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Abstract – The dynamical behavior of an overdamped mechanical model devoid of any usual
thermal effects is analyzed by a formalism that is similar to usual thermodynamics, and com-
pletely independent of any ad hoc assumption of a probability distribution of states in phase
space of the mechanical model. It leads to the definition of a new entropy function, which does
not coincide with the usual thermodynamical entropy. The new step making the difference to
previous studies of this system is the identification of two non-equivalent mechanical interaction
mechanisms, which are defined and identified as work and pseudo-heat. Together with the intro-
duced effective temperature θ, they make it possible to characterize the equivalent to isothermal,
adiabatic, isobaric, and isochoric processes. Three statements, formally analogous to the zeroth,
first, and second law of thermodynamics, are issued. The statement of the second law results from
the asymmetry in the way energy can be exchanged along the two processes. A Carnot cycle is
defined, for which the efficiency is expressed in terms of θ in the operating pseudo-heat reservoirs.
The analogous Clausius theorem for the system operating an arbitrary reversible cycle is proved,
leading to the new entropy function. Consequences of the extension of thermodynamic formalism
to mechanical models with different processes of transferring energy are discussed.

Copyright c© EPLA, 2014

The entropy function was introduced into thermody-
namics as a result of Clausius theorem, which is itself a
mathematical consequence of the statement of the second
law according to Kelvin or to Clausius [1]. Rather than
being an ad hoc concept, the thermodynamic entropy
follows from phenomenological statements that certain
events have never been observed in nature. Some time
later, the statistical entropy based on the microscopic dis-
tribution probability was introduced into physics in the pi-
oneering works by Boltzmann and Gibbs [2]. The entropy
measures both the ability of the system to deliver mechan-
ical work as well as its microscopic disorder. Additional
efforts to define entropy along a mathematically rigor-
ous way lead to axiomatic formulations, among which
that due first to Shannon and afterwards to Khinchin
is most acknowledged in the literature [3,4]. In the lat-
ter case, four postulates requiring basic entropy proper-
ties like the dependence on the probability distribution

only, maximum at equiprobability, addition of a new zero-
probability state, and conditional additivity, lead to a
specific functional dependence that is generally referred
to as the celebrated Boltzmann-Gibbs (BG) entropy. If
the fourth postulate is modified or excluded from the ax-
iomatic formulation, other functional forms can be used
to define statistical entropies [5–7].

For physical systems, the BG entropy is generally ac-
cepted as the actual statistical definition, mainly for the
fact that, for a very large number of systems, the derived
results agree with those obtained by the thermodynami-
cal formalism and by highly precise experimental records.
However, experimental deviations from the predicted the-
oretical results based on the BG distribution are reported.
Such failures are explained by the incompleteness of the
data, or the presence of out-of-equilibrium states, or the
inadequacy of the BG formalism (see, e.g., ref. [8] for a list
of examples). The search for a better physical explanation
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of such data sets is the main reason for the proposition of
statistical entropies other than the BG one.

In this work, we investigate whether other entropies
can be introduced into physics. However, instead of in-
troducing a new functional relation between entropy and
probability distribution, we follow the same steps of the
standard thermodynamical formalism. In opposition to
the procedure adopted in previous works [9–12], we show
that it is possible to introduce a new entropy for a class of
systems that are subject to mechanical interactions only.
The model we consider has a large number of constituents
and obeys proper boundary conditions, with the addi-
tional remark that, if two or more samples of the same
system share a common boundary, they are allowed to in-
teract with each other along a series of distinct processes.
All such processes may cause a displacement of the bound-
aries. However, for the sake of simplifying the analysis, we
restrict our discussion to the cases in which no exchange of
thermal heat or particles between the systems is allowed.
Based on the observed global properties, we enounce a
series of statements that are valid to all similarly inter-
acting systems. These statements play the same role as
the zeroth, first, and second laws of standard thermody-
namics, allowing us to prove the analogue of the Clausius
theorem for this class of interacting systems. As a corol-
lary, we obtain the exact expression of a new entropy func-
tion, which differs from the one of usual thermodynamics.
We emphasize that such expression is derived without any
help of a pre-assumed probability distribution in phase
space, being rather a consequence of the phenomenologi-
cal properties observed in the solution of the systems. We
remind that the usual thermodynamic entropy accounts
for processes that allow heat exchange and temperature
variations. Since no such procedures are allowed in the
current study, the new function we derive has a differ-
ent nature, accounting for different forms of mechanical
energy exchange. These remarks are relevant because, for
the sake of simpler notation, we adopt the same terms and
symbols of usual thermodynamics throughout this work
to describe processes of different nature. As a last intro-
ductory remark, we emphasize that although the specific
entropic form is restricted to this particular system, noth-
ing prevents from adopting the same steps developed here
to analyze similar situations.

