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of d. We finally illustrate the effect of the q-deformation on the Gibbs phenomenon of Fourier series 
expansions.
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1. Introduction

Since the foundational works of Clausius, Boltzmann and Gibbs, 
entropy has had a central role in the theory of thermodynamics 
and statistical mechanics [1–3]. In the classical Boltzmann–Gibbs 
(BG) theory of statistical mechanics, the entropy associated to a 
certain macrostate is expressed in terms of a probability distribu-
tion p = {pi}i=1,...,W given on the set of W ∈ N microstates that 
are compatible with the considered macrostate, through the rela-
tion

SBG[p] := −
W∑

i=1

pi ln pi (1)

(we have fixed the Boltzmann constant equal to one). The ex-
pression above, that is valid for classical mixing/ergodic systems, 
provides a connection between the macroscopic and the micro-
scopic description of the system. Shannon [4], and later Khinchin 
[5], showed that the concept of entropy, and its expression in 
Eq. (1), plays also a fundamental role in information theory, and 
it is indeed at the heart of the theory of communication. Due to 
the relevance of the concept of entropy both in physics and in in-
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formation theory, during the last decades many generalizations of 
the BG entropy have been proposed [6–9]. In particular, the Rényi 
entropy [10]

SR
q [p] =

ln
(∑W

i=1 pq
i

)

1 − q
, q ∈R , (2a)

and the nonadditive entropy Sq [11]

Sq[p] = 1 − ∑W
i=1 pq

i

q − 1
, q ∈R . (2b)

Both entropies generalize the BG one, which is recovered for 
q → 1. The nonadditive entropy Sq has been profusely investigated 
and applied to the study of a wide spectrum of physical properties 
of complex systems [6,9]. The parameter q measures the devia-
tion from the classical case. In the spirit of the maximum entropy 
principle introduced by Jaynes [12], it can be shown that the gen-
eralized entropies in Eqs. (2) are extremized by the same family of 
distributions under the same kind of constraints [13,14]. Indeed, 
denoting by {ϵi}i=1,...,W the energies corresponding to the W mi-
crostates appearing in the sums in Eqs. (2), and imposing a fixed 
average energy constraint1 as

1 Observe that, under the assumption that the value of β is kept fixed, the con-
straint must be imposed using escort distributions (see below) to guarantee the 

http://dx.doi.org/10.1016/j.physleta.2017.06.006
0375-9601/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physleta.2017.06.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:sicuro@cbpf.br
mailto:tsallis@cbpf.br
http://dx.doi.org/10.1016/j.physleta.2017.06.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2017.06.006&domain=pdf


2584 G. Sicuro, C. Tsallis / Physics Letters A 381 (2017) 2583–2587

∑W
i=1 pq

i ϵi
∑W

i=1 pq
i

= ⟨ϵ⟩q, (3)

the maximizing distribution of the entropies in Eqs. (2) is

pi(ϵi) = 1
Z

expq
[
−β

(
ϵi − ⟨ϵ⟩q

)]
, (4)

where Z is a proper normalization factor, β > 0 is a Lagrange mul-
tiplier and, for q ∈R,

expq(x) := [1 + (1 − q)x]
1

1−q
+ , [x]+ := xθ(x) (5)

is the so called q-exponential function. The q-exponential function 
generalizes the usual exponential, which is recovered in the q → 1
limit.

