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Consistent thermodynamic framework for interacting particles by neglecting thermal noise
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An effective temperature θ , conjugated to a generalized entropy sq , was introduced recently for a system of
interacting particles. Since θ presents values much higher than those of typical room temperatures T ≪ θ , the
thermal noise can be neglected (T/θ ≃ 0) in these systems. Moreover, the consistency of this definition, as well
as of a form analogous to the first law of thermodynamics, du = θdsq + δW , were verified lately by means
of a Carnot cycle, whose efficiency was shown to present the usual form, η = 1 − (θ2/θ1). Herein we explore
further the heat contribution δQ = θdsq by proposing a way for a heat exchange between two such systems, as
well as its associated thermal equilibrium. As a consequence, the zeroth principle is also established. Moreover,
we consolidate the first-law proposal by following the usual procedure for obtaining different potentials, i.e.,
applying Legendre transformations for distinct pairs of independent variables. From these potentials we derive
the equation of state, Maxwell relations, and define response functions. All results presented are shown to be
consistent with those of standard thermodynamics for T > 0.
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I. INTRODUCTION

The macroscopic description of physical systems in equi-
librium at a temperature T is done appropriately by thermo-
dynamics in a very elegant manner [1–3]. In each physical
situation, the identification of the adequate set of variables, and
associated thermodynamic potentials, represents an important
step for a suitable analysis. Studies are carried for T > 0,
from which one can obtain low-temperature results and,
subsequently, physical properties are derived for T = 0 by
considering the limit T → 0. In this limit, the Boltzmann-
Gibbs (BG) statistical mechanics imposes that certain ther-
modynamic properties should present well-defined behavior,
obeying the third law of thermodynamics, which implies that
the entropy per particle, sBG → 0.

The concept of effective temperature has been used in the
literature in many situations where T > 0 and, most curiously,
also for T = 0. As examples of the former case, one could
mention the Einstein (TE) and Debye (TD) temperatures in
their respective crystalline-solid models, so distinct physical
behaviors are obtained for low temperatures (T ≪ TE,TD)
and high temperatures (T ≫ TE,TD). However, the Fermi
temperature (TF ) in a Fermi-Dirac ideal gas is defined for
T = 0, being directly related to the concentration of electrons,
and so it may present large variations depending on the
physical system. One should call the attention to the fact
that previous effective-temperature concepts in the literature,
present, to our knowledge, well-defined (i.e., fixed) values for
each physical system. In contrast to these, in the present work
we will deal with an effective temperature θ , to be defined
later, that can be varied experimentally.
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The H-theorem represents one of the most important
results in standard nonequilibrium statistical mechanics [1,3],
guaranteeing the approach to an equilibrium state. Essentially,
this theorem expresses a well-defined sign for the time
derivative of the entropy, i.e., (dsBG/dt) ! 0, in the case of an
isolated system, or for the free energy (dfBG/dt) " 0 (fBG =
u − T sBG), in the case of a system in contact with a heat
reservoir. A possible proof of this theorem may be achieved
by considering the functional form of sBG[P (x,t)] in terms of
the probability density P (x,t) for finding a particle at a position
between x and x + dx in time t and making use of the linear
Fokker-Planck equation for the time derivative ∂P (x,t)/∂t . In
this way, the H-theorem provides a direct connection between
the linear Fokker-Planck equation and the BG entropy.

Following a similar procedure, proofs of the H-theorem
have also been achieved recently by considering nonlinear
Fokker-Planck equations (NLFPEs). Therefore, in the same
way that the linear Fokker-Planck equation is associated
to normal diffusion and to the BG entropy, the NLFPEs
are usually related to anomalous-diffusion phenomena [4]
and to generalized entropies (see, e.g., Refs. [5–7] among
others). The NLFPEs have been widely investigated in the
literature [8], motivated by an appropriate description of many
complex physical systems. A particular interest has been
dedicated to the NLFPE proposed in Refs. [9], related to Tsallis
nonextensive statistical mechanics [10–13]. In particular, the
q-Gaussian distribution, which represents a generalization
of the standard Gaussian (recovered in the particular case
q = 1), appears naturally from an extremization procedure
of the entropy [13] or from the solution of the corresponding
nonlinear Fokker-Planck equation [9]. This distribution has
been very useful for experiments in many real systems [10–12];
among many, one could highlight: (i) the velocities of cold
atoms in dissipative optical lattices [14,15]; (ii) the velocities
of particles in quasi-two-dimensional dusty plasma [16]; (iii)
the relaxation curves of RKKY spin glasses, like CuMn and
AuFe [17]; (iv) single ions in radio-frequency traps interacting
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with a classical buffer gas [18]; (v) transverse momenta
distributions at LEP [19] and LHC experiments [20]; and
(vi) the overdamped motion of interacting vortices in type
II superconductors [21–26].

Recently, the effective temperature θ was introduced within
the context of the last application above, namely interacting
vortices in type II superconductors [25]. The quantity θ
was shown to represent an appropriate definition of effec-
tive temperature for this system, exhibiting properties very
similar to those of the usual thermodynamic temperature T ,
being [25,26]: (a) a positive quantity by definition and (b)
thermodynamically conjugated to a generalized entropy per
particle, sq , with q = 2 (to be called hereafter s2), characteristic
of nonextensive statistical mechanics (in this way, a heat
contribution was defined, δQ = θds2); (c) proportional to
the density of vortices n (this property yields the desirable
possibility for varying θ , since recent experimental researches
in type II superconductors has led to considerable advances
in the ability of controlling many properties of these vortices,
including their density [27–30]); (d) characterized by values
that are much higher than typical room temperatures (θ ≫ T ),
so the thermal noise can be neglected as a good approximation
(T/θ ≃ 0); (e) physically interpreted in terms of the variance
of the vortex positions, θ ∝ ⟨x2⟩3/2 [26]; and (f) consistent with
the definition of a Carnot cycle, whose efficiency was shown
to be η = 1 − (θ2/θ1), where θ1 and θ2 represent the effective
temperatures associated with the isothermal transformations
of the cycle, with θ1 > θ2 [26]. In order to achieve this latter
result, an infinitesimal-work term δW was introduced, leading
to a proposal for the first law of thermodynamics.

In the present work we reinforce the adequacy of the
effective temperature θ , as well as of first-law form, introduced
in Refs. [25] and [26], respectively, by showing the consistency
of an associated thermodynamic framework. In the next section
we define the physical system under consideration and review
some results of previous works [21–26]. In Sec. III we explore
the heat contribution, δQ = θds2, by considering systems
in thermal contact in such a way to exchange heat among
themselves. Important concepts like thermal equilibrium and
heat reservoir are introduced, and the zeroth principle is
established. In Sec. IV we define physical transformations
and study the Carnot refrigerator, as well as an additional
cycle, namely the Otto cycle. It is shown that the Carnot
cycle (as well as the Carnot refrigerator) are special for this
system, in the sense that its efficiency keeps its usual form,
contrary to the Otto cycle, whose efficiency presents a form
that differs from the one found in standard thermodynamics.
In Sec. V we explore further the first law in its infinitesimal
form by applying Legendre transformations for distinct pairs
of independent variables in order to derive different potentials
and Maxwell relations. In Sec. VI we introduce some response
functions, showing that they present properties very similar to
those of standard thermodynamics. Finally, in Sec. VII we
present our conclusions.