We define a model of N overdamped particles moving
on a rectangular surface patch oriented along the (x̂, ŷ)-
directions, with linear sizes Lx and Ly, which is described
by [9,10,13–17]

µ
d�ri

dt
=

N
∑

i�=j=1

�J(�ri − �rj) + �F e(�ri). (1)

Equation (1) has been used to describe the behavior

of vortices in type-II superconductors. Here �J(�ri) =
f0G(|�r|/λ)r̂/2 is a short-range repulsive two-particle force
acting along the unitary vector r̂ that connects both par-
ticles, λ denotes the typical length scale of the interaction,

and �F e(�ri) is an external force that we assume to depend
only on the x-coordinate and to act in the x-direction, i.e.,
�F e(�r) = −A(x)x̂.

The force A(x) is derived from a confining potential
φ(x), which is chosen to be φ(x) = αx2/2. The motion
in the y-direction is limited only by a confining rigid wall
potential defined by ψ(y) = δ(y) + δ(y − Ly). Because
of the presence of φ, the system is also bounded in the
x-direction. For the sake of definitiveness, we state the
basic premise that, from now on, any effect of the usual
temperature T is neglected throughout the analysis, which
amounts to set T = 0.

The numerical integration of system (1) with initial con-
ditions satisfying |xi(t = 0)| ≤ Lx/2, 0 < yi(t = 0) < Ly

always leads to a steady equilibrium state described by an
average density of particles,

ρst(x) = R
(

x2
e − x2

)

, |x| ≤ xe,

ρst(x) = 0, |x| > xe.
(2)

R and 0 < xe ≤ Lx/2 are macroscopic parameters de-
pending on the particles mass and on the forces acting in
the system, which are controlled by f0, λ, and α. The
function ρst(x) is obtained phenomenologically measuring
the vortices positions after the system arrives at the equi-
librium state. The normalization condition on ρst allows
for the evaluation of n = N/Ly, the linear density of par-
ticles in the y-direction. Together with the definition of
the mean energy per particle u, we obtain

n = N/Ly =

∫ +xe

−xe

ρst(x)dx =
4Rx3

e

3
, (3)

u =
1

n

∫ +xe

−xe

φ(x)ρst(x)dx =
2αRx5

e

15n
. (4)

The above equations lead to xe = (10u/α)1/2 and R =
3n/4(α/10u)3/2. The numerical integrations also reveal
that xe = b(n/α)1/3, where b is a phenomenological pa-
rameter that depends only on the repulsive internal forces.
Therefore, xe can be controlled in a simple way by adjust-
ing the external parameters Ly, N , and α. This shows that
the strength of the confining potential provides a measure
of the actual size of the system in the x-direction, which
will be referred to as the system size. After inserting this
expression into (4), it becomes u = b2α1/3n2/3/10. Thus,
u depends only on the magnitude of the mechanical prop-
erties and of the linear density n.

If we define θ = V n, eq. (4) becomes

u = u(θ, α) =
b2

(

αθ2
)1/3

10V 2/3
. (5)

The differential du can be expressed in terms of incre-
ments θ and α,

du =
b2

30V 2/3

[

2
(α

θ

)1/3

dθ +

(

θ

α

)2/3

dα

]

. (6)
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Fig. 1: Schematic illustration of an isolated system (a), of two
systems interacting with the isochoric condition dα = 0 (b),
and an isothermal process where θ ∼ L−1

y is constant (c).

For reasons that will become clear later on, we refer to
θ as the effective temperature, while σ = 3(∂u/∂α)θ plays
the role of a variable that is the thermodynamically con-
jugate to α [12]. If usual heat exchange and temperature
variation were allowed, eq. (6) should also include a term
∼ CdT , where C indicates the proper specific heat of the
system.

After inverting the expression for σ and expressing θ as
a function of α and σ, we obtain a very simple expression
for u as a function of α and σ

u = u(σ, α) = σα. (7)

In this case, the differential du can be written as

du = αdσ + σdα. (8)

So far we have considered an isolated system that, in
the usual thermodynamic framework, is enclosed by rigid,
impermeable and adiabatic walls. However, nothing pre-
vents from allowing two different systems, described by
the same set of equations of motion (1), to interact with
each other. Equations (6) and (8) allow us to character-
ize different interaction processes between two systems, as
schematically represented in fig. 1. Panel (a) illustrates
an isolated system. The vertical height corresponds to
Ly, while the horizontal width depends on the confining
potential φ(x) gauged by α. In fig. 1(b) we represent a
process along which the systems 1 and 2 may change their
width Ly,j ∼ 1/θj but the sum Ly,1+Ly,2 is kept constant.
The values of α for both systems remain invariant, so that
it corresponds to an isochoric process. If it is described
with the help of eq. (6), we have dα = 0 but dθ �= 0, since
ΔLy �= 0 → Δn �= 0 → Δθ �= 0.

