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Four epochs of the history of the Universe
H ≡ ȧ

a
where a(t) is a scale factor of an isotropic

homogeneous spatially flat universe (a
Friedmann-Lemâitre-Robertson-Walker background):

ds2 = dt2 − a2(t)(dx2 + dy 2 + dz2) + small perturbations

The history of the Universe in one line: four main epochs

? −→ DS=⇒FLRWRD=⇒FLRWMD=⇒DS −→ ?

Geometry

|Ḣ | << H2=⇒ H =
1

2t
=⇒ H =

2

3t
=⇒ |Ḣ | << H2

Physics

p ≈ −ρ =⇒ p = ρ/3 =⇒ p � ρ =⇒ p ≈ −ρ
Duration in terms of the number of e-folds ln(afin/ain)

> 60 ∼ 55 7.5 0.5



CMB temperature anisotropy

Planck-2015: P. A. R. Ade et al., arXiv:1502.01589



Outcome of inflation
In the super-Hubble regime (k � aH) in the coordinate
representation in the synchronous gauge with some additional
conditions fixing it completely:

ds2 = dt2 − a2(t)(δlm + hlm)dx ldxm, l ,m = 1, 2, 3

hlm = 2R(r)δlm +
2∑

a=1

g (a)(r) e(a)
lm

e
l(a)
l = 0, g

(a)
,l e

l(a)
m = 0, e

(a)
lm e lm(a) = 1

R describes primordial scalar perturbations, g – primordial
tensor perturbations (primordial gravitational waves (GW)).
The most important quantities:

PR(k),
d lnPR(k)

d ln k
≡ ns(k)− 1, r(k) ≡ Pg

PR

Both |ns − 1| and r are small during slow-roll inflation.



New cosmological parameters relevant to inflation
Now we have numbers: N. Agranim et al., arXiv:1807.06209

The primordial spectrum of scalar perturbations has been
measured and its deviation from the flat spectrum ns = 1 in
the first order in |ns − 1| ∼ N−1

H has been discovered (using
the multipole range ` > 40):

< R2(r) >=

∫
PR(k)

k
dk , PR(k) = (2.10± 0.03)·10−9

(
k

k0

)ns−1

k0 = 0.05 Mpc−1, ns − 1 = −0.035± 0.004

Two fundamental observational constants of cosmology in
addition to the three known ones (baryon-to-photon ratio,
baryon-to-matter density and the cosmological constant).
Existing inflationary models can predict (and predicted, in
fact) one of them, namely ns − 1, relating it finally to
NH = ln kB Tγ

~H0
≈ 67.2 (note that (1− ns)NH ∼ 2).



The most recent upper limits on r
1. BICEP/Keck Collaboration: P. A. R. Ade et al., Phys. Rev.
Lett. 127, 151301 (2021); arXiv:2110.00483:

r 0.05 < 0.036 at the 95% C.L.

2. M. Tristram et al., Phys. Rev. D 105, 083524 (2022);
arXiv:2112.07961:

r 0.05 < 0.032 at the 95% C.L.

For comparison, in the chaotic inflationary model V (ϕ) ∝ |ϕ|n,
r = 4n

N
, 1− ns = n+2

2N
. The r upper bound gives n < 0.5 for

N0.05 = (55− 60), but then 1− ns ≤ 0.022. Thus, this model
is disfavoured by observational data.

The target prediction for r in the 3 simplest (one-parametric)
inflationary models having ns − 1 = − 2

N
(the R + R2, Higgs

and combined Higgs-R2 models) is

r =
12

N2
= 3(ns − 1)2 ≈ 0.004



Kinematic origin of scalar perturbations

Local duration of inflation in terms of Ntot = ln
(

a(tfin)
a(tin)

)
is

different in different points of space: Ntot = Ntot(r). Then

R(r) = δNtot(r)

Correct generalization to the non-linear case: the space-time
metric after the end of inflation at super-Hubble scales

ds2 = dt2 − a2(t)e2Ntot (r)(dx2 + dy 2 + dz2)

First derived in A. A. Starobinsky, Phys. Lett. B 117, 175

(1982) in the case of one-field inflation.



Visualizing small differences in the number of

e-folds
Duration of inflation in terms of e-folds was finite for all points
inside our past light cone. For ` . 50, neglecting the Silk and
Doppler effects, as well as the ISW effect due the presence of
dark energy,

∆T (θ, φ)

Tγ
= −1

5
R(rLSS , θ, φ) = −1

5
δNtot(rLSS , θ, φ)

For ns = 1,PR = P0,

`(` + 1) 〈(∆T/Tγ)2
lm〉 =

2π

25
P0

For ∆T
T
∼ 10−5, δN ∼ 5× 10−5, and for H ∼ 1014 GeV, like in

the minimal (one-parametric) inflationary models, δt ∼ 5tPl !

Planck time intervals are seen by the naked eye!



Before inflation
The two simplest possibilities occurring in classical (possibly
modified) gravity already.
1. Quasi-isotropic bounce of the scale factor with bounded
curvature not exceeding that during inflation.
2. Generic anisotropic and inhomogeneous singularity with
curvature much exceeding that during inflation.