II. AN OVERVIEW OF PREVIOUS RESULTS

In this section we present a brief review of previous results
on the present problem, discussing the connection of a NLFPE
with the system of interacting type II superconducting vortices

[21–24], the concept of an effective temperature and the reason
for neglecting thermal noise in this problem [25], a form
analogous to the first law [26], and some results very similar
to those of standard thermodynamics [25,26].

A. Physical system and effective-temperature concept

The physical system considered herein concerns interacting
vortices under overdamped motion; it will be defined below
and it has been used in the literature to model flux lines, and
their associated vortices, in disordered type II superconductors
(see, e.g., Refs. [27–33]).

The present study is motivated by a good agreement found
between the vortex-position stationary-state [21] (as well as
time-dependent [22,23]) distributions obtained by means of
molecular-dynamics simulations and the analytical solution of
the associated NLFPE calculated in Refs. [9].

The equation of motion of a flux line i under overdamped
motion [i.e., with (dvi/dt) = 0], in a medium with an effective
friction coefficient µ, is given by

µvi = Fpp
i + Fext

i (i = 1,2, . . . ,N). (2.1)

In this equation, vi represents the velocity, whereas the
terms on the right-hand side depict the forces acting on flux line
i. The particle-particle interactions Fpp

i denote contributions
of the other vortices [each vortex interacts with the remaining
(N − 1) vortices], whereas Fext

i represents an external force
acting on vortex i. The vortex-vortex interactions are repulsive
and radially symmetric and are given by [31–33]

Fpp
i = f0

2

∑

j ̸=i

K1(rij /λ) r̂ij , (2.2)

where rij = |ri − rj | stands for the distance between vortices
i and j and r̂ij = (ri − rj )/rij is a vector defined along
the axis joining them. Moreover, K1 represents a modified
Bessel function of the second kind of order 1 and f0 is a
positive constant. These interactions are defined in terms of a
characteristic length scale λ, known as the London penetration
length; other linear measures of this system are expressed in
units of λ. The external forces Fext

i should be associated to a
confining type of potential, so the system can reach a stationary
state after a sufficiently long time. Herein this problem will
be considered in a two-dimensional box of dimensions Lx

and Ly to conform with previous numerical simulations
[21–23], although generalizations to higher dimensions are
straightforward.

For an external force in the x direction, Fext = −A(x)x̂, a
coarse-graining procedure in Eq. (2.1) leads to the following
NLFPE [21,22,33]:

µ
∂P (x,t)

∂t
=−∂[A(x)P (x,t)]

∂x
+ 2D

∂

∂x

{
[λP (x,t)]

∂P (x,t)
∂x

}

+ kT
∂2P (x,t)

∂x2
, (2.3)

where D = Nπf0λ
2/Ly . One should notice that the equation

above also takes into account the effects of a heat bath at a
temperature T (with k standing for the Boltzmann constant),
whose contribution may be obtained in the standard way
through the introduction of a thermal noise in the system [3].
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The most important aspect of Eq. (2.3) concerns the presence
of two competing diffusion terms: apart from the usual linear
diffusion contribution, one finds also a nonlinear diffusion
term. The latter contribution, essentially generated from
the particle-particle interactions within the coarse-graining
procedure, plays a crucial role for an appropriate description
of the low-temperature behavior of this system and especially
of its superconducting state.

It appears intuitive from Eq. (2.3) to introduce an effective
temperature θ , a concept that is supported by means of an
H-theorem (to be discussed later),

kθ ≡ D = Nπf0λ
2

Ly

= nπf0λ
2. (2.4)

The quantity kθ presents the dimension of energy and
is directly related to the density n = N/Ly , as well as
to the interactions between vortices, being always positive.
According to recent advances in experimental techniques, the
density of vortices became a controllable quantity [27–30],
leading to the desirable possibility of varying θ .

From the NLFPE of Eq. (2.3) one expects the following
qualitative behaviors, depending on the parameters θ and T :
(i) For θ ≫ T the nonlinear-diffusion contribution prevails (in
this regime the appropriate solution is given by a q-Gaussian
distribution, typical of nonextensive statistical mechanics
[21–26]); (ii) for θ ≪ T one should recover the linear
diffusion, associated with BG statistical mechanics [21,24];
and (iii) for θ ≈ T one has an intermediate physical situation,
interpolating between the two previous regimes. Although
a time-dependent solution has not been found yet in this
latter case, in Ref. [21] it was shown that the stationary-state
solution of Eq. (2.3) is expressed in terms of a W Lam-
bert function W (z), defined implicitly through the equation
W (z) exp[W (z)] = z, where the ratio (θ/T ) appears naturally
in the variable z. According to the recent investigation of
Ref. [25], values of θ in real systems are very high (e.g.,
in the compounds Pb-Bi, Nb-N, and YBa2Cu3O7, one finds
typically θ > 108 K). Consequently, the appropriate physi-
cal situation for describing type II superconductors (where
maximum critical temperatures are typically T ≈ 150 K [31])
corresponds to regime (i) above (i.e., θ ≫ T ), for which
the nonlinear-diffusion contribution of Eq. (2.3) dominates
completely, as expected. This is the reason for neglecting the
linear-diffusion contribution in Refs. [22–26], as well as in the
present study.

B. The NLFPE and associated entropy resulting
from neglecting thermal noise

Based on the above arguments, the thermal noise can be
neglected as a good approximation (T/θ ≃ 0), so from now
on we will be concerned with the following NLFPE:

µ
∂P (x,t)

∂t
= −∂[A(x)P (x,t)]

∂x

+ 2D
∂

∂x

{
[λP (x,t)]

∂P (x,t)
∂x

}
. (2.5)

It should be mentioned that this equation represents a par-
ticular case of the NLFPE usually considered in nonextensive
statistical mechanics. The equation in Refs. [9] contains a more

general diffusion term, defined by replacing 2D[λP (x,t)] →
νD[λP (x,t)]ν−1, where ν is a real number associated with
the index q through ν = 2 − q; Eq. (2.5) corresponds to the
particular case ν = 2 (leading to a q-Gaussian with q = 0
as its solution). The time-dependent solution of the general
NLFPE was found for an initial condition P (x,0) = δ(x) and
a harmonic external force, A(x) = −αx (α > 0) [9],

P (x,t) = B(t)[1 + b(t)(1 − ν)x2]1/(ν−1)
+ , (2.6)

where [y]+ = y, for y > 0, zero otherwise, and the time-
dependent coefficients B(t) and b(t) are related to each other
in order to preserve the normalization of P (x,t) for all times
t . The particular case of interest herein corresponds to ν = 2,
being identified with a q-Gaussian distribution of nonextensive
statistical mechanics for q = 0 [10–12],

P (x,t) = B(t)[1 − b(t)x2]+, (2.7)

and presenting a compact support in the interval [−x̄(t),x̄(t)],
where x̄(t) = b−1/2(t).