Probability distributions, as well as other physical quantities, 
having a q-exponential shape are found in the analysis of data 
obtained in high-energy experiments [15], finance [16], dusty plas-
mas [17], and theoretical investigations on optical lattices [18,19], 
low-dimensional dissipative maps [20–22], diffusion processes in 
superconductors [23], among many others. The ubiquity of distri-
butions with power-law tails in the form of Eq. (4) has suggested 
the existence of a q-generalized Central Limit Theorem (CLT) for 
some classes of correlated random variables, in analogy with the 
connection between Maxwell distribution in BG statistical mechan-
ics and the usual CLT for uncorrelated (or weakly correlated) ran-
dom variables. This possibility has been investigated, for example, 
by the authors of Ref. [24] and led, as by-product, to a general-
ization of many standard mathematical concepts [25], on the basis 
of a new deformed algebra previously introduced by Borges [26]. 
In particular, a possible generalization of the usual Fourier trans-
form, called q-Fourier transform (q-FT) was proposed in Ref. [24]. 
The new integral transform was defined in formal analogy with 
the usual Fourier transform and expressed in terms of the ana-
lytic prolongation of the deformed exponential function given in 
Eq. (5). Hilhorst [27] observed however that the q-FT as defined in 
Ref. [24] cannot be inverted. For this reason, a modified definition 
of q-FT, that is invertible, has been proposed in Ref. [28].

Inspired by the results discussed above, in the present paper 
we analyze a generalization of the q-FT, in the form adopted in 
Ref. [28], to the d-dimensional case. The invertibility of this ex-
pression is proven using a new representation of the Dirac delta 
function in d dimensions, based again on q-exponentials. We will 
finally give some numerical examples, discussing a series repre-
sentation of the inverse q-FT and comparing it with the classical 
Fourier series.

2. Preliminaries: the q-exponential

In the present paper we will use the q-exponential function de-
fined as

ez
q : C→C, ez

q := [1 + (1 − q)z]
1

1−q , q ∈R. (6)

The previous definition is not, strictly speaking, the usual one 
adopted in the literature, given in Eq. (5), but instead its analytic 
continuation to the complex plane. Indeed, the q-exponential in 
Eq. (5) is a real function of a real variable, and a cutoff appears 
in Eq. (5) that is absent in Eq. (6). If z ∈ R, the two definitions 
coincide for z ≶ zq if q ≷ 1, where

zq = 1
q − 1

. (7)

invariance of the maximizing distribution under energy shifts. See also Refs. [13,14]
for additional details.

Fig. 1. Plot of the modulus | ez
q | of the q-exponential function in Eq. (6) for q =

7
/

5 on the complex plane respect to the variable z = x + iy. In color, the complex 
argument. Observe the presence of the pole at zq = 5

/
2. The branch cut in the 

complex plane corresponds to the half real line [5/
2, +∞).

In the following, we will consider q > 1 only. For q > 1 the analytic 
properties of the q-exponential are analogous to the ones of the 
function f (z) = z−a , a > 0, on the complex plane. In particular, 
the q-exponential has a pole for z = zq . We choose as branch cut 
the half line [zq, +∞) along the positive real axis, see Fig. 1. If 
zq ∈Q+ , we can construct a Riemann surface for the q-exponential 
with a finite number of branches. If otherwise zq ∈ R+ \ Q, the 
number of branches is infinite. Analyticity is recovered for zq →
+∞, i.e., for q → 1, when

lim
q→1±

ez
q = ez . (8)

The q-exponential function is therefore a deformation of the usual 
exponential. Many properties of the usual exponential are, how-
ever, lost for q ̸= 1. For example, for q ̸= 1 and z, w ∈ C,

ez+w
q ≠ ez

q ew
q and ez

q ≠ ez+2π i
q . (9)

The q-exponential function in Eq. (6) can be also written, for q > 1
and ℜ(z) < zq , as a linear superposition of exponentials, in the 
form [29]

ez
q =

+∞∫

0

γ
(
zq; t

)
etz d t, ℜ(z) < zq,

γ (η; t) := ηηtη−1

'(η)
e−ηt, η > 0. (10)

Observe that, as expected,

lim
q→1+

γ
(
zq; t

)
= δ(t − 1). (11)

Eq. (10) has been extensively discussed by Beck [30] in the context 
of superstatistics. Eq. (10) implies that, given x ∈ R and q > 1,

eix
q =

+∞∫

0

γ
(
zq; t

)
eitx d t. (12)

The function eikx
q , with x ∈ R and k ∈ R, is sometimes called 

q-plane wave of momentum k [25]. Its real part and imaginary 
part are a deformation of the cosine function and the sine func-
tion respectively. In particular, denoting by

ωn(q) :=
n∏

k=0

[k(q − 1) + 1]
q→1−−−→ 1, (13a)
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Fig. 2. Real and imaginary part of the q-plane wave eix
q for q = 1 + 1

/
10.

