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Abstract

In the present work, we show how the generalized Cramér–Rao inequality for

the estimation of a parameter, presented in a recent paper, can be extended to

the multidimensional case with general norms on R
n, and to a wider context.

As a particular case, we obtain a newmultidimensional Cramér–Rao inequality

which is saturated by generalized q-Gaussian distributions. We also give

another related Cramér–Rao inequality, for a general norm, which is saturated

as well by these distributions. Finally, we derive uncertainty relations from

these Cramér–Rao inequalities. These uncertainty relations involve moments

computed with respect to escort distributions, and we show that some of

these relations are saturated by generalized q-Gaussian distributions. These

results introduce extended versions of Fisher information, new Cramér–Rao

inequalities, and new characterizations of generalized q-Gaussian distributions

which are important in several areas of physics and mathematics.

PACS numbers: 02.50.−r, 05.90.+m, 89.70.−a

Mathematics Subject Classification: 28D20, 94A17, 62B10, 39B62

1. Introduction

It is well known that the Gaussian distribution is a central distribution with respect to

classical information measures and inequalities. In particular, the Gaussian distribution is

both a maximum entropy and a minimum Fisher information distribution over all distributions

with the same variance. We will show that the same kind of result holds for the family of

generalized q-Gaussians, for Rényi or Tsallis entropy and a suitable extension of the Fisher

information.

These generalized q-Gaussians appear in statistical physics, where they are the maximum

entropy distributions of the nonextensive thermostatistics [1]. The generalized q-Gaussian
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distributions define a versatile family that can describe problems with compact support as well

as problemswith heavy tailed distributions. They are also analytical solutions of actual physical

problems, see [2–5], and are sometimes known as Barenblatt–Pattle functions, following their

identification by [6, 7]. We shall also mention that the generalized q-Gaussian distributions

appear in other fields, namely as the solution of nonlinear diffusion equations, or as the

distributions that saturate some sharp inequalities in functional analysis [8–11].

In the literature, and in particular within nonextensive thermostatistics, several extensions

of the Fisher information and of the Cramér–Rao inequality have been proposed, e.g. [12–16].

In information theory, the remarkable work by Lutwak et al [17, 18] also defines an extended

Fisher information and a Cramér–Rao inequality saturated by q-Gaussian distributions.

However, the Fisher information is originally defined in a broader context as the information

about a parameter of a parametric family of distributions. It is only in the special case of a

location parameter that it reduces to the Fisher information of the distribution. The Fisher

information is especially important for the formulation of the Cramér–Rao inequality. This

well-known inequality appears in the context of estimation theory, where it defines a lower

bound on the variance of any estimator of a parameter.

In our recent work [19], we have thrown a bridge between concepts in estimation theory

and tools of nonextensive thermostatistics. Using the notion of the escort distribution, we have

established an extended version of theCramér–Rao inequality for the estimation of a parameter.

This newCramér–Rao inequality includes the standard one, aswell as Barankin–Vajda versions

[20, corollary 5.1, 21] as particular cases. Furthermore, in the case of a location parameter, we

have obtained extended versions of the standardCramér–Rao inequality, which are saturated by

the generalized q-Gaussians. This means that among all distributions with a given moment, the

generalized q-Gaussians are also theminimizers of extended versions of the Fisher information,

just as the standard Gaussian minimizes Fisher information over all distributions with a given

variance. This result yields a new information-theoretic characterization of these generalized

Gaussian distributions.

However, a quite frustrating point is that these results were limited to the univariate case,

while the multidimensional case is obviously of high importance. This restriction is overcome

in this paper where we show that previous results can be extended to the multidimensional

case. More than that, we consider an even wider context where moments of the error are

computed with respect to two different probability distributions. In addition, giving our results

for general norms will be hardly more difficult than for Euclidean norms, so we consider

this general case from the beginning. Finally, we derive new uncertainty relations from the

multidimensional Cramér–Rao inequalities. Let us now give a brief overview of the results

together with the organization of the paper.

Let θ ∈ 2 ⊆ R
n be a multidimensional parameter that we wish to estimate using data x.

We show that for θ̂ (x) an estimator of θ , if f (x; θ ) and g(x; θ ) are two probability densities,

and if α and β are Hölder conjugates of each other, then

E[‖θ̂ (x) − θ‖α]
1
α Iβ[ f |g; θ ]

1
β > |n + ∇θ . B f (θ )|, (1)

where ‖.‖ is a general normonR
n,∇θ . B f (θ ) represents the divergence of the bias between θ̂ (x)

and θ , and Iβ[ f |g; θ ] stands for generalized Fisher information that measures the information

in f about θ , and is taken with respect to g. This general result is established in section 3. Then

we discuss in subsection 3.2 some special cases of this general inequality. In particular, if f

and g are a pair of q-escort distributions, then we obtain

E[‖θ̂ (x) − θ‖α]
1
α Iβ,q [ f |g; θ ]

1
β > |n + ∇θ .Eq[θ̂ (x) − θ ]| (2)

Eq̄[‖θ̂ (x) − θ‖α]
1
α Iβ,q [ f |g; θ ]

1
β > |n + ∇θ .E[θ̂ (x) − θ ]|, (3)
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where Iβ,q [ f |g; θ ] is the generalized (β, q)-Fisher information and Eq[.] denotes the

q-expectation which is used in nonextensive statistics. These results are the multidimensional

extensions, with an arbitrary norm, of our previous q-Cramér–Rao inequalities [19]. In the

monodimensional case and q = 1, these inequalities reduce to the Barankin–Vajda Cramér–

Rao inequality and to the standard Cramér–Rao inequality for α = β = 2. In addition, in the

case of a location parameter, we show that

E[‖x‖α]
1
α Iβ,q [g]

1
β > n (4)

which reduces again to our previous results in the univariate case. Examining carefully the

cases for equality in (4), we exhibit that the lower bound is attained by generalized q-Gaussian

distributions, and we prove that these generalized Gaussians are the unique extremal functions,

provided that the dual norm is strictly convex. For a random vector x in R
n, these generalized

q-Gaussians have the probability density

Gγ (x) =















1

Z(γ )
(1− (q − 1) γ ‖x‖α )

1
q−1

+ for q 6= 1

1

Z(γ )
exp (−γ ‖x‖α ) if q = 1

(5)

for α ∈ (0,∞), γ a real positive parameter and q > (n − α)/n, where we use the notation

(x)+ = max {x, 0}, and where Z(γ ) is the partition function1. For q > 1, the density has a

compact support, while for q 6 1 it is defined on the whole R
n and behaves as a power

distribution for ‖x‖ → ∞. A shorthand notation for the expression of the generalized

q-Gaussian density is

Gγ (x) =
1

Z(γ )
expq∗ (−γ ‖x‖α ) , (6)

with q∗ = 2− q and where the so-called q-exponential function is defined by

expq(x) := (1+ (1− q)x)
1
1−q

+ , for q 6= 1 and expq=1(x) := exp(x). (7)

In section 4, we present another Cramér–Rao-type inequality which is also saturated by the

generalized q-Gaussian. This inequality has been originally established by [17], and extended

to the multidimensional case in [18] and independently in [22] in the case of an Euclidean

norm. We show here that this last inequality can readily be stated and proved in the case of an

arbitrary norm.