One may prove the H-theorem using Eq. (2.5) and imposing
a well-defined sign for the time derivative of the one-vortex
free-energy functional [21–23],

f = u − θs2; u =
∫ x̄(t)

−x̄(t)
dx φ(x)P (x,t), (2.8)

where θ has to be identified precisely as the effective
temperature of Eq. (2.4), and φ(x) represents the external
potential associated with the force A(x) in Eq. (2.5) [A(x) =
−dφ(x)/dx]. As usual, the internal energy is defined solely
in terms of the external potential; the contribution of the
interactions among vortices appears through the parameter
θ . In order to satisfy the H-theorem, the associated entropy
should be given by [21–23]

s2[P ] = k

{
1 − λ

∫ x̄(t)

−x̄(t)
dx [P (x,t)]2

}
. (2.9)

It is important to remind that the distribution in Eq. (2.7)
coincides with the one obtained through an extremization of
the above entropy, considering the constraint for probability
normalization, in addition to the constraint of Eq. (2.8) for the
internal energy. Within the context of nonextensive statistical
mechanics, by extremizing an entropy sν[P ] considering a lin-
ear constraint for the internal energy [like the one in Eq. (2.8)],
one obtains an equilibrium distribution given in terms of a q
exponential with q = 2 − ν [10]. However, if one extremizes
sν[P ] with an escort constraint [34,35], one finds a distribution
given in terms of a q exponential with q = ν. Consequently,
in the present work the linear constraint in Eq. (2.8) yields the
“duality” q ↔ (2 − q) between the distribution index q = 0
and the entropic exponent that appears in Eq. (2.9).

Two important points concerning the present approach
should be stressed, as described below. (i) Similarly to the
linear Fokker-Planck equation [3], the first term on the right-
hand side of Eq. (2.5) carries the contribution of the external
potential, whereas the second one comes from the interaction
of a single flux line with the medium, and as mentioned,
this latter term represents the effect of N − 1 vortices on the
tagged vortex. Therefore, the distribution P (x,t) will refer
to one flux line of the above-mentioned system and so all
physical quantities to be derived from this distribution (e.g.,
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f , u, and s2) will correspond to one-vortex properties. (ii)
Based on the fact that T/θ ≃ 0, the effects of thermal noise
can be neglected as a good approximation. Consequently,
certain thermodynamic properties, like entropy and specific
heat, become negligible within BG statistical mechanics;
however, a curious situation concerning the third law of
thermodynamics was verified in Ref. [21], where sBG → 0,
keeping the generalized entropic form s2 > 0, as T → 0.
Hence, as shown in Refs. [25,26], the effective temperature
θ appears as the variable thermodynamically conjugated to
the generalized entropy s2.

C. The stationary state and some associated properties

One notices two competing terms on the right-hand side
of Eq. (2.5), namely the confining external potential term
and the nonlinear diffusion contribution produced by the
repulsive interactions among the particles. Consequently, after
a sufficiently long time, the system will attain a stationary
state, where the particles appear at fixed positions, as shown in
Refs. [21–23]. Such a stationary state corresponds to the one
for which all thermodynamic-like properties will be calculated;
for convenience, these quantities will be referred to by using
the same nomenclature of standard thermodynamics.

The stationary-state solution of Eq. (2.5) is given by [21,22],

Pst(x) = α

4kθλ

(
x2

e − x2) = αλ

4kθ

[(
xe

λ

)2

−
(

x

λ

)2]
, (2.10)

with |x| < xe, where xe = (3kθλ/α)1/3 is found from the
normalization condition for Pst(x). The above distribution
presents a variance,

⟨x2⟩ =
∫ xe

−xe

dx x2 Pst(x) = 32/3

5

(
λ

α

)2/3

(kθ )2/3 = x2
e

5
,

(2.11)

which yields

kθ = 53/2

3
α

λ
⟨x2⟩3/2. (2.12)

Therefore, the effective temperature θ is herein related
to the the particle-position variance, such that θ ∝ ⟨x2⟩3/2,
while in the classical dilute gas the temperature is related to
the second moment of the corresponding velocity probability
distribution, i.e., T ∝ ⟨v2⟩.

Considering the distribution Pst(x) in Eq. (2.10) one may
calculate physical quantities in the stationary state, like the
entropy and internal energy. Hence, Eqs. (2.8) and (2.9) lead,
respectively, to

u =
∫ xe

−xe

dx
αx2

2
Pst(x) = 32/3

10
(αλ2)1/3(kθ )2/3, (2.13)

s2

k
= 1 − λ

∫ xe

−xe

dx [Pst(x)]2 = 1 − 32/3

5

(
αλ2

kθ

)1/3

. (2.14)

Manipulating the equations above one may write the
entropy in terms of the internal energy,

s2(u,α) = k

[
1 − 3

5

(
αλ2

10u

)1/2]
, (2.15)

where, following Ref. [26], we have written explicitly a
dependence on the parameter α, i.e., s2 = s2(u,α), to be
explored later. From Eq. (2.15) one obtains the fundamental
relation,

(
∂s2

∂u

)

α

= 1
θ
, (2.16)

which shows the appropriateness of the effective-temperature
concept introduced in Ref. [25]. Moreover, this result suggests
the definition of a type of energy exchange, δQ = θds2,
hereafter to be called “heat exchange.”

D. The first law and equation of state

In Ref. [26] we have proposed a work contribution related to
the external potential, δW = σdα, where the parameter α may
be some controllable external field associated with work. This
choice is supported by the fact that our distribution of particles
is defined in the interval [−xe,xe] with xe = (3kθλ/α)1/3, so
for a fixed θ , the volume occupied by the particles, 2xeLy ,
decreases for increasing α. Furthermore, σ corresponds to the
parameter conjugated to α (presenting dimensions [σ ] = L2)
to be determined later. This proposal for an infinitesimal work
δW , together the definition of an infinitesimal heat δQ given
above, yields an equivalent to the first law [26],

du = δQ + δW = θds2 + σdα, (2.17)

where δW corresponds to the work done by the external field
on the system, and the dependence s2 = s2(u,α), introduced in
Eq. (2.15), becomes clear now in Eq. (2.17). The consistency of
this proposal for the first law will be shown throughout the rest
of this paper. Besides the fundamental relation of Eq. (2.16),
the first law proposed in Eq. (2.17) yields

(
∂s2

∂α

)

u

= −σ

θ
. (2.18)

Moreover, deriving Eq. (2.15) with respect to α, using
Eq. (2.13), and equating the result with Eq. (2.18), one obtains
the following equation of state:

σ = 32/3

10
λ2

(
kθ

αλ2

)2/3

. (2.19)

Comparing the above expression with Eq. (2.13), one
notices that u = σα, which represents a peculiarity of the
present system. Particularly, it leads to a trivial enthalpy,
h = u − σα = 0; this uncommon situation will be discussed
in more detail later. The relation u = σα, involving the
two conjugated parameters associated with the infinitesimal
amount of work δW and the internal energy u, may be
compared with the one for an ideal gas, namely pv = 2u/3
(valid for the classic case, as well as in both quantum
statistics [3]).

Motivated by these results, the behavior of some stationary-
state properties, like entropy and internal energy, were investi-
gated for varying θ [25]; moreover, by defining appropriately
physical transformations, a Carnot cycle was constructed
in Ref. [26]. These investigations have shown that θ plays
a role in the present problem very similar to the one of
absolute temperature in standard thermodynamics. Following
Refs. [25,26], herein we will analyze further properties related
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to the entropic form s2 of Eq. (2.9) and to the effective
temperature of Eq. (2.4), showing that they present a nontrivial
behavior, when neglecting thermal noise.

In the next section we will discuss novel aspects related to
the contact between two systems at initially different values
of the parameter θ ; based on this, we will show the validity of
the zeroth law within the present framework.

