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A note on the connection between the 

Tsallis’ thermodynamics and cumulative 

prospect theory

ABSTRACT: This note presents explicitly a strong connection between the Tsallis 
thermodynamics and the so-called prospect theory introduced to take into account 
agent’s decisions under risk. Moreover, using the cumulative prospect theory adapted 
here for a continuous framework, we show that if the Tsallis parameter q belongs 
to the interval [0,1], then the prospect theory requirement that extreme events are 
overvalued is satisfied.
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1 Introduction

In this decade, one of the many attempts of statistical physics has been to apply well 
established techniques and concepts to cope with economic and financial phenomena. 
In spite of the wide spectrum of focus of the so-called econophysics, one of the well 
succeeded fields of investigation has been to seek for connections between the Tsallis 
thermodynamics introduced in Tsallis (1988) and the economic and econometric theory. 
One may find overviews of these attempts in Tsallis  et al. (2003)  and Tsallis (2009). In 
Anteneodo et al. (2002), the first connection between the Tsallis statistics and the Prospect 
Theory (PT) is presented. In Borland (2002), an extension of the celebrated Black-Scholes 
model (Black and Scholes 1973) is provided. In particular, the Black Scholes model is 
recovered when q  1. In Queirós (2004), the ARCH time series model is related to the 
non-extensive statistical mechanics. In Cajueiro (2005), the q-exponential function well 
known in the deformed algebra inspired in the Tsallis’s nonextensive thermodynamics 
is used to model discount functions in intertemporal choices which present the 
phenomenon known as increasing patience. In this case, the Tsallis parameter q can be 
seen as a measure of consistency in intertemporal choices. In Takahashi et al.(2007), the 
model introduced in Cajueiro (2005) is tested empirically. Other connections between the 
Tsallis thermodynamics and decision theory may be found in Takahashi (2007a), Takahashi 
(2007b), Takahashi (2008), Takahashi et al. (2008), and Takahashi (2009). Finally, Martinez 
et al. (2008) consider the one-parameter generalizations of the logarithmic and exponential 
that arise in the context of non-extensive thermostatistics and show that these functions 
are suitable to describe and unify the great majority of continuous growth models. 

In this note, we extend the Cumulative PT introduced in Tversky and Kahneman 
(1992) for a continuous framework to show mathematically a strong relationship between 
this theory and the Tsallis statistics. 

This note proceeds as follows. In section 2, the Tsallis distribution is revised. Section 
3 presents the main ideas of the PT. In section 4, our main results are presented. Finally, 
section 5 presents the conclusions of this work.

2 The Tsallis distribution

One of the most important contributions brought by non-extensive thermodynamics 
was the so-called non-extensive distributions1. The most common is the one that is found 
from the maximization of the non-extensive entropy (Tsallis, 1988)

 (1)

subjected to the usual constraints 

 (2)

 (3)

 (4)

1 See Borges (2004) for a comprehensive 
presentation of these distributions.
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i.e., 

 (5)

where

 (6)

is the appropriate normalization factor. 

If q = 1, equation (5) recovers the gaussian distribution. 

3 The prospect theory

The PT was introduced in Kahneman and Tversky (1970) to circumvent the 
descriptive failures of expected utility theory of decision making, for instance: (1) The 
rational theory of choice assumes that equivalent formulations of a choice problem should 
give rise to the same preference order. However, there is much evidence contrary to this 
assumption. (2) According to the expected principle, the utility of a risky prospect is linear 
in outcome probabilities. Nonetheless, there are several examples of choice problems 
that do not support this assumption. (3) People’s wish to bet on uncertain events depend 
not only on the degree of uncertainty but also on its source. (4) Risk aversion is the 
general assumption in economic and decision theory. However, this assumption is not 
consistent with people’s preference for a small probability of winning a large prize over 
the expected value of that prospect and the choice between a sure loss and a substantial 
probability of a large loss. 