Finally, in section 5, we derive some new multidimensional uncertainty relations from

the generalized q-Cramér–Rao inequalities. These uncertainty relations involve escort mean

values and are saturated by the generalized Gaussians. In particular, we obtain an inequality

of the form

(

E k
2

[

‖x‖
γ

2

])
1
γ

(

E
[

‖ξ‖θ
2

])

1
θλ >

1

M k
2
[|ψ |2]

1
kλ

(

E k
2

[

‖x‖
γ

2

])
1
γ

(

E
[

‖ξ‖θ
2

])

1
θλ > K, (8)

where x and ξ are two Fourier dual variables, γ > 2, θ > 2 and E k
2
[.] denotes an expectation

computed with respect to an escort distribution of order k
2
. The lower bound K is fixed and,

for γ = θ = 2, is attained when the underlying wavefunction is a q-Gaussian. For q = 1,

1 In the case of the Euclidean norm, the general expressions of the main information measures attached to the

generalized Gaussians are derived in appendix A of [22]. Similar expressions can readily be obtained in the case of a

general norm, using the change of variable in polar coordinates x = r u, with u = x/||x|| and the representation of the

Lebesgue measure dx = rn−1dr dσ (u), cf [23, page 87], where dσ (u) denotes the surface element on the unit sphere.

By this remark, the expressions in [22, appendix A] are valid, with the proviso that ωn will denote the volume of the

n-dimensional unit ball B = {x ∈ R
n : ‖x‖ 6 1}.
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γ = θ = 2, (8) gives the multidimensional version of the well-known Weyl–Heisenberg

uncertainty principle.

In order to derive these different inequalities, we will need some preliminary results,

in particular concerning some properties of general norms on R
n. This is the objective of

section 2 where we first define the notion of dual norms and prove a result on the gradient of

a general norm. Then, we establish, together with its equality conditions, a general Hölder-

type inequality. This inequality will be an essential ingredient in the derivation of the general

Cramér–Rao inequality (1).

2. Preliminary results

As mentioned above, we will consider here general norms on R
n. Let us first simply recall

that a norm on R
n is a function ‖.‖: Rn → R+ such that for any x, y ∈ R

n and γ ∈ R, then

(a) ‖γ x‖ = |γ |‖x‖, (b) ‖x + y‖ 6 ‖x‖ + ‖y‖, and (c) ‖x‖ = 0 iff x = 0. (9)

A large class of norms is the class of Lp-norms, p > 1, given by ‖x‖p =
(
∑n

i=1 |x|
p

i

)
1
p . As

important particular cases, we have the L1-norm, ‖x‖1 =
∑n

i=1 |x|i, the max-norm or L∞-

norm ‖x‖∞ = max (|x1|, . . . , |xn|) and of course the Euclidean L2-norm ‖x‖2 =
(
∑n

i=1 x2i
)
1
2 .

We shall mention that it is possible to use weighted versions of the norms above, e.g.

‖x‖w,p =
(
∑n

i=1 wi|x|
p

i

)
1
p , with wi > 0, and that any injective linear transformation A

leads to a new norm, such as ‖x‖A = ‖Ax‖. Finally, it is also possible to construct new norms

by combining different norms defined on subvectors of x.

A related important notion is the notion of dual norm. Let E = (Rn, ‖.‖) be an n-

dimensional normed space, where ‖.‖ is an arbitrary norm, and let us denote E∗ = (Rn, ‖.‖∗)

its dual space. For Y ∈ E∗, the dual norm ‖.‖∗ is defined by

‖Y‖∗ = sup
‖X‖61

X.Y, (10)

where X.Y is the standard scalar product X.Y =
∑n

i=1 XiYi. In particular, it is well known that

if ‖.‖ is an Lp-norm, then ‖.‖∗ is the Lq-norm, where p and q are the Hölder conjugates of each

other, i.e. p−1 + q−1 = 1, see e.g. [24, chapter 5]. By a direct consequence of the definition of

the dual norm, we always have

X.Y 6 ‖X‖ ‖Y‖∗ . (11)

Note that when the dot product X.Y is negative, we can always take the minus of one of the

elements to obtain |X.Y | = X. (−Y ) 6 ‖X‖‖ − Y‖∗ = ‖X‖‖Y‖∗. Hence, we see that we

actually have an extension of Hölder’s inequality for vectors

|X.Y | 6 ‖X‖ ‖Y‖∗ . (12)

Obviously, we recover here the Cauchy–Schwarz inequality if ‖.‖ = ‖.‖2 and the standard

Hölder inequality for vectors if ‖.‖ = ‖.‖p , and thus ‖.‖∗ = ‖.‖q .

In the following, we will need several facts on the gradient of a norm. These facts are

stated in the next lemma.

Lemma 1. Let ‖.‖ be differentiable at x ∈ E and denote x∗ = ∇x ‖.‖ (x) ∈ E∗ the gradient of

the norm at x. The gradient of ‖x‖ satisfies (a) x.x∗ = ‖x‖ and (b) ‖x∗‖∗ = 1. Furthermore,

when the dual norm ‖.‖∗ is strictly convex, then the gradient x∗ is the unique vector that

satisfies (a) and (b).
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Proof. We begin by equality (a). Let x and v be two vectors of E and λ be a real parameter.

By the triangle inequality, we have ‖x + λv‖ 6 ‖x‖ + λ ‖v‖, so that

lim
λ→0

‖x + λv‖ − ‖x‖

λ
6 ‖v‖ . (13)

On the other hand, the chain rule for derivation d‖Z‖

dλ
= dZ

dλ
.∇Z ‖Z‖ , with Z = x + λv, gives

d ‖x + λv‖

dλ

∣

∣

∣

∣

λ=0

= v.∇x ‖x‖ 6 ‖v‖ , (14)

where the right inequality follows from (13). Of course, taking v = x in (13) gives the equality

sign, and (14) becomes x.∇x ‖x‖ = ‖x‖, that is (a).

By (14), we also obtain that

∇x ‖x‖ .
v

‖v‖
6 1, (15)

with equality, if v = x. Therefore, in the definition of the dual norm ‖∇x ‖x‖‖∗ =

sup‖w‖61 w.∇x ‖x‖, the supremum is equal to 1 and is attained for w = x/ ‖x‖. This

proves (b).

