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Functional Renormalization Group

Starting point: single scalar field

ZlJ] = [ @gb e_S[gb]'” d'x J)PX) generating functional of correlation functions
A

WIJ] =1nZ[J] generating functional of connected correlation functions
__ o"WLJ] _ - W]
PO = S o0 P = PN = 505
J=0

generating functional of one-particle irreducible

correlation functions
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introduction of regulator function

Z[J] = J D &SI+ 14X T

A

regulator “action’:

Zk[J] = [ @¢ e—S[(ﬁ]—ASk[fﬁ]‘Ffdde(x)gb(x)
A

_ 1 d 2
AS, = EJd X Ppx) B (—0°)p(x)

/

gives a (large) mass to

in flat space: Fourier modes

field modes with . ixp T
momentum lower than k ¢(x) — [ c 4)(]7)
P
essentially k2 p2 < kz
2
R (p7)

\O, p2>k2
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PB (2 it effectively implements the suppression
A P of “slow modes”

k = 0 : complete functional integration

W, [J] = In Z[J]

next to that:

>
p?lk? fk[qo] = — Wk[Jw] + Jddx J, @

| — = - = E E m = m

finally

_ ]
[ilel =Thilel - 5 Jddx P(X) R (—*)p(x)

effective average action
(EAA)
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Properties:

interpolates between full effective
action and the “classical” one

satisfies an exact flow equation

1 —1
oI, = ESTlr [(r;? + gzk) atgzk] 0, = ko,

(exact) flow equation

Wetterich equation

conversion of functional integral into
functional differential equation >

o
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(Infinitely many)
space of all functionals of the field which are compatible with the symmetries of the theory

the effective average action is expanded as I [ep] = 2 g:(k) O[]

g =klg,

0 Fk[CD] = (0 g,(k)) @ik”] ;= — di i+ k=40 0,
t Zz: t 0,2; =k (d; g; + ) / o &

extraction of beta functions

ol le] = Z ki (d; g; + ) O]

suitable projection
rule for the Wetterich
equation

Approximations are necessary, but we don’t need to use a perturbative scheme!
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Looking for fixed points:

ﬁl(g*) — O, [ = 1,...,00

gr=(g7,... ,8%)

Linearized flow around the fixed point:

9p;
0lgi— g9 =) o, 88
i %8

diagonalize

0,2, = A; Z;

!

k - i
z(t) = C, (_> w/ 0,=—4
ko

Theory Space

gOOA

gr =g ,8%)
°

82

81

In order to hit the fixed point:

0,<0  w-—fy 7  growstowards de UV

C;,=0 irrelevant direction

0,>0  w-—ffy 7 decreases towards de UV

C; free parameter

relevant direction
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Predictivity requires that the number of relevant directions is finite

finite-dimensional
g critical surface
(0.@)

ﬁ=#18+#282

P 3 # >0

Asymptotic Safety:

Existence of a renormalization-group fixed point;

Fixed point features finitely many relevant directions;
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In practice...

Approximations are necessary - Truncations of the effective average action

N
Lilol = Z 8i(k) Ol¢]

i=1

Homework: Scalar Field Theory

Hints:

Z
Lilel = [ddX <7¢aﬂ @0, + Vk(602)> Take the wave function

renormalization to be a
constant as a first approx.

Choose:

R(2) = Z,(k* — 2) (k* — 2)
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- the technical side -

No background to set a scale: background field method

8w =8uth,

The spectrum of the Laplacian of the background metric defines a scale

background independence is  8uw > 8w T €

encoded in split symmetry hﬂy — hﬂy — €,

The gravitational action is Introduction of a gauge fixing
invariant under general I term:
coordinate transformations: R

gauge invariance Faddeev-Popov procedure




Gauge fixing



Gauge fixing

7 = J Dh,, DC,DCP eSSl =S4 [5C.C]



Gauge fixing

7 — J@ hﬂ@ @agz@e—smh]—sgf[g;h]—Sgh[g;h,é,C]

Faddeev-Popov ghosts




Gauge fixing

7 — JQZ hﬂ% @a9Cae—smh]—sgf[g;h]—Sgh[g;h,é,C]