Figure 1(c) illustrates a different kind of process, where
the width of each system Ly,j remains constant, but the
horizontal extension, proportional to α−1/3, can change.
It corresponds to an isothermal process (θ = const), in

Fig. 2: Schematic representation of the changes undergone by
a system that follows the Carnot cycle illustrated in fig. 3.

which the sum of the squares of the two confinement re-

gions ∼ α
−2/3

1 + α
−2/3

2 remains constant. Therefore, du
receives a contribution from dα only, since n = N/Ly is
kept invariant and dθ = 0.

The changes in the values of Ly,i (fig. 1(b)) are due only
to differences in momentum delivered to the wall. The lo-
cation of the intermediary wall is updated after a small
number of integration steps. For the horizontal interac-
tions in fig. 1(c), the values of αi (as well as the location
of the center of the potential wells) are also periodically
updated by least square fits of the density of particles. In
this case, we allow also for inter-particle interaction be-
tween particles of different types, but each particle type
feels its specific confining potential.

To push forward the correspondence with the thermo-
dynamic framework, let us now identify the pseudo-heat
δQ and work δW transferred to/from the system in an
infinitesimal quasi-static process, and state the first law.
So, based on eq. (8) we define

du = δQ + δW, with

δQ = αdσ, (9)

δW = σdα.

For the sake of brevity, from now on we will refer to Q (con-
sequently dQ) as heat, but its meaning is given by eq. (9).
Indeed, as commented before, the usual heat exchange
CdT is not permitted in this work and we use the same
letter Q to indicate a form of energy exchange that plays
a similar role as the heat exchange in usual thermal pro-
cesses. Definition (9) immediately leads to adiabatic and
isochoric processes where, respectively, δQ = dσ = 0 and
δW = dα = 0. Then, it is straightforward to evaluate the
energy change for each process as Δuadiab.

1→2 = ΔW adiab.
1→2 =

σ(α2 − α1) and Δuisoch.
1→2 = ΔQisoch.

1→2 = α(σ2 − σ1).
The isothermal process can be described either by set-

ting dθ = 0 in (6) or by using (8) with the subsidiary
condition θ = const. As before, it is a simple task to
show that ΔQisoth.

1→2 = −2(σ2α2 − σ1α1) and ΔW isoth.
1→2 =

3(σ2α2 − σ1α1), so that Δuisoth.
1→2 = σ2α2 − σ1α1.

The adiabatic process (dQ = 0) illustrated in fig. 2 in-
volves changes in θ (hence in Ly) and α. These changes
are such that the system inflates (deflates) in both the x-
and the y-direction when du > 0 (du < 0).

20001-p3



R. F. S. Andrade et al.

It is possible to extend the above thermodynamic frame-
work to state the property of transitivity of effective tem-
perature equilibrium (zeroth law) and extend the concept
of a thermal machine. In the first case, the statement that
if systems A and B are in thermal equilibrium (i.e. equal
density of particles along the y-direction), and if B and
C are also in thermal equilibrium, the same holds for sys-
tems A and C. These conditions indicate that no heat
flows between any pair of systems, which is a consequence
of the mechanical equilibrium [1] between all of them, rep-
resented by the diagram on the r.h.s. of fig. 1, panel (b).

This thermal machine is an actual construction to allow
the system described by eq. (1) to operate in cycles, by
coupling it in a suitable sequence to heat and work reser-
voirs. Here, the concept of reservoir has the usual ther-
modynamic meaning [1,2]: it can deliver or accept heat
(work) from a given system without changing its thermal
(mechanical) properties. Thus, the reservoir effective tem-
perature θ = θR and mechanical features (α = αR) remain
the same if it interacts with a finite-size system.

The Carnot theorem assures that the Carnot cycle has
the highest possible efficiency η = ηC for an engine oper-
ating between two heat reservoirs at given temperatures
T1 and T2(< T1). Moreover, it implies that ηC does not
depend on the engine itself, but only on the values of T1

and T2. If we compute the efficiency for a Carnot cycle
operated by our system (see ref. [12]) in terms of heat and
work defined by eq. (9), we arrive at

ηC = 1 − |Q34|
|Q12|

= 1 − θe

θh
. (10)

Indeed, it is only necessary to observe that

Q12 = 2(σAα1 − σBα2) = 2σAα1(1 − √
σAσB),

Q34 = 2(σBα3 − σAα4) = 2σBα3(1 − √
σBσA).