In functional analysis, the existence of a solution to a system analogue to (a), (b) is

granted by a consequence of the Hahn–Banach theorem, see e.g. the background material in

[25]. In this context, the uniqueness of extension in the Hahn–Banach theorem, therefore the

uniqueness of x∗, is guaranteed if the primal space E is smooth, which in turn is equivalent to

the strict convexity of the dual norm [26, chapter 2]. In our setting, it is easy to check that we

have uniqueness of the solution to the system (a), (b) provided that the dual norm is strictly

convex. Indeed, if x∗
1 and x∗

2 are two solutions to (a), (b), then we have by (b)
x

‖x‖
.
(

x∗
1 + x∗

2

)

= 2.

Accordingly, the dual norm
∥

∥x∗
1 + x∗

2

∥

∥

∗
= sup‖w‖61 w.

(

x∗
1 + x∗

2

)

is necessarily greater than

2:
∥

∥x∗
1 + x∗

2

∥

∥

∗
> 2. On the other hand, if the dual norm is strictly convex and using (a), we

have
∥

∥x∗
1 + x∗

2

∥

∥

∗
6

∥

∥x∗
1

∥

∥

∗
+

∥

∥x∗
2

∥

∥

∗
= 2, with equality if and only if x∗

1 = x∗
2. Combining the

two inequalities, we see that the two solutions are necessarily equal. Finally, since we have

already identified that the gradient of the norm satisfies (a), (b), we obtain the last item in the

lemma. ¤

The standard Hölder’s inequality works for functions and relates the L1 norm of the

product of two functions to the product of their Lp and Lq norms: ‖ f g‖1 6 ‖ f ‖p‖g‖q, with

1 6 p, q 6 ∞ and 1/p+1/q = 1. For vectors and an arbitrary norm ‖.‖, inequality (12) gives

another kind of Hölder inequality (actually, this inequality is also true in a broader context, see

e.g. [27]). By combining these two inequalities, we obtain another Hölder-type inequality for

vector-valued functions, which involves arbitrary norms. This inequality will be a key in the

derivation of the new multidimensional Cramér–Rao inequality. It is given, with its equality

condition, in the following lemma.

Lemma 2. Let E = (Rn, ‖.‖) be an n-dimensional normed space and E∗ = (Rn, ‖.‖∗) be its

dual space. If X (t) and Y (t) are two functions taking values respectively in E and E∗, and if

w(t) is a weight function, then
(∫

‖X (t)‖αw(t) dt

)
1
α
(∫

‖Y (t)‖β
∗w(t) dt

)
1
β

>

∫

|X (t).Y (t)| w(t) dt, (16)

>

∣

∣

∣

∣

∫

X (t).Y (t)w(t) dt

∣

∣

∣

∣

(17)

with α and β being Hölder conjugates of each other, i.e. α−1 + β−1 = 1, α > 1. The equality

is obtained if

Y (t) = K‖X (t)‖α−1∇X (t)‖X (t)‖, (18)

5
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with K ∈ R for inequality (16) and with K ∈ R+ for the lower bound (17). If the dual norm

is strictly convex, then the function Y (t) in (18) above is the unique function which saturates

inequalities (16)–(17).

Proof. By inequality (12), we have |X (t).Y (t)| 6 ‖X (t)‖‖Y (t)‖∗. Integrating this inequality

with respect to t, we obtain
∫

|X (t).Y (t)| w(t) dt 6

∫

‖X (t)‖‖Y (t)‖∗w(t) dt. (19)

Obviously, we always have
∣

∣

∣

∣

∫

X (t).Y (t) w(t) dt

∣

∣

∣

∣

6

∫

|X (t).Y (t)| w(t) dt, (20)

with equality if X (t).Y (t) > 0 everywhere. Then, it only remains to apply the standard Hölder

inequality on the right-hand side of (19):

∫

‖X (t)‖‖Y (t)‖∗w(t) dt 6

(∫

‖X (t)‖α w(t) dt

)
1
α
(∫

‖Y (t)‖β
∗ w(t) dt

)
1
β

(21)

to obtain (16). Inequality (17) is then followed by (20).

As far as the cases of equality are concerned, we know that in the Hölder inequality

(21), the equality is obtained if and only if ‖Y (t)‖
β
∗ = K‖X (t)‖α , with K being a positive

constant. Using the fact that α/β = α − 1, the condition becomes ‖Y (t)‖∗ = K‖X (t)‖α−1.

This condition implies that Y (t) must be of the form

Y (t) = K‖X (t)‖α−1u, (22)

where u is a vector of E∗ with the unit norm: ‖u‖∗ = 1. By inequality (12) we see that

the integrand on the left-hand side of (19) is always less or equal to the integrand on the

right. Therefore, we will only obtain equality in (19) if the integrands are equal. Then if we

plug (22) in inequality (12), we obtain the condition ‖X (t)‖α−1 |X (t).u| = ‖X (t)‖α , that is,

finally |X (t).u| = ‖X (t)‖. Since we know by lemma 1 that v = ∇X (t)‖X (t)‖ is a unit vector

that satisfies X (t).v = ‖X (t)‖, and is unique if the dual norm is strictly convex, we see that

u = ±v = ±∇X (t)‖X (t)‖ and this concludes the proof of the first inequality. For equality

to hold in the lower bound (17), the integrand must be positive, which in turn implies that

X (t).u = ‖X (t)‖ and u = ∇X (t)‖X (t)‖. ¤

3. The generalized Cramér–Rao inequality

In this section, we first derive a main Cramér–Rao inequality for the estimation of a

multidimensional parameter and introduce a generalized version of Fisher information. Next,

we examine the particular case of a pair of escort distributions and then the case of a location

parameter. Doing so, we obtain multidimensional versions of the q-Cramér–Rao inequality

and a Cramér–Rao inequality characterizing generalized q-Gaussian distributions.

3.1. The main Cramér–Rao inequality for the estimation of a parameter

The problem of estimation is to determine a function θ̂ (x) in order to estimate an unknown

parameter θ . Let f (x; θ ) and g(x; θ ) be two probability density functions, with x ∈ X ⊆ R
k

and θ be a parameter of these densities, θ ∈ R
n. An underlying idea in the statement of the new

Cramér–Rao inequality is that it is possible to evaluate the moments of the error with respect to

6
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different probability distributions. For instance, in the estimation setting the estimation error

is θ̂ (x) − θ . The bias can be evaluated with respect to f according to

B f (θ ) =

∫

X

(θ̂ (x) − θ ) f (x; θ ) dx = E f [θ̂ (x) − θ ], (23)

while a general moment of a norm of the error can be computed with respect to another

distribution, g(x; θ ), as in

Eg[‖θ̂ (x) − θ‖β] =

∫

X

‖θ̂ (x) − θ‖β g(x; θ ) dx. (24)

The distributions f (x; θ ) and g(x, θ ) can be chosen arbitrarily and are not necessarily directly

related. However, g(x; θ ) can be designed as a transformation of f (x; θ ) that highlights, or

perhaps scores out, some characteristics of f (x; θ ). Typically, g(x; θ ) can be aweighted version

of f (x; θ ), i.e. g(x; θ ) = h(x; θ ) f (x; θ ). The distribution g(x; θ ) can also be a quantized

version of f (x; θ ), such as g(x; θ ) = [ f (x; θ )] , where [.] denotes the integer part. Another

important special case is when g(x; θ ) is defined as the escort distribution of order q of

f (x; θ ), where q plays the role of a tuning parameter. We will see that this special case,

which is particularly important in the context of nonextensive statistical physics, will lead to

generalized q-Gaussians as the extremal functions. We are now in a position to state and prove

an extended version of the Cramér–Rao inequality.