III. SYSTEMS IN THERMAL CONTACT
AND ZEROTH LAW

The system investigated herein, namely interacting vor-
tices under overdamped motion, was studied numerically
through molecular-dynamics simulations in Refs. [21–23].
These simulations considered N interacting vortices in a
two-dimensional box of sizes Lx and Ly by applying a
confining harmonic potential in the x direction, such as to
guarantee a stationary state after a sufficiently long time.
The remarkable agreement between the simulation data and
the analytical solution of Eq. (2.5), for both time-dependent
and stationary states, motivated us to carry on the study of
further properties of this system, like those described above.
Particularly, considering the stationary state described by
the probability distribution of Eq. (2.10), a framework very
similar to the one of standard thermodynamics was initiated in
Refs. [25,26]; this analysis is continued and such similarity is
reinforced herein.

In this section we discuss fundamental questions related
to the energy transfer associated with the heat contribu-
tion δQ = θds2, which occurs by considering two of the
above-mentioned systems in contact (to be referred to as
systems 1 and 2, respectively). It is important to mention that
since we are neglecting thermal effects, the present quantity
δQ rather differs from the corresponding one of standard
thermodynamics, which does not arise herein. However, being
associated with the entropy s2, δQ represents an energy that
may be transferred between different systems, and it will be
shown herein to exhibit properties very similar to those of the
usual heat. One should note that the confining potential makes
the system anisotropic, and simulations were performed for
Lx ≫ 2xe, where xe corresponds to the cutoff in the probability
distribution of Eq. (2.10). This indicates that in this stationary
state vortices are present for |x| < xe, and, consequently, no
vortices are found close to the borders of the box in the
x direction (see, e.g., Fig. 1 of Ref. [22], where a typical
stationary state for a simulation in a box of Lx = 280λ is
presented). Hence, in order to conform with the simulations,
the natural way to bring two such systems in contact is by
joining together their sides Lx . Although no difficulties should
appear by considering a contact between two systems with
Lx,1 ̸= Lx,2 (Lx,1,Lx,2 ≫ 2xe), herein we restrict ourselves to
Lx,1 = Lx,2 = Lx , as shown in Fig. 1.

A. Thermal contact

The physical situation that we will analyze corresponds to
two similar physical systems separated by a movable, rigid,
and impermeable wall, as represented by the dashed line in
Fig. 1. In order to simplify our analysis, we consider two
systems characterized by the same values of f0 and λ, so

Ly,i

(a)

N1

N2

Ly,i

Lx

L(1)

L(2) Ly,f

(b)

N1

N2

Ly,f

Lx

L(1)

L(2)

FIG. 1. A thermal contact may be achieved by considering a
movable, rigid, and impermeable wall along the x direction (dashed
line) separating two systems 1 and 2, characterized by N1 and N2

vortices, respectively. In case (a) a typical situation is represented
where the net force exerted by the vortices of system 2 on the wall
is greater than the one of the vortices in system 1, so the wall is
pushed upwards. A mechanical equilibrium is reached in (b), where
the forces from both sides cancel. The transformation is given by a
change in the lengths in the y direction, from an initial state defined
by lengths (L(1)

y,i ,L
(2)
y,i), to a final state defined by lengths (L(1)

y,f ,L
(2)
y,f ).

the difference in their respective values of θ are due only to
distinct values of n [cf. Eq. (2.4)]. Such a wall must feel the
presence of magnetic vortices from both sides, and it may
be constructed, e.g., by a double magnetic film. Since the
forces among vortices are repulsive, the wall should be such
as to experience a net repulsive force, being pushed from both
sides. In Fig. 1(a) we represent a situation where the force due
to system 2 is stronger than the one exerted by system 1, so
the wall moves upwards, leading to a mechanical equilibrium
shown in Fig. 1(b). The physical transformation consists in a
change in the lengths in the y direction from a state with initial
lengths (L(1)

y,i ,L
(2)
y,i) to a state with final lengths (L(1)

y,f ,L
(2)
y,f ),

which in Fig. 1 corresponds to

L
(1)
y,f = L

(1)
y,i − δLy ; L

(2)
y,f = L

(2)
y,i + δLy (δLy > 0), (3.1)

in such a way to conserve their sum,

L
(1)
y,f + L

(2)
y,f = L

(1)
y,i + L

(2)
y,i . (3.2)

In Fig. 1(a) we have considered a situation where θ
(1)
i <

θ
(2)
i , which according to Eq. (2.4) corresponds to

N1

L
(1)
y,i

<
N2

L
(2)
y,i

. (3.3)

Although the precise form of the repulsive force exerted
by a single vortex on the wall may vary according to the type
of wall considered, we herein postulate that the intensity of
the net force produced by a system of N vortices in a region
of size Ly should depend, apart from characteristic constants,
on the ratio N/Ly . This dependence is understood since the
total force increases with the number of vortices, whereas the
contribution from a single vortex decreases with its distance
from the wall, leading to a decrease of the total force with
Ly . Therefore, we assume that the intensity of the total force
exerted by a system of vortices on the wall to be proportional to
F̃ (N/Ly), where F̃ (x) represents a monotonically increasing
function of x. In this way, the physical transformation occurs
in such a way that the system with a higher density of vortices
pushes the wall, leading to the equilibrium shown in Fig. 1(b),
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characterized by

N1

L
(1)
y,f

= N2

L
(2)
y,f

, (3.4)

which corresponds precisely to θ
(1)
f = θ

(2)
f = θf .

Since s2 is a state variable, one may use Eq. (2.14) to
calculate the entropy changes for both systems 1 and 2 (to be
referred herein as δs

(1)
2 and δs

(2)
2 , respectively),

δs
(1)
2

k
= 1

k

[
s

(1)
2,f − s

(1)
2,i

]
= 32/3

5

[(
αλ2

kθ
(1)
i

)1/3

−
(

αλ2

kθf

)1/3]
,

(3.5)

δs
(2)
2

k
= 1

k

[
s

(2)
2,f − s

(2)
2,i

]
= 32/3

5

[(
αλ2

kθ
(2)
i

)1/3

−
(

αλ2

kθf

)1/3]
,

(3.6)

showing that δs
(1)
2 > δs

(2)
2 , for θ

(1)
i < θ

(2)
i [or, equivalently,

δs
(1)
2 < δs

(2)
2 , for θ

(1)
i > θ

(2)
i ], similarly to what happens in stan-

dard thermodynamics, where the system at lower temperature
absorbs heat (i.e., increases its entropy) from the one at higher
temperature. Moreover, one sees that the entropy variations
in Eqs. (3.5) and (3.6) present opposite signs only if the final
temperature θf lies between the two initial temperatures, e.g.,
δs

(1)
2 > 0 and δs

(2)
2 < 0, if θ

(1)
i < θf < θ

(2)
i .