Borges [26] introduced the generalized q-cosine and q-sine func-
tions (see Fig. 2) as

e±ix
q = 1 +

∞∑

n=1

ωn−1(q)
(±ix)n

n! ≡ cosq x ± i sinq x, (13b)

where

cosq x := 1 +
∞∑

n=1

ω2n−1(q)
(−1)nx2n

(2n)! , (13c)

sinq x :=
∞∑

n=0

ω2n(q)
(−1)nx2n+1

(2n + 1)! . (13d)

3. A representation of the Dirac delta function

In Ref. [25] a representation of the Dirac delta function on 
the real line in terms of q-exponentials has been proposed. The 
proof of this new representation has been obtained by different 
authors [31–33] using different approaches. In the following, we 
will generalize these results, showing that an integral representa-
tion for the Dirac delta function on Rd can be obtained using again 
q-exponentials. Let us introduce the following distribution

δ
(d)
q (x) := 1

c(q,d)

∫

Rd

eik·x
q dd k, q ∈

(
1,1 + 1

d

)
. (14)

In the previous expression, c(q, d) is a numerical prefactor depend-
ing on q and d that we will suitably fix later on. We will show 
now that the function δ(d)

q (x) behaves like a Dirac delta function in 
d dimensions. Indeed, given a test function ϕ(x) that is infinitely 
differentiable and rapidly decreasing at infinity, we have that

∫

Rd

ϕ(x)δ
(d)
q (x)dd x = 1

c(q,d)

∫

Rd

⎡

⎢⎣
∫

Rd

ϕ(x)eik·x
q dd x

⎤

⎥⎦dd k. (15)

Using Eq. (12) we can write

∫

Rd

ϕ(x)eik·x
q dd x =

+∞∫

0

⎡

⎢⎣
∫

Rd

ϕ(x)eitk·x dd x

⎤

⎥⎦γ (zq; t)d t

=
+∞∫

0

ϕ̂(tk)γ (zq; t)d t, (16)

where

ϕ̂(k) :=
∫

Rd

ϕ(x)eik·x dd x (17)

is the Fourier transform of ϕ . Using the fact that 
∫
Rd ϕ̂(k) dd k =

ϕ(0), we finally have
∫

Rd

ϕ(x)δ
(d)
q (x)dd x =

(
2π

q − 1

)d '
(
zq − d

)

c(q,d)'
(
zq

)ϕ(0), (18)

under the condition

1 < q < 1 + 1
d

. (19)

If we impose now

c(q,d) :=
(

2π

q − 1

)d '
(
zq − d

)

'
(
zq

) , zq := 1
q − 1

, (20)

we obtain the result
∫

Rd

ϕ(x)δ
(d)
q (x)dd x = ϕ(0), 1 < q < 1 + 1

d
, (21)

i.e., the function δ(d)
q acts as a Dirac distribution function on Rd . 

Observe that, as expected,

lim
q→1+

c (q,d) = (2π)d ⇒ lim
q→1+

δ
(d)
q (x) = δ(d) (x) . (22)

The results above recover the d = 1 case analyzed in Refs. [25,
31–33] as particular case.

4. The q-Fourier transform in d dimensions, and its inversion

The interest of the authors of Ref. [25] in the function δ(1)
q (x)

was motivated by the problem of the inversion of the so called 
q-Fourier transform (q-FT). The q-FT of a real, nonnegative inte-
grable function f (x) is given by [24]

f̂q(k) :=
+∞∫

−∞
f (x) ⊙q eikx

q d x

≡
+∞∫

−∞
f (x)eikx[ f (x)]q−1

q d x, 1 < q < 2. (23)

In the previous expression, we have introduced the binary opera-
tion ⊙q between two complex numbers z, w ∈ C, defined as

z ⊙q w :=
(

z1−q + w1−q − 1
) 1

1−q
, q > 1. (24)