Theorem 1. Let f (x; θ ) be a multivariate probability density function defined over a subset

X⊆ R
n and θ ∈ 2 ⊆ R

k be a parameter of the density. The set 2 is equipped with a norm

‖.‖, and the corresponding dual norm is denoted ‖.‖∗. Let g(x; θ ) denote another probability

density function also defined on (X;2). Assume that f (x; θ ) is a jointly measurable function

of x and θ , is integrable with respect to x, is absolutely continuous with respect to θ and that

the derivatives with respect to each component of θ are locally integrable. For any estimator

θ̂ (x) of θ , we have

Eg[‖θ̂ (x) − θ‖α]
1
α Iβ[ f |g; θ ]

1
β >

∣

∣n + ∇θ .B f (θ )
∣

∣ (25)

with α and β being Hölder conjugates of each other, i.e. α−1 + β−1 = 1, α > 1, and where

the (β, g)-Fisher information

Iβ[ f |g; θ ] =

∫

X

∥

∥

∥

∥

∇θ f (x; θ )

g(x; θ )

∥

∥

∥

∥

β

∗

g(x; θ ) dx (26)

is the generalized Fisher information of order β on the parameter θ contained in the distribution

f and taken with respect to g. The equality case is obtained if

∇θ f (x; θ )

g(x; θ )
= K‖θ̂ (x) − θ‖α−1∇

θ̂ (x)−θ
‖θ̂ (x) − θ‖, (27)

with K > 0.

Proof. The bias in (23) is an n-dimensional vector. Let us consider its divergence with respect

to variations of θ :

divB f (θ ) = ∇θ . B f (θ ). (28)

The regularity conditions in the statement of the theorem enable us to interchange integration

with respect to x and differentiation with respect to θ , and

∇θ . B f (θ ) =

∫

X

∇θ .(θ̂ (x) − θ ) f (x; θ ) dx +

∫

X

∇θ f (x; θ ).(θ̂ (x) − θ ) dx. (29)

7
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In the first term on the right, we have∇θ .θ = n, and the integral reduces to−n
∫

X
f (x; θ ) dx =

−n, since f (x; θ ) is a probability density on X. The second term can be rearranged so as

to obtain an integration with respect to the density g(x; θ ), assuming that the derivatives

with respect to each component of θ are absolutely continuous with respect to g(x; θ ), i.e.

g(x; θ ) ≫ ∇θ f (x; θ ). This gives

n + ∇θ . B f (θ ) =

∫

X

∇θ f (x; θ )

g(x; θ )
.(θ̂ (x) − θ ) g(x; θ ) dx. (30)

Now, it only remains to apply the generalized Hölder-type inequality (17) in lemma 2 to the

integral on the right side, with X (x) = θ̂ (x) − θ , Y (x) =
∇θ f (x;θ )

g(x;θ )
, and w(x) = g(x; θ ). This

yields in all generality

(∫

X

‖θ̂ (x) − θ‖αg(x; θ ) dx

)
1
α

(

∫

X

∥

∥

∥

∥

∇θ f (x; θ )

g(x; θ )

∥

∥

∥

∥

β

∗

g(x; θ ) dx

)
1
β

> |n + ∇θ . B f (θ )| (31)

which is (25). By lemma 2 again, we know that the case of equality occurs if Y (t) =

K‖X (t)‖α−1∇X (t)‖X (t)‖, K > 0, which gives (27). ¤

3.2. Main consequences of the general result

3.2.1. Case of a q-escort distribution. Let f (x; θ ) and g(x; θ ) be a pair of q-escort

distributions linked by

f (x; θ ) =
g(x; θ )q

Mq [g; θ ]
and g(x; θ ) =

f (x; θ )q̄

Mq̄ [ f ; θ ]
, (32)

with q > 0, q̄ = 1/q, and the information generating function Mq [g; θ ] defined by

Mq [g; θ ] =

∫

X

g(x; θ ) dx. (33)

As usual, we will denote by Eq [.] the q-expectation, which is the expectation taken with

respect to an escort distribution of order q. Here we see that the expectation with respect to

f (x; θ ) is also the q-expectation with respect to g(x; θ ). Let us also recall that the inverse

function of the deformed q-exponential (7), the so-called q-logarithm, is defined by

lnq(x) :=
x1−q − 1

1− q
. (34)

With these notations, we have the following corollary of the general Cramér–Rao inequality.

Corollary 1. For the pair of escort distributions (32), the equivalent Cramér–Rao inequalities

E[‖θ̂ (x) − θ‖α]
1
α Iβ,q [ f |g; θ ]

1
β > |n + ∇θ .Eq[θ̂ (x) − θ ]| (35)

Eq̄[‖θ̂ (x) − θ‖α]
1
α Iβ,q [ f |g; θ ]

1
β >

∣

∣

∣
n + ∇θ .E[θ̂ (x) − θ ]

∣

∣

∣
, (36)

hold, where the generalized (β, q)-Fisher information is given by

Iβ,q [ f |g; θ ] =
1

Mq [g; θ ]β
E

[

g(x; θ )β(q−1)

∥

∥

∥

∥

∇θ ln
g(x; θ )q

Mq [g; θ ]

∥

∥

∥

∥

β

∗

]

(37)

= Mq̄ [ f ; θ ]β Eq̄

[

f (x; θ )β(1−q̄) ‖∇θ ln f (x; θ )‖β
∗

]

, (38)

and where the equality occurs if

∇θ lnq̄ f (x; θ ) = K‖θ̂ (x) − θ‖α−1∇
θ̂ (x)−θ

‖θ̂ (x) − θ‖, (39)

with K > 0.
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Proof. The Cramér–Rao inequalities (35) and (36) directly follow from the general Cramér–

Rao inequality (25), relations (32) between f (x; θ ) and g(x; θ ), and the notation of

q-expectations. The expressions of the generalized (β, q)-Fisher information also follow by

direct calculation. Finally, the equality condition yields

f (x; θ )(1−q̄)∇θ ln f (x; θ ) = K‖θ̂ (x) − θ‖α−1∇
θ̂ (x)−θ

‖θ̂ (x) − θ‖. (40)

Noticing that the term on the left is nothing but the gradient of the deformed q-logarithm,

f (x; θ )(1−q̄)∇θ ln f (x; θ ) = ∇θ lnq̄ f (x; θ ), we immediately obtain (39). ¤

3.2.2. Case of a translation family. In the particular case of a translation parameter, the

generalized Cramér–Rao inequality induces a new class of inequalities.

