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Nonlinear inhomogeneous Fokker-Planck equation within a generalized Stratonovich prescription
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We deduce a nonlinear and inhomogeneous Fokker-Planck equation within a generalized Stratonovich, or
stochastic α, prescription (α = 0, 1/2, and 1, respectively, correspond to the Itô, Stratonovich and anti-Itô
prescriptions). We obtain its stationary state pst (x) for a class of constitutive relations between drift and diffusion
and show that it has a q-exponential form, pst (x) = Nq [1 − (1 − q)βV (x)]1/(1−q), with an index q which does
not depend on α in the presence of any nonvanishing nonlinearity. This is in contrast with the linear case, for
which the index q is α dependent.
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I. INTRODUCTION

The nonlinear Fokker-Planck (FP) equation has been
largely used to study a wide class of physical systems which
exhibit anomalous diffusion [1–5]. A particular feature of
this equation is that its stationary solutions are probability
distributions obeying nonextensive statistical mechanics [6,7].

From a mesoscopic point of view, nonlinear FP equations
are related with a class of Langevin equations with multi-
plicative noise [8]. In these processes, the inhomogeneity
of the diffusion function is proportional to a function of
the probability density itself. Therefore, the computation
of stochastic trajectories turns out to be very cumbersome.
Indeed, one needs to know the complete time evolution of
the probability density for each noise realization, making the
problem a self-consistent one, very hard to deal with. More-
over, it is well known that to correctly define the stochastic
multiplicative process it is necessary to fix a prescription
to perform the Wiener integrals. The stochastic evolution
depends on this prescription, and the final stationary state,
if it exists, might also be prescription dependent. The most
popular conventions are the methods of Itô and Stratonovich.
However, it is possible to work within a more general scheme,
usually referred to as a generalized Stratonovich prescription
[9] or α-prescription [10]. This convention is parametrized by a
parameter α (0 � α � 1) and recovers the Itô and Stratonovich
prescriptions as the α = 0 and α = 1/2 particular cases. The
concept of equilibrium in these systems should be carefully
defined, since the forward and backward stochastic evolutions
are generally performed with different dual prescriptions and,
as a consequence, the usual detailed balance relations should
be properly generalized [11].

Recently, a class of inhomogeneous and nonlinear FP
equations [12] was considered within the Itô prescription. It
was shown that stationary solutions for the probability density
are of the q-exponential form, namely,

pst(x) = Pq(V ) ≡ Nq e−βV (x)
q

≡ Nq [1 − (1 − q)βV (x)]
1

1−q , (1)

where V (x) is any confining potential, Nq a normalization
constant, β and q are two real numbers characterizing the

distribution, and ez
1 = ez; β is an inverse effective “tempera-

ture” [13]. In particular, limq→1 Pq(V ) = N1 e−βV (x), the usual
Boltzmann-Gibbs (BG) distribution.

Nonextensive statistical mechanics, also known as
q-generalized statistical mechanics, is based on the nonaddi-
tive entropy Sq = k(1 − ∑W

i=1 p
q

i )/(q − 1) [6]. This entropic
functional was introduced with the aim of studying the
thermodynamic properties of a class of systems with strongly
correlated elements. Many different entropic forms have been
defined throughout the years, in physics, cybernetics, and in-
formation theory, for a variety of specific purposes. In particu-
lar, a commonly used (for example, in multifractal systems) ad-
ditive entropy is the Rényi’s entropy SR

q = ln
∑n

i=1 p
q

i /(1 − q)
[14]. Both Sq and SR

q recover the Boltzmann-Gibbs-Shannon
entropy, as q → 1, and are monotonic functions of each
other, SR

q = ln[1 + (1 − q)Sq]/(1 − q). So the stationary dis-
tributions associated with these entropies (or any monotonic
function of them), for identical constraints, are the same,
for instance, the q-exponential distributions [Eq. (1)]. In
this way, for applications involving merely a probabilistic
description based in distributions, both entropic forms can be
indistinguishably used. However, for a full thermostatistical
approach, Sq and SR

q certainly are different. Among other
differences, Sq is concave for all positive values of q, whereas
SR

q is concave only for q within the interval (0,1] [15].
Similarly, Sq is always Lesche stable, which is not the case
of SR