(11)

This result shows that the definitions introduced in eq. (9)
are consistent with the use of a thermodynamical frame-
work to describe system (1). Figure 2 shows the conforma-
tion of the system in the four points where the isotherm
and adiabatic paths intercept each other in a Carnot cycle,
as emphasized in one infinitesimal cycle in fig. 3. Note
that the heat reservoir operating at constant θ is also able
of delivering work, as required by the isothermal process
described in (6) with dθ = 0.

Given the previous definitions and the results obtained
for an exhaustive series of numerical simulations, we take
the following statement to be true: it is impossible to
have a process in which the only effect is to extract the
heat (at a low effective temperature or particle density
n) and deliver it at a larger effective temperature (larger
n). Within our framework, it plays the same role as the
Clausius statement of the second law of thermodynamics.

Therefore, it is possible to proceed to the final part
of this work, which consists in stating and proving
the analogue of the Clausius theorem (ACT). In usual

θ

σ

α

σ

α

θ

Fig. 3: (Colour on-line) Schematic representation of the ap-
proximation of an arbitrary cyclic process by a sequence of
adiabatic and isothermal curves in the (σ, α)-plane. In the in-
set we highlight the substitution of the ci-di path by a sequence
of adiabatic-isotherm-adiabatic.

thermodynamics, Clausius theorem states that [1]

I =

∮

C

δQ

T
= 0, (12)

where C indicates a closed path describing any reversible
process the system can follow. For a gas, such path is
usually represented in the PV plane. At each point of this
plane, the temperature is obtained by using the (known)
equations of state. The ACT states that eq. (12) is also
valid for the system investigated here, provided P , V , and
T are replaced, respectively, by σ, α, and θ.

The proof of the ACT follows the same strategy used
for the Clausius theorem, so that we just call the at-
tention to the most relevant steps. In first place, let
us cover any arbitrary cyclic process C in the (σ, α)-
plane by a set of infinitesimally close adiabatic curves Ai.
Each Ai intercepts C at points (σi,1, αi,1) and (σi,2, αi,2),
where θi,1 = θi,1(σi,1, αi,1) > θi,2(σi,2, αi,2) = θi,2. Next
let us decompose the process C into a sequence of cy-
cles Ci formed by four curves bounded by the points
ai = (σi,1, αi,1), bi = (σi+1,1, αi+1,1), ci = (σi+1,2, αi+1,2),
and di = (σi,2, αi,2). The two curves between ai and bi,
and between ci and di follow the cycle C, while the points
bi and ci, and di and ai, are connected adiabatic curves
linking each pair of them. The net work resulting from
the inclusion of the paths along the points ai and di is
zero, since each path is covered twice but in opposite di-
rections. Finally, let us replace each infinitesimal path
ai-bi by an equivalent path formed by a sequence of three
curves: an adiabatic, an isotherm, and another adiabatic.
The two adiabatic curves are the same going through the
points ai and bi, while θi,1, the effective temperature of
the isotherm is chosen in such a way that the work done
along C is equal to the work along the equivalent path.
In general, θi,1 �= θi,1 �= θi+1,1. The same procedure is
performed for the segments ci-di.

Thus, C can be replaced by a set of Carnot cycles Ci,
each one operating at a effective temperatures θi,1 and θi,2.
The two adiabatic curves warrants that heat is introduced
into (or extracted from) the system only when it is in

20001-p4



A thermodynamical formalism describing mechanical interactions

contact with these reservoirs. To complete the proof, we
select a constant reservoir at an arbitrary large effective
temperature θ0, so that each Ci can be described by two
Carnot cycles between reservoirs at temperatures θ0 and
θi,1 and θ0 and θi,2. The relation between ΔQ′, the heat
extracted from (or delivered to) the θ0 reservoir, and δQi is

ΔQ′ ≥ θ0

δQi

θi

. (13)

Performing a sum over the whole set of infinitesimal
curves leads to

Q′ =
∑

i

ΔQ′ ≥ θ0

∑

i

δQi

θi

→ (14)

θ0

∮

C

δQ

θ
= θ0

∮

C

δQ

θ
= θ0I.