Observe that the operation above is a generalization of the usual 
product, being

z ⊙q w
q→1+
−−−−→ zw. (25)

The operation ⊙q is abelian, z ⊙q w = w ⊙q z, and such that 
z ⊙q 1 = z and limw→0 z ⊙η w = 0 ∀z ≠ 0. Moreover, the operation 
introduced in Eq. (24) generalizes the so-called q-product between 
two real positive quantities, as defined in Ref. [26], namely

x ⊗q y :=
[

x1−q + y1−q − 1
] 1

1−q

+
, x, y > 0. (26)

Eq. (26) coincides with Eq. (24) for z, w ∈R+ and z1−q + w1−q ≥ 1. 
The q-FT defined in Eq. (23) recovers therefore the usual Fourier 
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transform for q → 1+ . However, the expression in Eq. (23) requires 
some further discussion. Indeed, as first noted by Hilhorst [27], 
the introduced integral transform cannot be, in general, inverted. 
This observation affects possible applications of Eq. (23), and, for 
this reason, an extended definition of q-FT has been introduced in 
Ref. [28], namely

f̂q(k;kx) :=
+∞∫

−∞
f (y) ⊙q eik(y−x)

q d y

≡
−∞∫

−∞
f (y)eik(y−x)[ f (y)]q−1

q d y
q→1+
−−−−→ e−ikx f̂ (k). (27)

The introduction of the shift variable x allows us to invert the in-
tegral transform for 1 < q < 2. Observe that the variable x appears 
in the product kx only: we have stressed this fact in our notation. 
It can be proved that [28]

f (x) =

⎡

⎣2 − q
2π

+∞∫

−∞
f̂q(k;kx)d k

⎤

⎦

1
2−q

, q ∈ (1,2). (28)

The proof of Eq. (28) strongly relies on the properties of the func-
tion δ(1)

q (x) discussed above. Moreover, the standard formula for 
the inversion of the Fourier transform is obtained for q → 1+ .

We present here a derivation of the result in Eq. (28) in a more 
general setting, namely considering a generalization of Eq. (27) to d
dimensions. Given a nonnegative function f : Rd →R+ , we define 
its q-FT in d dimensions as

f̂q(k;k · x) :=
∫

Rd

f (y) ⊙q eik·(y−x)
q dd y

≡
∫

Rd

f (y)eik·(y−x)[ f (y)]q−1

q dd y,

for q ∈
(

1,1 + 1
d

)
. (29)

The previous expression straightforwardly generalizes Eq. (27), 
apart from the nontrivial constraint q ∈

(
1,1 + 1

d

)
, which guaran-

tees invertibility. The inversion of the integral transform in Eq. (29)
can be obtained using the function δ(d)

q discussed in the previous 
section. Indeed, assuming that q ∈

(
1,1 + 1

d

)
,

∫

Rd

f̂q(k;k · x)dd k

=
∫

Rd

f (y)

⎡

⎢⎣
∫

Rd

eik·(y−x)[ f (y)]q−1

q dd k

⎤

⎥⎦dd y

= c(q,d)

∫

Rd

f (y)δ
(d)
q

(
(y − x) [ f (y)]q−1

)
dd y

= c(q,d)

∫

Rd

[ f (y)]1−d(q−1) δ(d) (y − x)dd y

= c(q,d) [ f (x)]1−d(q−1) . (30)

In the last step we have supposed that x belongs to the interior of 
the support of f (otherwise an additional factor will appear, due 
to the fact that the Dirac delta function is evaluated on a boundary 
point [28]). It follows that

f (x) =

⎡

⎢⎣
1

c(q,d)

∫

Rd

f̂q(k;k · x)dd k

⎤

⎥⎦

1
1−d(q−1)

. (31)

Eq. (31) generalizes the result in Eq. (28), which is indeed recov-
ered for d = 1. Moreover, the standard relation between f and its 
Fourier transform is obtained for q → 1+ .