Let θ ∈ R
n be a location parameter, x ∈ X ⊆ R

n, and define the family of density

f (x; θ ) = f (x − θ ) by f (x; θ ). In this case, we have ∇θ f (x; θ ) = −∇x f (x − θ ), provided

that f is differentiable at x − θ , and the Fisher information becomes a characteristic of the

information in the distribution. IfX is a bounded subset, thenwewill assume that f (x) vanishes

and is differentiable on the boundary ∂X . (Otherwise, the Fisher information defined for the

function extended to R
n is not defined.)

Let us denote by µ f the mean of f (x).We immediately obtain that the mean of f (x; θ ) is

(µ f + θ ), so that an unbiased estimator of θ could be θ̂ (x) = x − µ f . If we choose θ̂ (x) = x,

then the estimator will be biased, B f (θ ) =Eq[θ̂ (x) − θ ] = µ f , but independent of θ , so that

the gradient of the bias with respect to θ is zero. Under these conditions, the generalized

Cramér–Rao inequality becomes
(∫

‖x − θ‖α g(x; θ ) dx

)
1
α

(

∫
∥

∥

∥

∥

∇x f (x − θ )

g(x; θ )

∥

∥

∥

∥

β

∗

g(x; θ ) dx

)
1
β

> n. (41)

Furthermore, we can also choose θ = 0, and obtain, as a corollary, the following interesting

functional inequality.

Corollary 2. Let f (x) and g(x) be two multivariate probability density functions defined over

a subset X of R
n. Assume that f (x) is a measurable differentiable function of x, which vanishes

and is differentiable on the boundary ∂X, that ∇x f (x) is absolutely continuous with respect to

g(x) and finally that the involved integrals exist and are finite. Then, the following inequality

holds:
(∫

X

‖x‖α g(x) dx

)
1
α

(

∫

X

∥

∥

∥

∥

∇x f (x)

g(x)

∥

∥

∥

∥

β

∗

g(x) dx

)
1
β

> n, (42)

with equality if (and only if when the dual norm is strictly convex)

∇x f (x) = −K g(x)‖x‖α−1∇x‖x‖, (43)

with K > 0.

As an elementary application, let us consider the univariate case, with X =

[0, 1]. Let us take for g(x) the uniform distribution on the interval. Finally, let

us choose for f (x) a β-distribution: f (x) = xa−1(1 − x)b−1/B(a, b), with B(a, b)

being the β-function. Firstly, we obviously have
∫ 1

0
|x|α dx = 1. Secondly, f ′(x) =

(

(a − 1)xa−2(1− x)b−1 + (b − 1)xa−1(1− x)b−2
)

, so that the inequality is
(∫ 1

0

∣

∣(a − 1)xa−2(1− x)b−1 + (b − 1)xa−1(1− x)b−2
∣

∣

β dx

)

1
β

> B(a, b). (44)

Taking now β = 1 and a > 1, b > 1, we obtain the following inequality for β-functions:

(a − 1)B(a − 1, b) + (b − 1)B(a, b − 1) > B(a, b). (45)

9
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3.2.3. Case of a location parameter within a pair of escort distributions. By combining the

two aspects presented above, namely the case of a pair of escort distributions and the case of a

location parameter, we will obtain a new Cramér–Rao inequality saturated by multivariate

generalized q-Gaussians. This provides a new information theoretic characterization of

generalized q-Gaussian and extends our previous results to the multivariate case and arbitrary

norms. As in corollary 1, we use a pair of q-escort distributions:

f (x) =
g(x)q

Mq [g]
and g(x) =

f (x)q̄

Mq̄ [ f ]
, (46)

with q̄ = 1/q, and we denote by E [.] the standard expectation with respect to g(x), and by

Eq̄ [.] the q̄-expectation with respect to f (x), which is simply the standard expectation taken

with respect to the escort f (x)q̄/Mq̄ [ f ] . In the statement of the following corollary, we will

use the deformed exponential and logarithm defined in (7), (34). We will also use the notation

q∗ = 2− q that changes the quantities (1− q∗) into (q − 1).

Corollary 3. Let g(x) be a multivariate probability density function defined over a subset

X ⊆ R
n. Assume that g(x) is a measurable differentiable function of x, which vanishes and is

differentiable on the boundary ∂X, and finally that the involved integrals exist and are finite.

Then, for the pair of escort distributions (46), the following q-Cramér–Rao inequality holds:

mα[g]
1
α Iβ,q [g]

1
β > n, (47)

with






mα[g] = E[‖x‖α]

Īβ,q [g] =
(

q/Mq [g]
)β

E[g(x)β(q−1)‖∇x ln g(x)‖
β
∗ ]

= (q/Mq[g])
β E[‖∇x lnq∗ g(x)‖

β
∗ ]

, (48)

where α and β are Hölder conjugates of each other, i.e. α−1 + β−1 = 1, α > 1, and where

Iβ,q [g] denotes the generalized (β, q)-Fisher information.

In terms of q̄-expectations with respect to f (x), it can also be written as

mα,q̄[ f ]
1
α Īβ,q [ f ]

1
β > n (49)

with






mα,q̄[ f ] = Eq̄[‖x‖α]

Īβ,q[ f ] = Mq̄[ f ]
β Eq̄[ f (x)β(1−q̄)‖∇x ln f (x)‖

β
∗ ]

= Mq̄[ f ]
β Eq̄[‖∇x lnq̄ f (x)‖

β
∗ ]

. (50)

In both cases, the equality occurs if

f (x) ∝ expq̄ (−γ ‖x‖α ) , or equivalently g(x) ∝ expq∗
(−γ ‖x‖α ) , with γ > 0. (51)

If the dual norm is strictly convex, then this generalized q-Gaussian is the unique probability

density function that achieves the equality in the extended Cramér–Rao inequalities.

Proof. As indicated above, the result is a direct consequence of theorem 1 in the case of a pair

of escort distributions and of the estimation of a location parameter, with θ̂ (x) = x and θ = 0.

Using (46), the condition for equality (43) becomes

g(x)q−1∇xg(x) = −K ‖x‖α−1∇x‖x‖ g(x). (52)

From this equation, we see that g(x)will only be a function of the norm of x, and therefore will

be radially symmetric. Furthermore, we see that the gradient of g(x) behaves as the negative

10
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of the gradient of ‖x‖. This means that g(x), which is a function of ‖x‖, is non-increasing

with ‖x‖.

For g(x) 6= 0, the equality condition can be written as

g(x)q−2∇xg(x) =
1

q − 1
∇xg(x)q−1 = −

K

α
∇x‖x‖α, (53)

which, after integration of the two sides, gives

g(x)q−1 = −
K

α
(q − 1)‖x‖α + C, (54)

where C is a constant of integration. Since g(x) is a probability density function, the solution

is restricted to the domain where the right-hand side is non-negative, and g(x) = 0 elsewhere.