In fact, a relation involving these temperatures may be
found directly from Eq. (3.2). For that, one divides this
equation by N1 and multiplies the initial and final lengths
of system 2 by unit [i.e., by (N2/N2)],

L
(1)
y,f

N1
+ N2

N1

L
(2)
y,f

N2
=

L
(1)
y,i

N1
+ N2

N1

L
(2)
y,i

N2
. (3.7)

Now one multiplies the equation above by the constant
factor k/(πf0λ

2) in order to use Eq. (2.4), so

1
θf

(
1 + N2

N1

)
= 1

θ
(1)
i

+ N2

N1

1

θ
(2)
i

, (3.8)

from which one gets

1
θf

= N1

N1 + N2

1

θ
(1)
i

+ N2

N1 + N2

1

θ
(2)
i

. (3.9)

This equation may still be written in terms of the initial
lengths of the two systems, L

(1)
y,i and L

(2)
y,i . From Eq. (3.9) one

has

θf =
(N1 + N2) θ

(1)
i θ

(2)
i

N2θ
(1)
i + N1θ

(2)
i

=
[(

N1
/
L

(1)
y,i

)
+

(
N2

/
L

(1)
y,i

)]
θ

(1)
i θ

(2)
i(

N2
/
L

(1)
y,i

)
θ

(1)
i +

(
N1

/
L

(1)
y,i

)
θ

(2)
i

. (3.10)

Now, multiplying the N2 terms by unit [i.e., by (L(2)
y,i/L

(2)
y,i)],

as well as both numerator and denominator by the constant
factor (πf0λ

2)/k, one obtains

θf =
L

(1)
y,i

L
(1)
y,i + L

(2)
y,i

θ
(1)
i +

L
(2)
y,i

L
(1)
y,i + L

(2)
y,i

θ
(2)
i . (3.11)

One should call the attention to Eqs. (3.9) and (3.11),
where the final equilibrium temperature is related to the two
initial temperatures. In the first case one finds a relation
between the temperature inverses, where each contribution
in the right-hand side appears multiplied by the respective
fraction of the total number of vortices. In the second case one
has a linear relation between these temperatures, where each
contribution in the right-hand side appears multiplied by its
respective fraction of the total length occupied. It is important
to note the similarity of the results above [particularly that of
Eq. (3.11)] with the one corresponding to the exchange of heat
between two substances A and B in standard thermodynamics;
considering two susbstances with thermal capacities CA and
CB , and at initial temperatures TA and TB , respectively, the
final equilibrium temperature Tf attained after their thermal
contact is given by [1]

Tf = CA

CA + CB

TA + CB

CA + CB

TB. (3.12)

Both Eqs. (3.9) and (3.11) guarantee the most desirable
result that the final equilibrium temperature θf must lie
inside the interval defined by the two initial temperatures θ

(1)
i

and θ
(2)
i .

B. Thermal reservoir

Let us now address the situation of a contact in which
system 1 presents a number of vortices much larger than the
one of system 2, i.e., N1 ≫ N2. This condition characterizes
system 1 as a heat reservoir, a concept introduced qualitatively
in Ref. [26]. In this case, considering θ

(1)
i < θ

(2)
i in Eq. (3.9),

one gets

θf
∼=

(
1 + N2

N1

)
θ

(1)
i , (3.13)

showing that the final equilibrium temperature should be
slightly higher than the initial temperature of the reservoir,
as expected. Below, we will explore this case further, with
particular interest in the initial and final positions of the wall,
defined by the transformation shown in Fig. 1. Hence, one has
two possibilities satisfying Eq. (3.2), namely

L
(1)
y,f = L

(1)
y,i ∓ δLy ; L

(2)
y,f = L

(2)
y,i ± δLy (δLy > 0),

(3.14)

where the upper (lower) signs apply for a temperature decrease
(increase) in system 2.

Dividing Eqs. (3.14) by L
(2)
y,f and L

(1)
y,f , respectively, one

obtains

L
(1)
y,f

L
(2)
y,f

=
L

(1)
y,i

L
(2)
y,f

∓ δLy

L
(2)
y,f

, (3.15)

L
(2)
y,f

L
(1)
y,f

=
L

(2)
y,i

L
(1)
y,f

± δLy

L
(1)
y,f

. (3.16)

Now we apply the condition that system 1 represents a
thermal reservoir, so that Eq. (3.4) yields (L(2)

y,f /L
(1)
y,f ) ≪ 1.

Using this condition in Eq. (3.15), one concludes that both
sides of this equation should be much larger than unit; the
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same condition in Eq. (3.16) gives that both sides of this later
equation are positive and much smaller than unit. Below we
discuss the possible consequences.

(a) Upper signs: system 2 increases the length Ly,2,
lowering its temperature.

Analyzing Eqs. (3.15) and (3.16) one concludes that

L
(1)
y,i ≫ δLy ; L

(2)
y,f , L

(2)
y,i , δLy ≪ L

(1)
y,f ; L

(2)
y,i ≪ L

(1)
y,i ,

(3.17)

where the last inequality was obtained from Eq. (3.2). This
corresponds to a situation where the displacement of the wall
is very small when compared with both lengths L

(1)
y,i and L

(1)
y,f ,

leading to a negligible change in the temperature of system 1.
(b) Lower signs: system 2 decreases its length Ly,2,

increasing its temperature.
From Eq. (3.16) one obtains that L

(2)
y,i # δLy , leading to

two possibilities. The first one consists in L
(1)
y,i ,L

(1)
y,f ≫ δLy ,

resulting in a situation similar to the one described by
Eq. (3.17), in agreement with the concept of a heat reservoir
for system 1. This second possibility corresponds to a situation
where the effective temperature of the reservoir changes and
so it will not be addressed herein.

C. Zeroth law

Let us consider two systems (1 and 2) in contact, as shown
in Fig. 1, for which their equilibrium is characterized by

N1

Ly,1
= N2

Ly,2
. (3.18)

Now, by putting a third system in contact and in equilibrium
with system 1, one has

N1

Ly,1
= N3

Ly,3
. (3.19)

Hence, the right-hand sides of Eqs. (3.18) and (3.19) are
equal to one another, so systems 2 and 3 are also in equilibrium,
i.e., (N2/Ly,2) = (N3/Ly,3).

This result characterizes 1 as a test system, i.e., a thermome-
ter: All systems in equilibrium with 1 are in equilibrium with
each other. These systems have a property in common, which
is their effective temperature θ , defined in Eq. (2.4). Therefore,
one can formulate the zeroth principle for the present system:

Two systems of superconducting vortices for which thermal
effects are negligible in comparison with those associated
with their effective temperatures are said to be in thermal
equilibrium if, being in contact, no heat flows in either way.
The zeroth principle can be enunciated by stating that two
systems in thermal equilibrium with a third one are in thermal
equilibrium with each other. This corresponds to the transitivity
of their effective temperatures.

IV. TRANSFORMATIONS AND CYCLES

In this section we will analyze the possible physical
transformations that follow from Eq. (2.17), and, considering
these transformations, we will construct two cycles, namely
those equivalents to the Carnot refrigerator and Otto cycle.
Although the Carnot cycle has already been studied in

Ref. [26], herein we will show that considering this cycle in its
reverse way, a similar to the Carnot refrigerator follows, with
the same form for its coefficient of performance. However,
the efficiency obtained for the Otto cycle presents a different
(i.e., generalized) form, showing the the Carnot cycle and
refrigerator are special machines within the context of a
consistent thermodynamical framework.

A. Physical transformations

From Eq. (2.17) one can define four possible physical
transformations, namely isothermic (θ = constant), adiabatic
(s2 = constant), and two additional ones, to be called herein
iso-α and iso-σ . However, from Eqs. (2.14), (2.15), and (2.19),
one notices that an adiabatic process corresponds to one of the
conditions,

α

θ
= const; σ = u

α
= const, (4.1)

or properly defined combinations of them. Therefore, in
the present system, the adiabatic and iso-σ transformations
correspond precisely to the same process. Lets us then consider
the three possible transformations associated with Eq. (2.17),
occurring from an initial state i to a final state f .