Faddeev-Popov ghosts

1
Seflgs nl = — Jddx g 8" F g hlF,[g;h]
2

I
Flghl=V,h,———

Sgnlg:h, €, C] = [ddx\@ C, Mg h1CP




Gauge fixing

7 — J@ hﬂ@ @agz@e—smh]—sgf[g;h]—Sgh[g;h,é,C]

Faddeev-Popov ghosts

1
Sel83 1] = o Jddx\/E g"F [g; hlF,[8;h]

o, 1B
F g h] =V, h) ———

Sulg;h, C, Cl = Jddx g C, M[g; h)CP

Gauge-fixing term breaks split symmetry!



Gauge fixing

7 — JQZ hﬂ@ Cg@@e—smh]—sgf[g;h]—Sgh[g;h,é,C]

Faddeev-Popov ghosts

1
Sel83 1] = o Jddx\/E g"F [g; hlF,[8;h]

o, 1B
F g h] =V, h) ———

Sulg;h, C, Cl = [ddx g C, M[g; h)CP

Gauge-fixing term breaks split symmetry! Harmless breaking



Gauge fixing

7 — J@ hﬂ@ @agz@e—smh]—sgf[g;h]—Sgh[g;h,é,C]

Faddeev-Popov ghosts

Gauge-fixing term breaks split symmetry!

Introducing regulators

AS,[®; @] = AS'[g; h] + ASCC[g; C, C]

1
Sel83 1] = o Jddx\/E g"F [g; hlF,[8;h]

I
Flghl=V,h,———

Sulg;h, C, Cl = Jddx g C, M[g; h)CP

Harmless breaking



Gauge fixing

7 — JQZ hﬂ@ @agCae—smh]—sgf[g;h]—Sgh[g;h,é,C]

Faddeev-Popov ghosts

Gauge-fixing term breaks split symmetry!

Introducing regulators

AS,[®; @] = AS'[g; h] + ASCC[g; C, C]

1
Sl ] = Py Jddx g 8" F g hlF,[g;h]
a

I
Flghl=V,h,———

Sgnlg:h, €, C] = Jddx\/? C, Mg h1CP

Harmless breaking

1 _
ASI?[§§ h] = 5 [ddx\/§ h,uv Rléw’aﬂ( — Vz) haﬁ

AS![g:h] = Jddx\/g CLRE (—V)C
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7 — J@ hﬂ@ @agz@e—smh]—sgf[g;h]—Sgh[g;h,é,C]

Faddeev-Popov ghosts

Gauge-fixing term breaks split symmetry!

Introducing regulators
AS,[®; @] = AS'[g; h] + ASCC[g; C, C]

Regulators break split symmetry and
(quantum) gauge invariance!

1
Sel83 1] = o Jddx\/E g"F [g; hlF,[8;h]

o, 1B
F g h] =V, h) ———

Sulg;h, C, Cl = Jddx g C, M[g; h)CP

Harmless breaking

1 _
ASl?[g; h] = 5 Jddx\/§ h,uv R]éw’aﬂ( — Vz) haﬁ

AS![g:h] = Jddx\/g C Ry ;(=VH P
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In complete analogy: construction of effective average action I}, = Fk[CT); D]

_ 1 _ -1
oL@, ®] =_STr [(F,(CO’Z)[CD, ] + IRk) atRk]

The effective average action is a functional of two fields;

Integrating the flow and taking k=0 leads to an effective average action that depends on two fields,
but background independence is guaranteed by BRST symmetry;

very little is known about the Gribov problem in quantum
gravity and how it can affect background independence
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Choices...

Our starting point was a path integral over Riemannian metrics

However...

metric can be degenerate

metric can change signature

Such a linear split of the metric might introduce many spurious configurations in the non-
perturbative realm!

_ 1, \¢ ‘ - .
Alternative: 8 = gﬂa<eg h) "’""'b avoid the previous prob!ems + cover the
) | space of Riemannian metrics

In the path integral, should we adopt different variables that lead to the same field equations
in the case of GR?