In particular, when C is negative, we see that g(x) vanishes around the origin and presents

a singularity at ‖x‖ = Cα/K(q − 1). Since we assumed g(x) differentiable everywhere, this

solution must be discarded.

Therefore, the constant of integration C must be positive, and

g(x) ∝

(

1−
K

Cα
(q − 1)‖x‖α

)
1

q−1

∝ expq∗
(−γ ‖x‖α ) (55)

which is (51). The expression of f (x) simply follows from the fact that f (x) is the escort

distribution of g(x). ¤

4. Another Cramér–Rao inequality saturated by generalized Gaussians

We now turn to another Cramér–Rao-type inequality, which involves a variant φβ,q [g] of

the generalized Fisher information Iβ,q [g] above, and which is also saturated by generalized

q-Gaussian distributions. However, this inequality is less directly related to estimation results

than inequality (47) which is just a special case of the general Cramér–Rao inequality. The

monodimensional version of this inequality has been established by [17] and extended to the

multidimensional case in [18] and [22] in the case of a Euclidean norm. Actually, the inequality

can readily be stated and proved for a general norm.

Theorem 2. For n > 1, β and α Hölder conjugates of each other, α > 1, and q >

max {(n − 1)/n, n/(n + α)}; then for any probability density g on R
n, supposed continuously

differentiable and such that the involved information measures are finite,

mα [g]
1
α φβ,q [g]

1
βλ > mα [G]

1
α φβ,q [G]

1
βλ , (56)

with λ = n(q − 1) + 1 and where the general Fisher information is given by

φβ,q [g] =
(

Mq [g] /q
)β

Iβ,q [g] = E
[

g(x)β(q−1) ‖∇x ln g(x)‖β
∗

]

, (57)

and where the equality holds iff g is a generalized Gaussian g = Gγ .

For the proof of this inequality, we will use two general inequalities relating the moment

mα [g], the generalized Fisher information φβ,q [g] and the information generating function

Mq[g] =
∫

g(x)q dx. We will also use the notation Nq[g] = Mq[g]
1
1−q , which is sometimes

known as the ‘Rényi entropy power’. In the theorem above as well as in the lemma below,

φβ,q [G], mα [G] and Nq[G] are the values taken by the Fisher information, the moment of

order α and the entropy power when the probability density g is the generalized q-GaussianG.

The exact expressions of these quantities are given in appendix A of [22], taking into account

footnote 1 on page 3.
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Lemma 3. For n > 1, α ∈ (0,∞), q > n/(n+α), and if g is a probability density on random

vectors of R
n with mα[g] = E[‖x‖α] < ∞, Nq[g] < ∞, then

mα[g]
1
α

Nq[g]
1
n

>
mα[G]

1
α

Nq[G]
1
n

, (58)

with equality if and only if g is a generalized Gaussian.

Proof. Inequality (58) has been stated and proved in [28] in the case of a Euclidean norm. We

simply note here that the proof in [28] works as well in the case of a general norm. ¤

We will also use a generalized Stam inequality derived from a general sharp Gagliardo–

Nirenberg inequality proved in the remarkable paper of Cordero et al [10].

Lemma 4. For n > 1, β and α are the Hölder conjugates of each other, α > 1,

and q > max {(n − 1)/n, n/(n + α)}; then for any probability density on R
n, supposed

continuously differentiable, the following generalized Stam inequality holds:

φβ,q [g]
1

βλ Nq[g]
1
n > φβ,q [G]

1
βλ Nq[G]

1
n , (59)

with λ = n(q − 1) + 1 and with equality if and only if g is any generalized q-Gaussian (6).

Proof. In our notations, the sharp Gagliardo–Nirenberg inequality [10, equation (34) p 320],

with a > 1 and ‖∇u‖β = (
∫

‖∇u‖
β
∗ dx)

1
β , is

‖∇u‖β‖u‖
1
θ
−1

a(β−1)+1

‖u‖
1
θ

aβ

> K, (60)

where K is a sharp constant which is attained if and only if u is a generalized Gaussian with

exponent 1/(1 − a), and where θ is given by θ = n(a − 1)/a(nβ − (aβ + 1 − a)(n − β)).

The idea is to take u = gt, with g being a probability density function, with aβt = 1, and to

note q = [a(β − 1) + 1] t. With these notations, we obtain that βt = β(q − 1) + 1, and (60)

becomes

φβ,q [g]
1
β Nq[g]

(θ−1)(1−q)t

θq > K. (61)

Simplifying the expression of θ and the exponent in (61), we finally obtain, with q < 1, the

generalized Stam inequality (59), with equality if and only if g is any generalized q-Gaussian

(6). Actually, this generalized Stam inequality is also valid in the case q > 1, as it can be

checked from the results of [10] using similar steps as above. The conditions on q simply

ensure the existence of the information measures for the generalized Gaussian. ¤

We end with the proof of theorem 2, which is now an easy task.

Proof. The Cramér–Rao inequality (47) can also be written as

mα [g]
1
α

φβ,q [g]
1
β

n
q
Mq[g]

> 1. (62)

EliminatingMq[g] between this inequality and themoment–entropy inequality (58)with q > 1,

we arrive at (56). Similarly, in the case q < 1, the elimination ofMq[g] between the extended

q-Cramér–Rao inequality for a location parameter (62) and the generalized Stam inequality

(59) also leads to (56). The case of equality directly follows from the cases of equality in

the initial inequalities. Alternatively, we can observe that (56) also follows at once by the

combination of (58) and (59). ¤
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5. Uncertainty relations associated with the q-Cramér–Rao inequalities

It is known that the Weyl–Heisenberg uncertainty principle in statistical physics corresponds

to the standard Cramér–Rao inequality for the location parameter, see e.g. [29]. Following this

idea, we derive new uncertainty relations from the extended Cramér–Rao inequalities. These

uncertainty relations involve escort mean values and are saturated by generalized Gaussians.

These uncertainty relations thus give a way to measure the uncertainty not only with respect

to the original wavefunction, but also with respect to an escort-deformed version of the

associated probability density. Of course, the standardWeyl–Heisenberg uncertainty inequality

is recovered in the case q = 1.

Let us recall that the uncertainty principle originates in Heisenberg’s work and is stated

in Weyl’s book [30, p 77], who credits Pauli. It indicates that if x and ξ are the dual Fourier

variables (e.g. position and momentum), then the less the uncertainty in x, the greater in ξ and

conversely:

E[|x|2]E[|ξ |2] >
1

16π2
, (63)

with equality if and only if the probability density of x is a Gaussian density. Many

improvements and variations on this inequality have been given; see for instance the review

[31]. Interesting, but not well-known, moment inequalities have been given in [32, 33]. Similar

formulations are obtained below. Other entropic uncertainty relations have been stated by

Hirshman [34] and improved in [35, 36]. It is worth mentioning that all the uncertainty

inequalities are extremely useful in the analysis of complex systems, see the recent book [37],

particularly the chapter [38], and the paper [39].