1. Adiabatic (or iso-σ ) transformation

The total work done on the system in an adiabatic
transformation from an initial state characterized by (θi ,αi),
to a final state with (θf ,αf ), is given by

uf − ui = W =
∫ αf

αi

σdα = σ (αf − αi), (4.2)

where

σ = 32/3

10
λ2

(
kθi

αiλ2

)2/3

= 32/3

10
λ2

(
kθf

αf λ2

)2/3

. (4.3)

Hence, in an adiabatic process one gets positive (negative)
work for αf > αi (αf < αi).

2. Isothermal transformation

For an isothermal process at a temperature θ , one has

Q =
∫ s2,f

s2,i

θds2 = θ (s2,f − s2,i)

= 32/3

5
(kθ )2/3[(αiλ

2)1/3 − (αf λ2)1/3], (4.4)

W =
∫ αf

αi

σdα = 32/3

10
λ2

(
kθ

λ2

)2/3 ∫ αf

αi

α−2/3 dα

= 35/3

10
(kθ)2/3[(αf λ2)1/3 − (αiλ

2)1/3], (4.5)

uf − ui = Q + W = 32/3

10
(kθ )2/3[(αf λ2)1/3 − (αiλ

2)1/3].

(4.6)

Then, for the isothermal process one has positive (negative)
work and variation of internal energy, whereas the system
releases (absorbs) heat, if αf > αi (αf < αi).
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3. Iso-α transformation

These transformations were considered in the previous
section in the analysis of the thermal contact between two
systems. They are characterized by du = δQ = θds2, where

uf − ui = 32/3

10
(αλ2)1/3[(kθf )2/3 − (kθi)2/3], (4.7)

s2,f − s2,i = 32/3k

5

[(
αλ2

kθi

)1/3

−
(

αλ2

kθf

)1/3]
. (4.8)

Considering the above-defined transformations, one can
construct cycles, and two of them will be discussed below,
namely the Carnot refrigerator and the Otto cycle. In Ref. [26]
a cycle analogous to a Carnot cycle was studied, and its
efficiency was shown to follow the standard form, i.e.,
η = 1 − (θ2/θ1), where θ1 and θ2 represent the effective
temperatures associated with the isothermal transformations of
the cycle, with θ1 > θ2. For completeness, herein we consider
the reversed Carnot cycle, i.e., the Carnot refrigerator. In
contrast to the Carnot cycle, which keeps the same form for
its efficiency, we will show below that the efficiency of the
Otto cycle changes its form, now being given by a nonlinear
function of the associated temperatures.

B. Carnot refrigerator

Let us now define a system analogous to the reversed
Carnot cycle by considering two isothermal and two adiabatic
processes, intercalated, as illustrated in Fig. 2 in a plane σ/λ2

(dimensionless) versus αλ2 (dimensions of energy). The main
properties of this cycle are described below.

(i) An amount of heat Q2 is absorbed in the isothermal
process at the lower temperature θ2, whereas the system
releases heat Q1 in the isothermal process at the higher
temperature θ1. For the complete cycle, the variation of internal
energy is zero and so Q1 = W + Q2 (considering Q1, Q2, and
W all positive). It is important to note our definition of the work
contribution in Eq. (2.17) (associated with the plus sign).

(ii) In a plot σ versus α (or, equivalently, σ/λ2 versus
αλ2, as in Fig. 2), the work associated with a given process
corresponds to the area below such transformation. As shown
above, work is positive (negative) for transformations that
increase (decrease) α. Therefore, the total work done on the
system, calculated as W = Wab + Wbc + Wcd + Wda , is given
by the area enclosed in the cycle of Fig. 2.

(iii) Manipulating Eqs. (2.19) and (4.4), one obtains the
well-known result relating the two isothermal processes,

Q1

Q2
= θ1

θ2
. (4.9)

(iv) Defining the coefficient of performance of the refrig-
erator in the standard way [1,2], one gets

K = Q2

W
= Q2

Q1 − Q2
= θ2

θ1 − θ2
. (4.10)

Noting that K = Q2/(eQ1), where e represents the efficiency
of the Carnot engine operating in the reverse way with respect
to the one of Fig. 2, one recovers the celebrated efficiency of

0 1 2 3 4

αλ2

0.2

0.3

0.4

0.5

σ/
λ2

b

c

a

d

Q1Q2
W

FIG. 2. The Carnot refrigerator for a system of interacting
vortices under overdamped motion by neglecting thermal noise. The
abscissa αλ2 presents dimensions of energy (e.g., Joules), whereas the
ordinate σ/λ2 is dimensionless. The transformations for σ constant
are adiabatic, and herein they were chosen to occur for (σ/λ2) = 0.45
(a → b) and (σ/λ2) = 0.25 (c → d). The isothermal transformations
are characterized by σ ∼ α−2/3 [cf. Eq. (2.19)] and they occur for
kθ1 = 5 (units of energy) in b → c, and kθ2 = 1 (units of energy) in
d → a, i.e., θ1 > θ2. Operating as a refrigerator, an amount of heat
Q2 is absorbed at θ2 and Q1 is released at θ1; as shown in text, the area
inside the cycle represents the total work W done on the refrigerator
with Q1 = W + Q2 (conventionalizing all these three quantities as
positive). The cycle above holds for any system of units, e.g., by
considering all quantities with dimensions of energy in Joules.

the Carnot cycle,

e = W

Q1
= Q1 − Q2

Q1
= 1 − θ2

θ1
. (4.11)

These results, together with those of Ref. [26], show the appro-
priateness of the effective-temperature definition proposed in
Ref. [25], as well as of the fundamental relation of Eq. (2.17).

C. Otto cycle

Let us now analyze a cycle analogous to the Otto cycle
which consists of two adiabatic and two isovolumetric transfor-
mations, intercalated, representing a rough approximation of
a gasoline engine [2,36]. In the present case, the isovolumetric
transformations are replaced by the above-defined iso-α
processes. The main properties of this cycle are described
below.

(i) In the plane σ/λ2 versus αλ2 this cycle is represented
by a rectangle, as shown in Fig. 3. The effective temperature θ
changes along all four transformations, presenting the values
θa , θb, θc, and θd , at the vertices of the rectangle.

(ii) An amount of heat Q1 is absorbed in the iso-α
transformation a → b, whereas the system releases heat Q2
in the iso-α transformation c → d. The total work done on
the system is given by the area enclosed in the cycle of Fig. 3,
being negative, as expected from Eq. (2.17). If one defines
W = −W as the work done by the system, the variation of
internal energy is zero for the complete cycle, and one has
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0 1 2 3 4

αλ2

0.2

0.3

0.4

0.5
σ/

λ2

b

a

c

d

Q1Q2

W

FIG. 3. The Otto cycle for a system of interacting vortices under
overdamped motion by neglecting thermal noise. The abscissa αλ2

presents dimensions of energy (e.g., Joules), whereas the ordinate
σ/λ2 is dimensionless. The transformations for σ constant are
adiabatic, and herein they were chosen to occur for (σ/λ2) = 0.45
(b → c) and (σ/λ2) = 0.25 (d → a). The iso-α transformations
were chosen to occur for αλ2 = 3.0 (units of energy) (a → b) and
αλ2 = 1.0 (units of energy) (c → d), respectively. An amount of heat
Q1 is absorbed at transformation a → b, whereas Q2 is released at
c → d . The area inside the cycle represents the total work W done
on the system, which is negative, as expected from Eq. (2.17). The
abscissa αλ2 presents dimensions of energy, whereas the ordinate
σ/λ2 is dimensionless; the cycle above holds for any system of units,
e.g., one may consider all quantities with dimensions of energy in
Joules.