q [7].
As mentioned above, in [12], the FP equation was deduced

within the Itô convention. In the present paper we analyze
how the stationary distributions depend on the particular
prescription used to define the stochastic process. To do this,
we first deduce the inhomogeneous and nonlinear FP equation
within the generalized Stratonovich convention, parametrized
by α, and then we look for stationary solutions of a family of
processes, defined by a particular class of constitutive relations
between drift and dissipation. As we shall see, the model is
parametrized with two real numbers, η and θ , defined hereafter.
The first one measures the nonlinearity of the system, while the
second one is related with inhomogeneity; the point (η,θ ) =
(0,0) corresponds to the linear homogeneous particular case
and represents a normal diffusion process. The stationary-
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state solutions depend on the values of these parameters. In
particular, it will become clear that the solutions are, in the
linear limit η → 0, nonanalytic in the space (η,θ ). We have
found that, for the general case in which (η,θ ) �= (0,0), the
stationary probability distributions are q exponentials with an
index q which is independent of the stochastic prescription.
The different conventions, characterized by α, do modify the
temperature parameter β but not q.

The paper is organized as follows. In Sec. II we present the
nonlinear inhomogeneous FP equation and define our model.
In Sec. III we study the linear limit (η = 0, ∀θ ), and in Sec. IV
we address the general case. Finally, we discuss our results in
Sec. V.

II. THE NONLINEAR FOKKER-PLANCK EQUATION FOR
MULTIPLICATIVE MARKOV PROCESSES

Consider a Markovian multiplicative stochastic process
described by the Langevin equation,

dx

dt
= F (x,t) + [φ(x,t)]1/2ξ (t), (2)

where 〈ξ (t)〉 = 0 and 〈ξ (t)ξ (t ′)〉 = δ(t − t ′). F (x,t) is the
drift force, and φ(x,t) is in principle an arbitrary function
that models the state-dependent diffusion process. As it is
well known, this equation should be complemented with a
prescription to integrate the Wiener integral. In this paper,
we use the generalized Stratonovich prescription [9] or
α prescription [10]. Briefly speaking, it is necessary to give
sense to the ill-defined product [φ(x(t),t)]1/2ξ (t), since ξ (t) is
δ correlated. By definition, the Riemann-Stieltjes integral of a
Wiener process W (t) with ξ (t) = dW (t)/dt is∫

[φ(x(t),t)]1/2 dW (t)

= lim
n→∞

n∑
j=1

[φ(x(τj ),τj )]1/2[W (tj+1) − W (tj )], (3)

where τj is taken in the interval [tj ,tj+1] and the limit is
taken in the sense of mean-square limit [16]. For a smooth
measure W (t), the limit converges to a unique value, regardless
the value of τj . However, W (t) is not smooth; in fact, it is
integrable nowhere. In any interval, white noise fluctuates an
infinite number of times with infinite variance. Therefore, the
value of the integral depends on the prescription for the choice
of τj . In the generalized Stratonovich prescription we choose

x(τj ) = (1 − α)x(tj ) + αx(tj+1) with 0 � α � 1. (4)

In this way, α = 0 corresponds with the prepoint Itô inter-
pretation and α = 1/2 coincides with that of Stratonovich
(midpoint). Moreover, the postpoint prescription, α = 1, is
also known as the kinetic or anti-Itô interpretation. In prin-
ciple, each particular choice of α fixes a different stochastic
evolution.

In many physical applications, a weakly colored Gaussian-
Markov noise with a finite variance [17] is considered. In this
case, there is no problem with the interpretation of equation (2)
and the limit of infinite variance can be taken at the end of
the calculations. This regularization procedure is equivalent
to the Stratonovich interpretation, α = 1/2 [18,19]. However,

in other applications, like chemical Langevin equations [18]
or econometric problems [20,21], the noise can be considered
principally white, since it could be a reduction of jumplike
or Poisson-like processes. In such cases, the Itô interpretation
(α = 0) should be more suitable. Hence, the interpretation of
Eq. (2) depends on the physics behind a particular application.
Once the interpretation is fixed, the stochastic dynamics is
unambiguously defined.

From the stochastic equation (2) it is possible to derive a
Fokker-Planck equation, given by [11,22–24]

∂p(x,t)

∂t
= − ∂

∂x

{[
F (x) + α

2

∂φ(x,t)

∂x

]
p(x,t)

}

+ 1

2

∂2

∂x2
{φ(x,t)p(x,t)}, (5)

where p(x,t) is the time-dependent probability distribution
and α ∈ [0,1] parametrize the stochastic prescription.