In the following, we consider a complex amplitude wavefunction ψ (x), x ∈ R
n, with

the unit Euclidean norm 2, and denote ψ̂ (ξ ) its Fourier transform, ξ ∈ R
n. By the Parseval

equality
∫

Rn |ψ (x)|2 dx =
∫

Rn |ψ̂ (ξ )|2 dξ = 1, and both |ψ (x)|2 and |ψ̂ (ξ )|2 are probability

density functions.

We begin with a simple change of function which enables us to express the generalized

Fisher information as a Dirichlet energy. This leads us to the following result.

Proposition 1. For k = β/ (β(q − 1) + 1) , λ = n(q − 1) + 1 and q >

max {(n − 1)/n, n/(n + α)}, we have

1

M kq

2
[|ψ |2]

(∫

Rn

‖x‖α |ψ (x)|k dx

)
1
α
(∫

Rn

‖∇x|ψ (x)|‖β
∗ dx

)
1
β

>
n

kq
(64)

1

M k
2
[|ψ |2]

1
kλ

(

E k
2
[‖x‖α]

)
1
α

(∫

Rn

‖∇x|ψ (x)|‖β
∗ dx

)
1

βλ

>
1

k
1
λ

mα [G]
1
α φβ,q [G]

1
βλ , (65)

where Eq[.] denotes the q-expectation, the expectation computed with respect to the escort

distribution of order q, and Mq[.] the information generating function of order q. In these

inequalities, the case of equality is obtained if and only if |ψ (x)|k/M k
2
[|ψ |2] is a generalized

q-Gaussian.

Proof. Let

f (x) =

(

|ψ (x)|2
)

k
2

∫

Rn

(

|ψ (x)|2
)

k
2 dx

=
|ψ (x)|k

M k
2
[|ψ |2]

, (66)
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with k = β/ (β(q − 1) + 1). Note that we also have the conjugation relation 1
α

+ 1
k

= q.

The change of function (66) is chosen in order to reduce φβ,q [ f ] to the simple form (67)

given below. On the other hand, the moment of order α with respect to f (x) is nothing but the

generalized k
2
-escort moment (68) of order α computed with respect to |ψ (x)|2. Finally, the

information generating function Mq[ f ] can also be expressed in terms of |ψ (x)|2:

φβ,q [ f ] =

∫

Rn

f (x)β(q−1)+1 ‖∇x ln f (x)‖β
∗ dx =

|k|β

M k
2
[|ψ |2]

β

k

∫

Rn

‖∇x|ψ (x, t)|‖β
∗ dx. (67)

mα [ f ] =

∫

Rn

‖x‖α (|ψ (x, t)|2)
k
2

∫

Rn (|ψ (x, t)|2)
k
2 dx

dx = E k
2
[‖x‖α]. (68)

Mq[ f ] =
M kq

2
[|ψ |2]

M k
2
[|ψ |2]q

. (69)

With these notations, the relation between φβ,q [ f ] and Iβ,q [ f ], i.e. Iβ,q [ f ]
1
β =

φβ,q[ f ]
1
β

1
q

Mq[ f ]
, and the

conjugation relation 1
α

+ 1
k

= q, the generalized Cramér–Rao (47), becomes (64). Similarly,

the second Cramér–Rao inequality (56) gives (65). ¤

Beginning with relations (64) and (65) and using a relation between the norm of a function

and the norm of its Fourier transform, we obtain a pair of general uncertainty relations, for

any exponent, that involve the expectations computed with respect to escort distributions. This

result is stated as follows.

Theorem 3. For 2 > α > 1, β its Hölder conjugate, q > max {(n − 1)/n, n/(n + α)} ,

k = β/ (β(q − 1) + 1) and λ = n(q − 1) + 1; then we have

M α
2
[|ψ̂ |2]

1
α M k

2
[|ψ |2]

1
α

M kq

2
[|ψ |2]

E k
2

[

‖x‖α
α

]
1
α E α

2

[

‖ξ‖
β

β

]
1
β >

n

2πkq

(

β
1
β

α
1
α

)− n
2β

(70)

M α
2
[|ψ̂ |2]

1
αλ

M k
2
[|ψ |2]

1
kλ

(

E k
2

[

‖x‖α
α

])
1
α
(

E α
2

[

‖ξ‖
β

β

])

1
βλ >

1

(2πk)
1
λ

(

β
1
β

α
1
α

)− n
2βλ

mα [G]
1
α φβ,q [G]

1
βλ . (71)

Proof. We first observe that for any complex-valued function, we have
(

∂|ψ (x)|

∂xi

)2

=
∂ψ (x)

∂xi

∂ψ (x)∗

∂xi

− |ψ (x)|2
(

∂ argψ (x)

∂xi

)2

. (72)

This relation implies that
(

∂|ψ (x)|

∂xi

)

6

∣

∣

∣

∣

∂ψ (x)

∂xi

∣

∣

∣

∣

, (73)

with equality if and only if argψ (x) = c, where c is any constant. Therefore, we see that

we always have ‖∇x|ψ (x, t)|‖∗ 6 ‖|∇xψ (x, t)|‖∗ . In the following, we will take for ‖.‖∗ a

β-norm and for ‖.‖ its dual α-norm. Doing so, we obtain ‖|∇xψ (x, t)|‖
β

β =
∑n

i=1 |∂iψ (x)|β .

At this point, we can invoke the sharp version of the Hausdorff–Young inequality due to

Babenko and Beckner [40], which states that for a pair of Fourier transforms g and ĝ; then for

1 6 α 6 2,

‖g‖β 6

(

β
1
β

α
1
α

)
n
2

‖ĝ‖α, (74)
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with equality if and only if g is a Gaussian function or if α = β = 2 (Parseval’s identity).

Thus, it comes

∫

Rn

‖∇x|ψ (x, t)|‖
β

β dx =

n
∑

i=1

∫

Rn

|∂iψ (x)|β dx 6

(

β
1
β

α
1
α

)
n
2

(2π )β
n

∑

i=1

(∫

Rn

|ξiψ̂ (ξ )|α dξ

)
β

α

.

(75)

Inserting this inequality in (64), and taking account of the fact that ‖x‖α = ‖x‖α
α =

∑n
i=1 |xi|

α ,

we obtain

1

M kq

2
[|ψ |2]

(

n
∑

i=1

∫

Rn

|xi|
α |ψ (x, t)|k dx

)
1
α
(

n
∑

i=1

(∫

Rn

|ξi|
α|ψ̂ (ξ )|α dξ

)
β

α

)

1
β

>
n

2πkq

(

β
1
β

α
1
α

)− n
2β

.