In fact, PT differs from expected utility theory in at least two important points: 
(1) While the expected utility theory handles the probabilities attached to particular 
outcomes, the PT treats preferences as a function of “decision weight”, which do not 
always correspond to probabilities, but a function of them. Specifically, PT postulates 
that decision weights tend to overweight small probabilities and underweight moderate 
and high probabilities. (2) PT also replaces the notion of “utility function” with “value”. 
Whereas utility is usually defined only in terms of net wealth, value is defined in terms 
of gains and losses (deviations from a reference point). The value function has a different 
shape for gains and losses. For losses it is convex and relatively steep, for gains it is concave 
and not quite so steep.

4 Results

One remarkable aspect of the non-extensive statistics is that the weighting function 
used to evaluate the expected values is not the probability (Tsallis, 1988) but a power of 
it. In that theory, the expected value of a function v(x) is

 (7)

with p(x) given by equation (5). Interpreting the meaning of the above expression is one 
of the main sources of disputes around the non-extensive statistics. As realized by Tsallis 
and others (Anteneodo et al., 2002) that property is shared by the PT (Kahneman and 
Tversky, 1970). 



A note on the connection between the Tsallis’ thermodynamics and cumulative prospect theory34

R. Bras. Eco. de Emp.  2010; 10(1): 31-36

Following the Cumulative Prospect Theory (Tversky and Kahneman, 1992), we write 
down here2 the equivalent continuous version of the PT where the investor’s expectation 
can be approximated by 

 (8)(8)

In the above equation, A– and A+ are, respectively, the cumulative probability function 
of negative and positive outcomes: 

 (9)

The decision weights ± (A±) are defined as the derivative of a capacity function

 (10)(10)

 (11)

Values of dw± / dA± > 1  correspond to overestimated outcomes and vice versa. 

The connection between the Tsallis statistics is done by equating the probability 
densities

 (12)(12)

and the weight function of the integrals (7) and (8)

 (13)

By replacing (10) and (11) in the above expressions we find

 (14)

Therefore, 

 (15)

 (16)

Cumulative PT framework leaves room to w– being other than w+. Since in our case 
they are the same except by an additive constant and by the reversed signal, they result 
in the same decision weight. We will, therefore, focus on w(A)  ≡  w– (A–). 

The left side of each expression (15) and (16) is a function of A, while the right side 
is a functional of the pq(x). Both sides can be made consistent by defining a family of 
functions wq [A(x)]. Each member of this family applies only to the Tsallis distribution of 
index q. Although there is not an explicit expression of wq as a function of A, the value of 
wq corresponding the value of A can be found for any given x, through equations (9) and 

2 The Cumulative PT was proposed 
originally in a discrete framework.
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(15). We used that correspondence to plot figure 1, which shows some of these functions. 
In particular, the PT requirement that extreme events are overvalued is satisfied when 
q[0,1]. If q  1, then the expected utility theory is recovered. 

Figure 1. The capacity functions w(A) ≡ w– (A–) for different values of q.

5 Conclusions

In this note, we have shown that the calculation of the expected values not from the 
probability but from a function of it is such unusual procedure that the correspondence 
between the PT and the Generalized Thermostatistics is unavoidable. Other peculiarity 
shared by both theories is the non normalization of the weighting function. However, 
distinctly to general PT, the functions wq [A(x)] derived from Tsallis Thermostatistics 
can only be used with the corresponding probability distribution, while the PT does not 
address such matters. 

In particular, we have shown that the PT requirement that extreme events are 
overvalued is satisfied when q[0,1]. This is a very interesting result since it is the same 
range of validity of other behaviorial phenomenon found in Cajueiro (2005). In Cajueiro 
(2005), one of the authors has shown that the so-called intertemporal inconsistency may 
be represented for values of q belonging to the interval [0,1]. On the other hand, if q1, 
then the expected utility theory is recovered and choices are consistent.
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