5. On series expansion and q-FT

Let us now consider a positive real function f : [−T
/

2, T
/

2] →
R+ that is square integrable on its domain. It is well known that f
can be represented in terms of a Fourier series, that in the notation 
introduced in Eq. (29) reads

f (x) = 1
T

+∞∑

n=−∞
f̂1

(
2πn

T
; 2πn

T
x
)

= 1
T

+∞∑

n=−∞
e− 2π in

T x f̂
(

2πn
T

)
. (32)

In the T → ∞ limit we formally recover the expression of the 
Fourier transform and its inverse.

It is tempting to generalize the previous standard result de-
forming the circular functions according to Eqs. (13). However, 
it is easily verified that the orthogonality condition among the 
q-deformed functions in Eq. (13) is not satisfied, and therefore the 
quantities in Eqs. (13) cannot be considered a basis in a Hilbert 
space. Despite this important fact, for q ∈ (1, 2), we have that, for 
a given positive function f on the real line,

f (q)(x) :=
[

2 − q
T

+∞∑

n=−∞
f̂q

(
2πn

T
; 2πn

T
x
)] 1

2−q

T →∞−−−−→

⎡

⎣2 − q
2π

+∞∫

−∞
f̂q(k;kx)d k

⎤

⎦

1
2−q

= f (x) . (33)

If we consider therefore a function f with compact support in 
[−T

/
2, T

/
2], it is expected that, although f (q) ≠ f for q ̸= 1, the 

sum

S(q)
N [ f ](x) :=

[
2 − q

T

N∑

n=−N

f̂q

(
2πn

T
; 2πn

T
x
)] 1

2−q

, (34)

provides a good approximation of f for N ≫ 1 and, if q ̸= 1, for 
T ≫ 1. In particular, we expect that for q ≈ 1, the condition T ≫ 1
can be relaxed and the expression S(q)

N [ f ] still provides a good 
approximation of f for N ≫ 1, despite the fact that no specific 
periodicity can be associated to a q-plane wave for q ̸= 1.

To numerically illustrate this fact, let us consider, for example, 
q = 1 + 1

/
10, and two different distribution densities. Let us first 

start with a smooth distribution, namely a Gaussian distribution

p(x) = e−x2

√
π

, (35)

and let us apply Eq. (34) to it on the interval [−2, 2]. In Fig. 3a 
we show that both S(1)

50 [p] and S(1.1)
50 [p] approximate very well the 

function p on the considered domain.
Let us now consider the uniform distribution

p(x) = 2
θ

( T
4 − x

)
θ

(
x + T

4

)

T
(36)
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Fig. 3. Examples of application of Eq. (34) to different probability distribution densities.

on the interval [−T
/

2, T
/

2]. In Fig. 3b we show the approxima-

tion for p(x) in the case T = 4 obtained using S(1)
N [p] and S(1.1)

N [p]
for N = 50. Remarkably, the approximation provided by the ex-
pansion obtained for q = 1.1 does not fluctuate in the interval 
[−T

/
4, T

/
4], where p is different from zero and the Gibbs phe-

nomenon appears to be suppressed, even close to the discontinuity 
points, despite the fact that both series have been truncated at the 
same value of N . The possible application of the series in Eq. (34), 
and the effects of the q-deformation on the Gibbs phenomenon, 
still deserve further investigation.

6. Conclusions

In the present paper, we have discussed a new representation 
of the Dirac delta function in d dimensions, given in terms of 
q-exponential functions. Using this representation, we have proved 
the invertibility of the q-FT in d dimensions. We have finally nu-
merically illustrated the effects of the q-deformation on the Gibbs 
phenomenon in a Fourier-like series expansion.

The new tools introduced in the present paper are expected 
to be useful in further investigations on the mathematical foun-
dations of generalized thermostatistics. In particular, the q-FT in d
dimensions and the q-generalized representation of the Dirac delta 
function can be useful in the study of generalized versions of the 
Central Limit Theorem. A more detailed and rigorous investigation 
of the applicability of the previous tools is also of great mathemat-
ical interest.
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