(76)

Now, we can observe that by the Hölder inequality
(∫

Rn

|ξi|
α|ψ̂ (ξ )|α dξ

)

6

(∫

Rn

|ξi|
β |ψ̂ (ξ )|α dξ

)
α
β

(∫

Rn

|ψ̂ (ξ )|α dξ

)1− α
β

. (77)

Plugging this inequality in (76), we see that the exponent β/α simplifies, and that the inequality

can be written in a weaker but more symmetric form:

M α
2
[|ψ̂ |2]

1
α
− 1

β

M kq

2
[|ψ |2]

(∫

Rn

‖x‖α
α |ψ (x, t)|k dx

)
1
α
(∫

Rn

‖ξ‖
β

β |ψ̂ (ξ )|α dξ

)
1
β

>
n

2πkq

(

β
1
β

α
1
α

)− n
2β

,

(78)

which can also be written in terms of escort expectations as (70).

For the second Cramér–Rao inequality, we follow the very same steps, beginning with

(65). By (75) it comes

1

M k
2
[|ψ |2]

1
kλ

(

E k
2

[

‖x‖α
α

])
1
α

(

n
∑

i=1

(∫

Rn

|ξiψ̂ (ξ )|α dξ

)
β

α

)

1
βλ

>
1

(2πk)
1
λ

mα [G]
1
α φβ,q [G]

1
βλ

(

β
1
β

α
1
α

)− n
2βλ

, (79)

which, by the Hölder inequality (77), gives (71). ¤

In the general case, inequalities (70) and (71) are not sharp, because they follow from

the Babenko–Beckner inequality (74) and the Hölder inequality (77), where the conditions for

equality are not met simultaneously. However, we can still get a sharp uncertainty relation,

saturated by generalized q-Gaussians, in the case when α = β = 2. Of course, for q = 1

(which, with β = 2 gives k = 2), we obtain a multidimensional version of Heisenberg

inequality, which reduces to (63) in the scalar case.

Corollary 4. For k = β/ (β(q − 1) + 1) , λ = n(q−1)+1, q > max {(n − 1)/n, n/(n + α)}

and γ > 2, θ > 2, the following uncertainty relations hold:

M k
2
[|ψ |2]

1
2

M kq

2
[|ψ |2]

E k
2

[

‖x‖
γ

2

]
1
γ E

[

‖ξ‖θ
2

]
1
θ >

n

2πkq
, (80)

1

M k
2
[|ψ |2]

1
kλ

(

E k
2

[

‖x‖
γ

2

])
1
γ

(

E
[

‖ξ‖θ
2

])

1
θλ >

1

(2πk)
1
λ

m2 [G]
1
2 φ2,q [G]

1
2λ . (81)
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For γ = θ = 2, the lower bound is attained if and only |ψ (x)|k/M k
2
[|ψ |2] is a generalized

q-Gaussian distribution, with argψ (x) = c, where c is a real constant. For 3
2

− 1
β

> q, we

also have

(

E k
2

[

‖x‖
γ

2

])
1
γ

(

E
[

‖ξ‖θ
2

])

1
θλ >

1

(2πk)
1
λ

m2 [G]
1
2 φ2,q [G]

1
2λ . (82)

Proof. Equality in (73) implies that argψ (x) = c, where c is a real constant. In the case

α = β = 2, the Babenko–Beckner inequality reduces to Parseval’s equality, and the Hölder

inequality (77) is an identity. Therefore, we directly obtain

1

M kq

2
[|ψ |2]

(∫

Rn

‖x‖22 |ψ (x, t)|k dx

)
1
2
(∫

Rn

‖ξ‖22 |ψ̂ (ξ )|2 dξ

)
1
2

>
n

2πkq
, (83)

which can also be written in terms of escort expectations as

M k
2
[|ψ |2]

1
2

M kq

2
[|ψ |2]

E k
2

[

‖x‖22
]
1
2 E

[

‖ξ‖22
]
1
2 >

n

2πkq
. (84)

Similarly, inequality (71) gives

1

M k
2
[|ψ |2]

1
kλ

(

E k
2

[

‖x‖22
])

1
2
(

E
[

‖ξ‖22
])

1
2λ >

1

(2πk)
1
λ

m2 [G]
1
2 φ2,q [G]

1
2λ . (85)

In both inequalities, the lower bound is attained if f (x) = |ψ (x)|k/M k
2
[|ψ |2] is a generalized q-

Gaussian (which means that |ψ (x)|2 is also a generalized q-Gaussian with a different entropic

index: q′ = 1+ k(q − 1)/2).

By Jensen’s inequality, we know that for b > a, we always have E[|X |b]
a
b > E[|X |a].

Therefore, applying this inequality with γ > 2, θ > 2, we obtain (80) and (81). Finally, by

the general power mean inequality, we know that Ma[ f ]
1
a > Mb[ f ]

1
b for a > b. Therefore,

when k > 2, that is, 3
2

− 1
β

> q, then M k
2

> M1 = 1, and inequality (81) yields (82). ¤

6. Conclusions

This paper improves and builds on our previous findings presented in [19]. We connect

concepts in estimation theory to tools used in nonextensive thermostatistics and establish

general Cramér–Rao-type inequalities valid for estimation purposes. These results are given

in the multidimensional case, and a feature of our approach is that it works for arbitrary

norms onR
n.As a direct consequence, we obtain multidimensional versions of our q-Cramér–

Rao inequalities, which include the Barankin–Vajda as well as the standard Cramér–Rao

inequality as particular cases. Furthermore, in the case of a translation family, we have

shown that the corresponding Cramér–Rao-type inequality is saturated by multidimensional

q-Gaussian distributions. We have also presented a related general Cramér–Rao inequality

which is saturated by the same q-Gaussian distributions. These results imply in particular

that the generalized q-Gaussians are the minimizers of an extended version of the Fisher

information, among all distributions with a given moment, just as the standard Gaussian

minimizes Fisher information over all distributions with a given variance. Since these

generalized Gaussians are already known to be the maximum entropy distributions for Rényi

or Tsallis entropies, this yields a new, complementary, information theoretic characterization

of these distributions. Finally, we have derived new multidimensional uncertainty relations

from the extended Cramér–Rao inequalities. These uncertainty relations involve generalized
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expectations computed with respect to escort distributions, and we have shown that some

of these uncertainty relations are saturated by generalized q-Gaussian distributions, thus

generalizing the fact that the standardHeisenberg uncertainty relation is saturated by a standard

Gaussian.

Some of the presented uncertainty inequalities are not sharp, and it would certainly be of

interest to try to improve them, by looking to the extremal functions or to optimal constants.

It would also be interesting to try to document the properties of the two generalized Fisher

information. Finally, in their recent work [18], Lutwak et al have introduced an abstract,

implicit, notion of Fisher information matrix attached to a probability density. It would be of

interest to examine whether this notion could be extended and interpreted in the estimation

theory framework.
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