If the function φ(x,t) is an “external” fixed function,
modeling a simple state diffusion process, then Eq. (5) is linear.
However, as discussed in Ref. [8], the diffusion function could
depend on the probability distribution itself, for instance,

φ(x,t) = D[g(x)]θ [p(x,t)]η, (6)

where D is a constant diffusion coefficient, g(x) is an
arbitrary well-behaved function, and p(x,t) is a solution of
the FP equation. With this choice, Eq. (5) is a nonlinear
equation describing a state-dependent diffusion process with
nontrivial particle-bath couplings [8]. The real constants θ and
η control the relative strength of these effects. For instance,
the point η = θ = 0 represents a normal diffusion process
driven by a stochastic additive Langevin equation. On the other
hand, the line η = 0,θ �= 0 represents a usual state-dependent
diffusion process, described by a multiplicative Langevin
equation. Moreover, the general case η �= 0 is a multiplicative
process whose diffusion functions should be self-consistently
computed by solving the related nonlinear FP equation.

Equation (5) can be written as a continuity equation,

∂p(x,t)

∂t
= ∂J (x,t)

∂x
, (7)

where the current of probability is given by

J (x,t) =
[
−F (x) + (1 − α)

1

2
D

∂φ(x,p)

∂x

+ 1

2
Dφ(x,p)

∂

∂x

]
p(x,t). (8)

Here we have indicated that φ(x,p(x,t)) could be a function
of p(x,t) given by Eq. (6).

The equilibrium distribution is defined as the stationary
solution with zero current of probability, i.e.,

Peq(x) = lim
t→∞ p(x,t), (9)

supplemented with limx→±∞ J (x,t) = 0. In the following
sections we will find the equilibrium probability distribution
in the whole parameter range {η,θ}.
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III. THE LINEAR CASE, η = 0

Let us begin by analyzing stationary states of the simpler
case η = 0. For this case,

φ(x) = D[g(x)]θ , (10)

and the Fokker-Planck equation (5) is linear. The stationary
states have been studied in Refs. [11,23,24] for different
particular cases. In this section we summarize the main results
and procedures in order to present them in a unified scheme
and to compare them with the nonlinear case.

The equilibrium solution takes the form [11]

Peq(x) = N e−Ueq(x), (11)

where N is a normalization constant and the effective potential
is given by

Ueq(x) = −2
∫ x F (x̄)

D[g(x̄)]θ
dx̄ + (1 − α)θ ln g(x). (12)

Thus, as already mentioned, the equilibrium distribution
depends on the particular stochastic prescription used to define
the Langevin equation. For general functions F (x) and g(x),
the probability density distribution is given by Eqs. (11) and
(12). The only constraint is a condition of integrability in
order to compute the normalization factor N . To go further,
we need to impose constitutive relations between drift and
dissipation. For instance, suppose that the system is submitted
to a conservative force, with energy potential V (x). For θ = 0,
the resulting process is additive and

Ueq(x) =
(

2

D

)
V (x), (13)

up to an unimportant constant term that is absorbed in
the normalization. Then the Einstein relation imposes for
the inverse temperature β = 2/D, leading to the Boltzmann
distribution. On the other hand, we could impose, for θ �= 0, a
local generalization of the Einstein relation,

F (x) = −
(

β

2D[g(x)]θ

)
V ′(x), (14)

where V ′ indicates a differentiation with respect to x, ending
with the solution [11,22]

Ueq(x) = βV (x) + (1 − α)θ ln g(x). (15)

We see that for multiplicative noise, the final distribution
is generally not of the Boltzmann type, even for the usual
prescriptions of Itô (α = 0) or Stratonovich (α = 1/2). The
exception is the anti-Itô interpretation (α = 1), which, to-
gether with the local Einstein relation, leads to the usual
thermodynamical equilibrium distribution. For this reason,
this convention is also called the kinetic prescription. An
interesting particular case is to consider a “free” particle in
an inhomogeneous dissipative medium, where V = 0, and the
probability distribution is a power law of the form

Peq = N
1

[g(x)]θ(1−α)
, (16)

assuming it is normalizable.
Moreover, we could impose constitutive relations different

from the local Einstein relation, such as the one used in

Ref. [23]. We can choose, for instance, F (x) = −V ′(x),
Dg(x) = A + BV (x), and θ = 1; for simplicity we shall
assume A > 0 and B > 0. Substituting these expressions in
Eq. (12) we immediately find a q-exponential form [Eq. (1)]
with

q = 2(B + 1) − αB

B + 2 − αB
and β = B(1 − α) + 2

A
. (17)

Therefore, we have shown that using the general solution
Eqs. (11) and (12), in the linear case η = 0, we can find
different types of equilibrium distributions, such as the
Boltzmann or the q-exponential distribution, depending on
the constitutive relation imposed between drift and dissipation
and on the particular stochastic prescription used to derived
the FP equation. Let us also notice that whenever A and B

have the same sign, the inverse temperature β is positive,
as normally expected; if both are positive (negative), then
q > 1 (q < 1), which corresponds to long-tailed distributions
(compact support distributions).