Q1 = W + Q2 (conventionalizing all these three quantities as
positive).

(iii) Considering the equation of state [Eq. (2.19)] and the
property for the adiabatic transformation, (α/θ ) = const, one
concludes that θb > θa > θd and θb > θc > θd , so θb and θd

represent the highest and lowest temperatures of the cycle,
respectively. An inequality involving θc and θa depends on
the particular choices of coordinates for the vertices of the
rectangle; the case shown in Fig. 3 corresponds to θc ≈ 0.80 θa .

(iv) Using Eq. (4.7) one can calculate Q1 and Q2,

Q1 = 32/3

10
(αaλ

2)1/3[(kθb)2/3 − (kθa)2/3], (4.12)

Q2 = 32/3

10
(αcλ

2)1/3[(kθc)2/3 − (kθd )2/3], (4.13)

which are both positive quantities, with Q1 > Q2 by defi-
nition. In the adiabatic transformation b → c one has that
(αc/αb) = (θc/θb), and using that αb = αa , one obtains the
efficiency of the cycle,

η = 1 − Q2

Q1
= 1 − θd

θa

(θc/θd )2/3 − 1
(θb/θa)2/3 − 1

. (4.14)

It is important to mention that for the standard Otto cycle
with an ideal gas as the working fluid, the efficiency η differs
from the expression of Eq. (4.14) through a replacement of the
exponents 2/3 by unit [36].

Consequently, we conclude that for a system of super-
conducting vortices the Carnot cycle is also very special,
being characterized by an efficiency that has precisely the
same form as the one found in standard thermodynamics. The
present results, together with those of Refs. [25,26], show
that the definition of effective temperature, as well as of
the fundamental relation in Eq. (2.17), are very appropriate
within the present context. Since the Carnot cycle represents a
fundamental system in standard thermodynamics, from which
the absolute scale of temperature may be constructed, these
results suggest that a complete thermodynamical formalism
should also hold herein. In what follows, we will explore
Eq. (2.17) by performing Legendre transformations in order to
define thermodynamic potentials, deriving further important
relations from them.

V. POTENTIALS

A. Internal energy

From Eq. (2.17) one has that the internal energy depends
on the pair of independent variables (s2,α), i.e., u = u(s2,α).
Manipulating Eqs. (2.13) and (2.14) [or, equivalently, inverting
Eq. (2.15)] one gets

u(s2,α) = 9
250

αλ2

(1 − s2/k)2
. (5.1)

From the equation above one obtains, respectively, the
equivalent to Eq. (2.16), as well as the equation of state in
Eq. (2.19),

(
∂u

∂s2

)

α

= θ ;
(

∂u

∂α

)

s2

= σ. (5.2)

Now, since u(s2,α) is a state function, its second derivatives
must be independent of the order of differentiation, leading to
the following Maxwell relation:

∂2u

∂α ∂s2
= ∂2u

∂s2 ∂α
⇒

(
∂σ

∂s2

)

α

=
(

∂θ

∂α

)

s2

. (5.3)

B. Helmholtz free energy

Let us now introduce the Helmholtz free energy f (θ,α) by
means of the Legendre transformation,

f (θ,α) = u − θs2; ⇒ df = −s2dθ + σdα. (5.4)

One obtains the following free energy:

f (θ,α) = 35/3

10
(αλ2)1/3(kθ )2/3 − kθ, (5.5)

which satisfies the following relations:
(

∂f

∂θ

)

α

= −s2;
(

∂f

∂α

)

θ

= σ. (5.6)

From its second derivatives, the corresponding Maxwell
relation appears,

∂2f

∂α ∂θ
= ∂2f

∂θ ∂α
⇒

(
∂s2

∂α

)

θ

= −
(

∂σ

∂θ

)

α

. (5.7)
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C. Gibbs free energy

Herein we define the Gibbs potential g(θ,σ ) through

g(θ,σ ) = f − σα = u − θs2 − σα;

⇒ dg = −s2dθ − αdσ. (5.8)

From the potentials above one gets,

g(θ,σ ) = kθ

[
6

103/2

λ

σ 1/2
− 1

]
, (5.9)

which satisfies
(

∂g

∂θ

)

σ

= −s2;
(

∂g

∂σ

)

θ

= −α. (5.10)

The corresponding Maxwell relation is
(

∂s2

∂σ

)

θ

=
(

∂α

∂θ

)

σ

. (5.11)

D. Enthalpy

As mentioned before, comparing Eqs. (2.13) and (2.19) one
notices that u = σα, representing a peculiarity of the present
system. In order to construct a potential of the type h = h(s2,σ )
one should define

h(s2,σ ) = u − σα = f + θs2 − σα = g + θs2;

⇒ dh = θds2 − αdσ. (5.12)

Hence, this particular potential presents an unusual be-
havior, given by a trivial enthalpy, h = 0. A consequence
of this result has already appeared in the previous section,
where we have shown that an adiabatic transformation is given
by ds2 = 0, or, equivalently, by dσ = 0, implying that the
present system cannot exchange “heat” (i.e., it cannot vary its
entropy) for σ fixed. Therefore, a complete description is given
in terms of the three previously defined potentials, namely
internal energy, u(s2,α), and free energies, f (θ,α) and g(θ,σ );
the enthalpy h(s2,σ ) does not contain any new information.
Similar anomalies may be found also on other physical
systems, within BG statistical mechanics, as described below.

(a) In the three-dimensional ideal gas, for which pv =
2u/3 (valid for the classic case, as well as in both quantum
statistics [3]), leading to an enthalpy h = 5u/3, showing that
in this case, the enthalpy does not represent an independent
thermodynamic potential.

(b) In the ideal paramagnet, where the internal energy is
given in terms of the magnetization M and external magnetic
field H as u = −MH [1,2]. Such a relation also leads to a
simple enthalpy, which does not carry any new information
about the system. Note that, for magnetic systems, the first
law may be written in two distinct ways (depending on the
definition of work, δW = −MdH or δW = HdM) and one
has the following possibilities for the enthalpy of the ideal
paramagnet: (i) For the first law written as du = T ds − MdH ,
the enthalpy is defined as h = u + MH = 0, leading to a
situation analogous to the one found herein, and (ii) in
the case du = T ds + HdM , one considers the Legendre
transformation h = u − MH = −2u, and so the enthalpy is
essentially given in terms of the internal energy, and it does not

represent an independent thermodynamic potential (similarly
to what happens for the three-dimensional ideal gas).