Palatini (8,,,1;,) orpure ¢, or (e9, wb)

No a priori reason to choose one formulation instead of the other



An important remark



An important remark




An important remark




An important remark

In the cosmological term:

2
d< A
167er" 8 A

2
167TGk

- 1
Making use of the exponential parametrization: Jddx ge2Trh Ay



An important remark

1

_ _ _ 1 )
Ry = h;} +V,E+V,E,+V,V,0- ngvza + Egm,h

2
In the cosmological term: dix, /g A
167er" VE A
2 d = 1Trh
Making use of the exponential parametrization: 162G dxy/gez ' " A,
G

Just the trace of h couples to the cosmological constant



An important remark

1

_ _ _ 1 )
Ry = h;} +V,E+V,E,+V,V,0- ngvza + Egm,h

2
In the cosmological term: dix, /g A
167er" VE A
2 d = 1Trh
Making use of the exponential parametrization: 162G dxy/gez ' " A,
G




An important remark

1

_ _ _ 1 )
Ry = h;} +V,E+V,E,+V,V,0- ngvza + Egm,h

2
In the cosmological term: dix, /g A
167er" VE A
2 d = 1Trh
Making use of the exponential parametrization: 162G dxy/gez ' " A,
G

Flghl=Vh,———Vh w f— —o0  freezes the fluctuations of trace of h



An important remark

1

_ _ _ 1 )
Ry = h;} +V,E+V,E,+V,V,0- ngvza + Egm,h

2
In the cosmological term: dix, /g A
167er" VE A
2 d = 1Trh
Making use of the exponential parametrization: 162G dxy/gez ' " A,
G

Recall
g, h]l =V h* 1+/3 h / - f the fluctuati ft fh
Fﬂ[g, I=V, ”_TV” w f— — 0 reezes the fluctuations of trace o
2 _ 2 _ . . ]
d9y geZTrh A — d9y \/g A field independent: does not
167G, “ 167G, K contribute to the flow
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My problem with the cosmological constant

From the previous discussion, we see that the cosmological constant drops out
Beta functions of other couplings will not depend on the cosmological constant

The cosmological constant still runs but even its flow does not depend on the cc itself

Moreover

det(g,,) = det(g,,)e*™  with Trh=0  det(g,,) = det(z,,)

The determinant of the metric (to be path-integrated) is fixed and equals the

determinant of the background metric

Unimodular gauge

det(g,,) = det(z,,,) = »(x
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We have evidence for the necessity of 3 relevant The theory is highly
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This is a hint for a fixed point that is not deeply non-perturbative

G, = kz_dgk p=(d-2)g + F g d=4 p=2g + Fi(g)

Perturbative calculations: asymptotic .
G =2

freedom p=F(g)

Asymptotic Safety can be This leads Weinberg to conjecture

established perturbatively . the Asymptotic Safety scenario in
four dimensions







Weinberg proposes the asymptotic safety i . i
scenario in a special edition in celebration e technlqu?(;csrtgésr’:‘::girz) zsconjecture in
to Einstein’s centenary



Bl eTEe) (SRR LD EERITT DUeE BRI No technique to test such a conjecture in
scenario in a special edition in celebration four dimensions
to Einstein’s centenary

M. Reuter seminal work on FRG & QG

1996-1998
arXiv:hep-th/9605030




Bl eTEe) (SRR LD EERITT DUeE BRI No technique to test such a conjecture in
scenario in a special edition in celebration four dimensions
to Einstein’s centenary

M. Reuter seminal work on FRG & QG

1996-1998
arXiv:hep-th/9605030

Reuter fixed point



Weinberg proposes the asymptotic safety i . i
scenario in a special edition in celebration e temmqu?;ﬁ:ﬁﬁ;::g:; zsconjecture in
to Einstein’s centenary

M. Reuter seminal work on FRG & QG
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Reuter fixed point Birth of AS in its modern incarnation
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In order to extract the effects of quantum-gravity fluctuations, one has to solve
the “fully quantum equations of motion”

Interplay between Quantum gravity and
Particle Physics Cosmology and black holes

Quite active research topic in the field A first-principle analysis requires a well
controlled knowledge of the effective action

Classical cosmological and BH solutions
are RG-improved
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Stay tuned or join us! )