A specific intermediate case: de Sitter ’Genesis’: beginning
from the exact contracting full de Sitter space-time at
t → −∞ (AS, PLB 91, 99 (1980)).
Requires adding an additional term

R l
i R

k
l −

2

3
RRk

i −
1

2
δk

i RlmR
lm +

1

4
δk

i R
2

to the rhs of the gravitational field equations. Not generic.
May not be the ’ultimate’ solution: a quantum system may
not spend an infinite time in an unstable state.



Other more speculative possibilities

1. Creation of inflation ”from nothing” (Grishchuk and
Zeldovich, 1981).
One possibility among infinite number of others.

2. Our Universe was not an individual entity before inflationary
stage, it was a part of some ”Superuniverse” (”Multiverse” in
modern terminology) (AS, Quantum Gravity, 1981).

3. More generally, any process may be responsible for the
formation of inflationary stage in our Universe, that was called
”creation from anything” in AS and Ya. B. Zeldovich, Sov.
Sci. Rev. 1988.
Possible relation to de Sitter entropy.



Isotropic bounce with positive spatial curvature
Does not require modified gravity. Rather natural before
inflationary stage since even a very small positive spatial
curvature at present becomes important sufficiently early
during inflation.
The simplest model: closed FLRW universe filled by a massive
scalar field (AS, Sov. Astron. Lett. 4, 82 (1978)). Also the
’slow roll’ approximation presently used in all viable inflationary
models was first introduced in this paper (as ’slow climb’
before bounce, t > t−, and ’slow roll’ after bounce t < t+).

ln
a

a±
= −m2(t − t±)2

6
, φ = −

√
2

3

m(t − t±)

κ
sgn H

κ2 = 8πG , m|t − t±| � 1, κ|φ| � 1, ma± � 1, maκ|φ| � 1

Generic, but probability of a bounce is small for a large initial
size of a universe W ∼ 1/ma−. It is difficult to reach inflation
from a low curvature state.



Isotropic bounce with zero spatial curvature in

scalar-tensor gravity

D. Polarski, A. A. Starobinsky, Y. Verbin. J. Cosm. Astropart.
Phys. 2022, 052 (2022); arXiv:2111.07319.
In contrast to GR, scalar-tensor gravity admits breaking of
weak and null energy conditions, so isotropic bounce is
possible even in the absence of spatial curvature.

S =

∫
d4x
√
−g
(

R

2κ2
+

1

2
∂µΦ∂µΦ− U(Φ)− ξ

2
RΦ2

)

Bouncing solutions have been found for polynomial U(φ)
negative in some range but bounded from below. However,
bounce in scale factor does not guarantee bounce in curvature.



In all solutions either the Hubble function H(t) becomes
divergent at some finite moment of time before the bounce, or
the effective gravitational constant Geff = G/(1− ξκ2Φ2)
becomes negative around the bounce.

As was shown in AS, Sov. Astron. Lett. 7, 36 (1981), in such
solutions, arbitrarily small anisotropic perturbations diverge in
the point there G−1

eff = 0 and this results in the formation of
generic anisotropic and inhomogeneous singularity at this
moment preventing the transition to the region where Geff is
negative.
Generic structure of singularity:

ds2 = dt2 −
3∑

i=1

|t|2pi a
(i)
l a(i)

m dx ldxm, 0 < s < 1, u = s(2− s)

where pi < 1, s =
∑

i pi , u =
∑

i p
2
i and a

(i)
l , pi are

functions of r.



Isotropic bounce with negative spatial curvature in

scalar-tensor gravity

In this case, isotropic bounce is possible, too, and even with
positive potentials of the scalar field, see e.g. V. M. Frolov,
A. A. Grib and V. M. Mostpanenko, Phys. Lett. A 65, 282
(1978); V. N. Melnikov and S. V. Orlov, Phys. Lett. A 70,
263 (1979). However, all such solutions have G−1

eff = 0 in some
point, as was shown in AS, Sov. Astron. Lett. 7, 36 (1981).
So, the same problem as with spatially flat solutions arises.



Conclusions
I With a positive spatial curvature, generic bounce of an

isotropic homogeneous universe is possible. Moreover, the
assumption of homogeneity can be omitted: it is
sufficient that spatial curvature is positive in some finite
region of space only. Then only a small part of a
collapsing universe bounces.

I In scalar-tensor gravity with U(φ) negative in some range
but bounded from below, spatially flat isotropic bouncing
solutions with a finite Hubble function H(t) are possible
even in the absence of spatial curvature, but they require
Geff becoming negative around the bounce and, thus, are
unstable with respect to the formation of generic and
inhomogeneous curvature singularity at the moment when
G−1

eff = 0. Thus, they are unphysical.
I The same problem arises in FLRW models with negative

spatial curvature.



WARMEST CONGRATULATIONS,

BEST WISHES

AND NEXT SUCCESSES TO MARIO!
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