IV. THE NONLINEAR CASE, η �= 0

The solution of the nonlinear and inhomogeneous FP
equation (5) with (6) for general values of g(x) and F (x)
is quite involved. We will look for solutions imposing the
constitutive relations [12]

F (x) = −V ′(x) and g(x) = A + BV (x), (18)

where, as already mentioned, A,B are real positive constants.
Looking for stationary solutions ∂p(x,t)/∂t = 0 and as-

suming appropriate boundary conditions which guarantee a
null net flux, we have

∂F (x)p(x,∞)

∂x

= D

2

∂

∂x

[
(1 − α)

∂φ(x,p)

∂x
+ φ(x,p)

∂

∂x

]
p(x,∞). (19)

The choices made in Eq. (18) allow us to write the differential
equation (19) in terms of the variable V , obtaining

(1 − α)
∂[g(V )θp(V )η]

∂V
p(V ) + g(V )θp(V )η

∂p(V )

∂V

= −2p(V )

D
, (20)

where p(V ) ≡ p(V (x),∞). This equation can be rewritten in
the form of a Bernoulli equation [25] (see also [26]),

dp(V )

dV
+ (1 − α)θBg(V )−1

[(1 − α)η + 1]
p(V )

= − 2g(V )−θ

D[(1 − α)η + 1]
[p(V )]1−η, (21)

a class of nonlinear differential equations that can be linearized
by a suitable change of variables.

032118-3



ARENAS, BARCI, AND TSALLIS PHYSICAL REVIEW E 90, 032118 (2014)

For η = 0, we recover the linear equation we have treated
in the last section. For η �= 0 we can perform the nonlinear
change of variables,

Z(V ) = CN p(V )η , (22)

where CN is a normalization constant. With this, Eq. (21)
becomes a first-order linear ordinary differential equation,

dZ

dV
+ (1 − α)ηθBg(V )−1

[(1 − α)η + 1]
Z = − 2g(V )−θCNη

D[(1 − α)η + 1]
, (23)

with the general solution

Z = (A + BV )−
(1−α)ηθ

(1−α)η+1

{
CI − 2CNη

BD[(1 − α)η + 1 − θ ]

×
[

(A + BV )
(1−α)η+1−θ

(1−α)η+1 − A
(1−α)η+1−θ

(1−α)η+1

]}
, (24)

where CI is an integration constant which depends on the
“initial” condition. Thus, Eqs. (22) and (24) provide a family
of explicit solutions of the nonlinear FP equation in terms
of two constants, CN and CI , which should be adjusted by
means of an initial condition and the probability distribution
normalization.

A. θ = 0

In the particular case θ = 0, the inhomogeneity of the
dissipation function φ(x) comes only from the probability
density. The stationary solution can be read from Eq. (24),

Z = CNp(V )η = CI

(
1 − 2CNη

DCI [1 + η − αη]
V

)
, (25)

which can be rewritten in terms of a q-exponential [Eq. (1)]
with Nq = (CI/CN )1/η,

q = 1 − η and N1−q
q β = 2

D(1 + η − αη)
. (26)

Interestingly enough, the index q is α independent. We
will show that this is a general feature of nonlinearity
(η �= 0). In contrast, the inverse temperature β depends on
the prescription that has been used. In particular, Eq. (26),
in the Itô prescription, i.e., α = 0, coincides with the result for
the homogeneous nonlinear model obtained in Refs. [1] and
[2].

B. θ �= 0

For the inhomogeneous and nonlinear case, i.e. θ �= 0, we
notice that a sensible simplification occurs for a specific choice
of constants. More precisely, we shall assume

CI

CN

= − 2ηA
(1−α)η+1−θ

(1−α)η+1

BD[(1 − α)η + 1 − θ ]
. (27)

Consequently, using Eq. (24), we obtain

Z = − 2CNη

BD[(1 − α)η + 1 − θ ]
(A + BV )1−θ . (28)

Hence, from Eq. (22),

p(V ) =
{
− 2η

BD[(1 − α)η + 1 − θ ]

} 1
η

(A + BV )
1−θ
η . (29)

