravitational Particle Production and Dark Matter — Four Lectures 1. Dark Matter: Evidence and the Standard WIMP 2. Gravitational Particle Production (Schrödinger's Alarming Phenomenon) 3. GPP of Scalar Fields

. Beyond Scalar Fields

Rocky Kolb, University of Chicago