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Functional Renormalization Group
Starting point: single scalar field

Z[J] = ∫Λ
𝒟ϕ e−S[ϕ]+ ∫ ddx J(x)ϕ(x) generating functional of correlation functions 

W[J] = ln Z[J] generating functional of connected correlation functions 

⟨ϕ(x1)…ϕ(xn)⟩ =
δnW[J]

δJ(x1)…δJ(xn)
J=0

φ(x) ≡ ⟨ϕ(x)⟩J =
δW[J]
δJ(x)

Γ[φ] = − W[Jφ] + ∫ ddx Jφ φ
generating functional of one-particle irreducible 
correlation functions 
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gives a (large) mass to 
field modes with 

momentum lower than k

in flat space: Fourier modes

ϕ(x) = ∫p
eix⋅p ϕ̃(p)

ℛk(p2)
k2 , p2 < k2

0 , p2 > k2

essentially
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p2/k2

ℛk(p2)

1

it effectively implements the suppression 
of “slow modes” 

k = 0 : complete functional integration 

Wk[J] = ln Zk[J]

next to that: 

Γ̄k[φ] = − Wk[Jφ] + ∫ ddx Jφ φ

finally

Γk[φ] ≡ Γ̄k[φ] −
1
2 ∫ ddx φ(x)ℛk(−∂2)φ(x)

effective average action 
(EAA)
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interpolates between full effective 
action and the “classical” one 

Properties:

Γ

SΓk k = Λ

k = 0

k

satisfies an exact flow equation

∂tΓk =
1
2

STr [(Γ(2)
k + ℛk)

−1
∂tℛk]

(exact) flow equation 

Wetterich equation

∂t ≡ k∂k

conversion of functional integral into 
functional differential equation 

solving the flow equation 

= 

solving the functional integral  
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ḡi(k) 𝒪i[φ]

∂tΓk[φ] = ∑
i
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the effective average action is expanded as Γk[φ] = ∑
i

ḡi(k) 𝒪i[φ]

∂tΓk[φ] = ∑
i

(∂tḡi(k)) 𝒪i[φ]
ḡi = kdi gi

∂tḡi = kdi (di gi + βi)
βi = − di gi + k−di∂tḡi

∂tΓk[φ] = ∑
i

kdi (di gi + βi) 𝒪i[φ]
suitable projection  

rule for the Wetterich 
equation

extraction of beta functions

Approximations are necessary, but we don’t need to use a perturbative scheme!

(Infinitely many)
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Looking for fixed points:

βi(g*) = 0 , i = 1,…, ∞

g* = (g*1 , … , g*∞)

g1

g2

g∞

g* = (g*1 , … , g*∞)

Theory Space

Linearized flow around the fixed point:

∂t(gi − g*i ) = ∑
j

∂βi

∂gj
(gj − g*j )

diagonalize

∂tzi = λi zi

zi(t) = Ci ( k
k0 )

−θi

θi = − λiw/

θi < 0

In order to hit the fixed point:

zi grows towards de UV

Ci = 0 irrelevant direction

θi > 0 zi decreases towards de UV

Ci free parameter

relevant direction
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Predictivity requires that the number of relevant directions is finite

g1

g2

g∞

finite-dimensional 
critical surface

Asymptotic Safety: 

Existence of a renormalization-group fixed point; 

Fixed point features finitely many relevant directions;

β = #1 g + #2 g2

β

g* g
β

g*
g

#1 > 0

#2 < 0

#1 < 0

#2 > 0
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Homework: Scalar Field Theory

In practice…
Approximations are necessary - Truncations of the effective average action

Γk[φ] =
N

∑
i=1

ḡi(k) 𝒪i[φ]

Γk[φ] = ∫ ddx (
Zφ

2
∂μφ∂μφ + Vk(φ2))

Vk(φ2) =
N

∑
i=1

Zi
φ

ḡ2i

(2i)!
φ2i

Hints: 

Take the wave function 
renormalization to be a 
constant as a first approx. 

Choose:

ℛk(z) = Zφ (k2 − z) θ(k2 − z)
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ḡμν → ḡμν + ϵμν

hμν → hμν − ϵμν



- the technical side - 
Asymptotically Safe Quantum Gravity

No background to set a scale: background field method

Z = ∫ 𝒟gμν e−S[gμν]
gμν = ḡμν + hμν

The gravitational action is 
invariant under general 

coordinate transformations: 
gauge invariance

The spectrum of the Laplacian of the background metric defines a scale

background independence is 
encoded in split symmetry

ḡμν → ḡμν + ϵμν

hμν → hμν − ϵμν

Introduction of a gauge fixing 
term: 

Faddeev-Popov procedure
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Sgh[ḡ; h, C̄, C] = ∫ ddx ḡ C̄α ℳα
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Sgf[ḡ; h] =
1
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Sgf[ḡ; h] =
1
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β[ḡ; h]Cβ

Gauge-fixing term breaks split symmetry! Harmless breaking

Introducing regulators

ΔSk[Φ̄; Φ] = ΔSh
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k [ḡ; C̄, C]