This expression can be written in the form of a q-exponential
[Eq. (1)] with

q = 1 − η

1 − θ
, (30)

and the parameter β

β = −B

A

1 − θ

η
(31)

= CN

CI

2(1 − θ )

D[(1 − α)η + 1 − θ ]
A−θ/(1−α)η+1. (32)

We see that the q-exponential distribution is a solution
of the nonlinear and inhomogeneous FP equation for any
value of the stochastic prescription α. Moreover, the value of
q itself is universal in the sense that it does not depend on the
prescription α, as can be seen in Eq. (30). The index q depends
only on the parameters η and θ , which measure the relative
importance of nonlinearity and inhomogeneity. Of course, this
value of q coincides with the one computed in Ref. [12] using
the Itô prescription. Different stochastic prescriptions affect
only the temperature parameter β.

From Eq. (30), it could be wrongly concluded that in
the linear limit η → 0, the probability distribution is of the
Boltzmann type, since q → 1. However, as we showed in
the previous section, in the linear case, we find power-law
solutions with nonuniversal q (α dependent). In other words,
the solutions are not analytic in the linear limit η → 0. In
variance with this fact, the limit θ → 0 is perfectly well
defined, as can be seen from Eqs. (30) and (26).

V. CONCLUSIONS

We have presented an inhomogeneous and nonlinear
Fokker-Planck equation describing a generalized Markov
stochastic process in the “generalized Stratonovich prescrip-
tion.” This prescription is parametrized by a real parameter,
0 � α � 1, and contains the usual Stratonovich (α = 1/2), Itô
(α = 0), and kinetic (α = 1) prescriptions as particular cases.
We have also parametrized nonlinearity and inhomogeneity
by means of two parameters, η and θ , in such a way that the
point η = θ = 0 represents a normal diffusion process. In this
way, we have unified and generalized several results already
obtained in the literature [1,2,11,12,23,24].

We have solved the stationary FP equation for all values
of the parameters η,θ,α.For the linear case, η = 0, we have
found a general solution depending on the drift, dissipation,
and the prescription α. The Boltzmann distribution is obtained
when a generalization of the Einstein relation and the kinetic
prescription, α = 1, are imposed. In all other cases, the
solution is more involved.

There exists a link between the stationary solutions of the
linear or nonlinear FP equation and the distribution obtained
by extremizing a particular entropy under simple specific
constraints. Indeed, the connection between the linear FP
equation and Boltzmann-Gibbs entropy has long been well
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TABLE I. Stationary solutions of the nonlinear inhomogeneous
FP equation. The q-exponential distribution has been obtained for
the family of constitutive relations given by (18). Notice that, in the
nonlinear case, the exponent q does not depend on the stochastic
prescription, while this is not the case for the linear inhomogeneous
FP equation. (The q value for this case recovers the results in [23] for
the particular instances α = 0 and α = 1/2 by doing B → 2M/τC;
it also recovers, for α = 0, the results in [12] by doing B → BD.)
Let us emphasize that q cannot be arbitrarily large for a given V (x);
otherwise the normalizability property will be lost. For example, if
we are dealing with q Gaussians, then it must be q < 3.

Fokker-Planck Linear Nonlinear
equation (η = 0) (η �= 0)

Homogeneous Additive noise Multiplicative noise
(θ = 0) q = 1 q = 1 − η

Inhomogeneous Multiplicative noise Multiplicative noise
(θ �= 0) q = 2(B+1)−αB

B+2−αB
q = 1 − η

1−θ

known. Analogously, for nonlinear FP equations yielding
specific classes of anomalous diffusion, nonadditive entropic
functionals have been analyzed in detail [1,2]. In addition, this
remarkable link has also been found for even more general
nonlinear FP equations and entropic forms [5,27].

We analyzed a family of constitutive relations between
drift and dissipation that results in a q-exponential distribu-
tion, thus exhibiting a possible mechanism compatible with
nonextensive statistical mechanics. In the nonlinear case,
η �= 0, the value of the exponent q is, remarkably enough,
α independent. The different prescriptions that define the
stochastic process only affect the inverse temperature β. In
the linear case, in contrast, the exponent of the power law does
depend on the stochastic prescription α. This clearly shows
that the linear limit of the solutions is not analytic, namely,
limη→0 peq[η,θ ] �= peq[0,θ ].

Table I summarizes the values of the entropic index
q for the q-exponential distributions obtained as the stationary-
state distributions for nonlinear inhomogeneous Fokker-
Planck equations when using the particular relations given by
(18). A variety of possible physical applications of the present
results can be found in Ref. [7] and references therein.
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