VI. RESPONSE FUNCTIONS

In this section we define quantities analogous to the
response functions of standard thermodynamics. In Ref. [25]
we have already introduced the specific heat for a fixed α,
calculated in three different ways, namely, from the internal
energy, or the entropy, or the free energy,

cα =
(
∂u

∂θ

)

α

= θ

(
∂s2

∂θ

)

α

=−θ

(
∂2f

∂2θ

)

α

= 32/3

15
k

(
αλ2

kθ

)1/3

,

(6.1)

leading to cα ! 0. In a similar way, one can define cσ ,

cσ = θ

(
∂s2

∂θ

)

σ

=
(

∂h

∂θ

)

σ

= 0, (6.2)

where we have used Eq. (5.12), in addition to the fact that
h = 0. This is an expected result since we have seen in the
previous sections that this system cannot exchange heat for σ
fixed. One should notice the contrast with general substances
in thermodynamics for which cp ! cv .

Now we consider standard calculations, in order to define
other response functions for this system [1,2]. In the equation
of state [Eq. (2.19)] one has σ = σ (θ,α) so

dσ =
(

∂σ

∂θ

)

α

dθ +
(

∂σ

∂α

)

θ

dα, (6.3)

or, equivalently, rewriting the equation of state as α = α(θ,σ ),
one gets

dα =
(

∂α

∂θ

)

σ

dθ +
(

∂α

∂σ

)

θ

dσ. (6.4)

Let us then define the following quantities, corresponding,
respectively, to the coefficient of expansion and isothermal
compressibility of standard thermodynamics:

γ = 1
α

(
∂α

∂θ

)

σ

; κ = − 1
α

(
∂α

∂σ

)

θ

, (6.5)

which measure changes in α with respect to variations in θ
(σ fixed) and σ (θ fixed). By analyzing the equation of state,
one sees that these quantities are both positive; they will be
calculated later. Considering the pair of independent variables
(θ,σ ), one has

θds2 = θ

[(
∂s2

∂θ

)

σ

dθ +
(

∂s2

∂σ

)

θ

dσ

]
= θ

(
∂s2

∂σ

)

θ

dσ,

(6.6)
where we have used Eq. (6.2) in the last equality. Substituting
Eq. (6.3) for α constant in the equation above, the quantity cα

in Eq. (6.1) may be written as

cα = θ

(
∂s2

∂σ

)

θ

(
∂σ

∂θ

)

α

. (6.7)

Now, using Eq. (6.4) for α constant and the definitions of
Eq. (6.5), one obtains

(
∂σ

∂θ

)

α

= γ

κ
. (6.8)
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The equation above, together with the Maxwell relation of
Eq. (5.11), allows us to write Eq. (6.7) as

cα = αθ
γ 2

κ
, (6.9)

which may be compared with cp − cv = vT γ 2/κ of standard
thermodynamics [1,2]. Since the variables θ and α are positive,
cα and κ should present the same sign; indeed, considering the
equation of state, one may calculate the quantities of Eq. (6.5),

γ = 1
θ

; κ = 3
2σ

, (6.10)

showing that γ and κ are both positive quantities for the
present system, as expected. Herein, one should note the
similar quantities for the ideal gas, γ = 1/T and κ = 1/p
[1]. Substituting the results above in Eq. (6.9), one recovers
the expression for cα shown in Eq. (6.1).

Therefore, the quantities introduced above, cα , γ , and κ ,
behave very similarly to the corresponding ones of stan-
dard thermodynamics, including the relation between them,
Eq. (6.9). The contrast is given by a zero cσ , which is a direct
consequence of the fact that transformations with σ = const
and adiabatics are precisely the same or, equivalently, of the
unusual enthalpy, h = 0.

VII. CONCLUSIONS

We have introduced a framework—analogously to standard
thermodynamics—for a system of interacting vortices under
overdamped motion, which is currently used as a relevant
model for type II superconductors. The concepts explored are
based on an effective temperature θ defined previously, which
was recently shown to be experimentally controllable and to
present typical values in type II superconductors that are much
larger than typical temperatures of superconducting phases,
i.e., T/θ ≃ 0 [25]. Hence, thermal effects were neglected, and
only those related to θ were investigated.

The temperature θ is conjugated to Tsallis generalized
entropy sq , with q = 2, leading to a heat contribution, δQ =
θds2. We have explored this heat contribution by proposing an
specific form of thermal contact between two such systems,
and defining the corresponding equilibrium condition as a
physical situation where no heat exchange takes place. We
have verified that the exchange of heat occurs similarly to
the one of standard thermodynamics, being characterized
by: (i) The system at lower temperature absorbs heat from
the one at higher temperature; (ii) The final equilibrium
temperature θf lies between the two initial temperatures. Based
on these results we have enunciated the zeroth principle for
these systems.

The consistency of a form analogous to the first-law of
thermodynamics, du = θds2 + δW , was verified lately by
means of a Carnot cycle, whose efficiency was shown to
be η = 1 − (θ2/θ1), where θ1 and θ2 represent the effective
temperatures associated with the isothermal transformations of
the cycle, with θ1 > θ2 [26]. Herein, we have illustrated further
this first-law proposal by analyzing the Carnot refrigerator, as
well as the Otto cycle. We have shown that the latter cycle
presents an expression for its efficiency which differs from
that of usual thermodynamics. Consequently, the Carnot cycle

(as well as the Carnot refrigerator) appears to be universal, in
the sense that its efficiency keeps the same form as the one
of standard thermodynamics, thus allowing the possibility for
constructing a temperature scale associated with θ .

We have consolidated this first-law proposal by following
the usual procedure for obtaining different potentials, i.e.,
applying Legendre transformations for distinct pairs of in-
dependent variables. From these potentials we have derived
the equation of state, Maxwell relations, and defined response
functions. All results presented are shown to be consistent with
those of standard thermodynamics for T > 0. As a curious
aspect, we have found the associated enthalpy as identically
zero; this is a peculiarity of the present system, attributed to
its equation of state, analogously to what happens in the usual
thermodynamical description of an ideal paramagnet.

One should call the attention to one aspect of the present
approach, concerning the dependence on N (total number
of particles) of the quantities analyzed herein. The present
results follow from a nonlinear Fokker-Planck equation, and
more particularly, from its stationary-state solution, Pst(x). As
usual in any treatment using a Fokker-Planck equation, the
associated probability distribution refers to a single particle
of the system, and particularly, the present nonlinear diffusion
contribution represents the effect of N − 1 vortices on a tagged
vortex. Based on this, all physical quantities derived from
Pst(x), like u and s2, correspond to one-vortex properties.
Recent analyses (see, e.g., Ref. [37]) suggest that the total
entropy of a given system should be considered on the same
footing as the number of elements N and volume V , i.e., it
should be an extensive quantity; based on this, the total entropy
of the present system becomes S2 = Ns2. Consequently,
other quantities appearing in the fundamental thermodynamic
relations (e.g., the first law, du = θds2 + σdα and Legendre
transformations) should present scaling functions of N such
as to preserve the extensivity of the total entropy S2. In order
to validate such an important proposal in the present system,
one should investigate the problem through other techniques,
like numerical simulations.

To conclude, we have presented a consistent thermo-
dynamic framework for a system where thermal effects
may be neglected, and only those related to an effective
temperature θ were investigated. Although the Boltzmann-
Gibbs entropy becomes zero in this limit, the entropy s2 of
nonextensive statistical mechanics appears as the appropriate
conjugated variable to θ . The present results give further
support for the system considered herein as an important
physical application for nonextensive statistical mechanics
and certainly, measurements in type II superconductors turn
out to be highly desirable in order to confirm the validity of
these theoretical predictions. Although we have focused our
analysis to interacting type II superconducting vortices, the
present results may be extended to other systems of interacting
particles, with similar characteristics.
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