ΔSh
k [ḡ; h] = ∫ ddx ḡ C̄α Rα

k, β ( − ∇̄2) Cβ

ΔSh
k [ḡ; h] =
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2 ∫ ddx ḡ hμν Rμν,αβ

k ( − ∇̄2) hαβ

Regulators break split symmetry and 
(quantum) gauge invariance!
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In complete analogy: construction of effective average action Γk = Γk[Φ̄; Φ]

∂tΓk[Φ̄, Φ] =
1
2

STr [(Γ(0,2)
k [Φ̄, Φ] + ℝk)

−1
∂tℝk]

The effective average action is a functional of two fields; 

Integrating the flow and taking k=0 leads to an effective average action that depends on two fields, 
but background independence is guaranteed by BRST symmetry;

WARNING!
very little is known about the Gribov problem in quantum 
gravity and how it can affect background independence
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Our starting point was a path integral over Riemannian metrics  

However…

gμν = ḡμν + hμν

metric can be degenerate 

metric can change signature 

hμν can fluctuate widely 

Such a linear split of the metric might introduce many spurious configurations in the non-
perturbative realm!

Alternative: gμν = ḡμα(eḡ−1h)
α

ν

avoid the previous problems + cover the 
space of Riemannian metrics 

In the path integral, should we adopt different variables that lead to the same field equations 
in the case of GR?

Palatini (gμν , Γα
βσ) or pure ea

μ or (ea
μ , ωbc

ν )

No a priori reason to choose one formulation instead of the other
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ḡμνh



An important remark

hμν = hTT
μν + ∇̄μξν + ∇̄νξμ + ∇̄μ ∇̄νσ −

1
d
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2 Tr h Λk

Just the trace of h couples to the cosmological constant

Can we eliminate the trace of h by a suitable choice of gauge?    YES!



An important remark

hμν = hTT
μν + ∇̄μξν + ∇̄νξμ + ∇̄μ ∇̄νσ −

1
d
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2 Tr h Λk

Just the trace of h couples to the cosmological constant

Can we eliminate the trace of h by a suitable choice of gauge?    YES!
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An important remark

hμν = hTT
μν + ∇̄μξν + ∇̄νξμ + ∇̄μ ∇̄νσ −

1
d

ḡμν ∇̄2σ +
1
d

ḡμνh

In the cosmological term:
2

16πGk ∫ ddx g Λk

Making use of the exponential parametrization: 
2

16πGk ∫ ddx ḡe 1
2 Tr h Λk

Just the trace of h couples to the cosmological constant

Can we eliminate the trace of h by a suitable choice of gauge?    YES!

Fμ[ḡ; h] = ∇̄νhν
μ −

1 + β
d

∇̄μh

Recall

β → − ∞w/ freezes the fluctuations of trace of h 

2
16πGk ∫ ddx ḡe 1

2 Tr h Λk →
2

16πGk ∫ ddx ḡ Λk
field independent: does not 
contribute to the flow 
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My problem with the cosmological constant
From the previous discussion, we see that the cosmological constant drops out
Beta functions of other couplings will not depend on the cosmological constant

The cosmological constant still runs but even its flow does not depend on the cc itself

Moreover

det(gμν) = det(ḡμα) e 1
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My problem with the cosmological constant
From the previous discussion, we see that the cosmological constant drops out
Beta functions of other couplings will not depend on the cosmological constant

The cosmological constant still runs but even its flow does not depend on the cc itself

Moreover

det(gμν) = det(ḡμα) e 1
2 Tr h with Tr h = 0 det(gμν) = det(ḡμα)

The determinant of the metric (to be path-integrated) is fixed and equals the 
determinant of the background metric

Unimodular gauge

det(gμν) = det(ḡμα) = ω2(x)
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Gk = k2−dgk β = (d − 2)gk + Fk(g) d = 4 β = 2gk + Fk(g)
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Asymptotic Safety can be 
established perturbatively d = 2 + ϵ

This leads Weinberg to conjecture 
the Asymptotic Safety scenario in 

four dimensions
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Weinberg proposes the asymptotic safety 
scenario in a special edition in celebration 

to Einstein’s centenary
No technique to test such a conjecture in 

four dimensions

M. Reuter seminal work on FRG & QG 

1996-1998 
arXiv:hep-th/9605030

Reuter fixed point Birth of AS in its modern incarnation
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Towards phenomenology
In order to extract the effects of quantum-gravity fluctuations, one has to solve 

the “fully quantum equations of motion” 

Interplay between Quantum gravity and 
Particle Physics Cosmology and black holes

Quite active research topic in the field A first-principle analysis requires a well 
controlled knowledge of the effective action

Classical cosmological and BH solutions 
are RG-improved
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Final words

It seems that we cannot exclude the possibility of quantum gravity to be 
described by an asymptotically safe standard QFT

Non-perturbative tools are mandatory in this case - Big Challenge!

Besides technicalities, there are important conceptual open problems:

How to transport everything that we have learnt so far to the Lorentzian setting?

Is the theory unitary?

Do we have a complete RG-trajectory that emanates from the UV to our IR?

How to connect the results obtained with the FRG and other non-perturbative 
schemes?



Stay tuned or join us! :)