Finally, we obtain Clausius results by resorting to
Kelvin’s statement of the second law. For a Carnot cycle,
∑2

i=1

δQi

θi

= 0, which is valid both when the system works
as a thermal engine or as a refrigerator. If the arbitrary
process is reversible, it is possible to state from eq. (14)
that θ0I ≤ 0, and at the same time, that θ0I ≥ 0. So,
these two inequalities can only be satisfied when θ0I = 0.

Since the cycle C is arbitrary, an entropy s can be
defined as

s2 − s1 =

∫ 2

1

δQ

θ
, (15)

which leads to the analytical expression

s =

[

c − b2

5V 2/3

(α

θ

)1/3
]

, (16)

where c depends on a properly chosen fiducial state.
Equation (16) completes the description of purely me-

chanical interactions of system (1) within a framework
with the same structure of usual thermodynamics. A first
remark on the achieved result is that, as expected, there
is no dependence on the temperature T in eq. (16). It
depends only the mechanical parameters θ ∼ L−1

y and α
controlling two distinct energy exchange processes that are
not symmetric. It actually measures the degree of asym-
metry of processes that are performed at α = const or
θ = const. Nevertheless, eq. (16) constitutes a particular
case of a general entropy function, depending also on T ,
valid when the usual heat exchange is included in eqs. (6)
and (9). Consistently, if we set α = 0 in these equations,
which corresponds to eliminating one of the energy ex-
change processes, the function s becomes a constant.

Next we stress the fact that, although the same func-
tional form expressed by eq. (16) has appeared in some
other works on system (1) [9–12], all previous deriva-
tions were related by specific property of distribution
functions obeying suitable non-linear Fokker-Planck (FP)
equations. These studies indicate that, from the micro-
scopic point of view, this entropy measures the uncertainty
of finding a specific vortex in an equilibrium position.

In particular, a general expression for the entropy depend-
ing on T and θ has been derived in [9]. Arriving at this ex-
pression without resorting to any probabilistic assumption
is the most important result of this work, and represents
an important step towards generalizing the thermody-
namic formalism based on the existence of non-equivalent,
asymmetric ways of exchanging mechanical energy. For
usual thermodynamics, the identification of two different
processes for energy exchange (heat and work) together
with the phenomenological observation that they do not
play a symmetric role in nature are the key elements that
culminate with the definition of the entropy function. This
work shows that it is possible to follow the same path to
derive a similar framework for systems subject to mechan-
ical interactions only, i.e., without usual heat transfer. At
the same time it shows that the achieved derivation is
associated to a probabilistic approach, in which the same
expression for the entropy is obtained in terms of the prob-
ability distribution function. Since the general guidelines
of the adopted approach can be used to treat other simi-
lar situations, our results may impact many other models
and situations in natural systems: probabilistic derivation
of entropy can be related to the existence of asymmetric
energy exchanging processes, going beyond the usual heat
and work processes to include different mechanical energy
exchange. It is clear that, for the formalism to be valid,
the phenomenological observations summarized in state-
ments corresponding to the zeroth, first and second laws
must be valid for any realization of the system.

The presented formalism does not substitute the usual
thermodynamical description of the system. For instance,
if system (1) describes the interaction of vortices in type-II
superconductors [9–14,17], the thermal behavior related
to usual heat and work exchanges, including phase tran-
sition to the superconducting state, is described by usual
thermodynamics. Equation (1) describes the interaction
among meso- or macroscopic excitations in the system.

The schematic illustrations of distinct processes in fig. 1
are associated to procedures that are easily implemented
in the numerical integration of the system (1). In fig. 1(b),
the changes carried on the values of Ly,i are due only to
differences in momentum delivered to the wall. The lo-
cation of the intermediary wall is updated after a small
number of integration steps. For the horizontal interac-
tions (fig. 1(c)), the values of αi (as well as the location of
the center of the potential wells) are also periodically up-
dated by least square fits of the density of particles. In this
case, we allow also for inter-particle interaction between
particles of different types, but each particle type feels
its specific confining potential. The experimental realiza-
tion of these processes, for instance in the case of type-II
superconductors, is an interesting challenge. Nowadays,
it is possible to control many properties of these vor-
tices including motion and density, which are related to
θ [18–21]. We conjecture that devices able to track the po-
sition of each vortex in the system can be coupled to wall
and field controls able to reset the corresponding values
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of αi and Ly,i to drive both systems to new equilibrium
conditions.

Once the formalism is not based on any pre-assumed
form of the probability distribution of microscopic states,
the relation between the thermodynamic entropy to any
statistic entropy is left open for a general case. As already
remarked, eq. (16) is exactly the same one obtained in
ref. [11] within a framework involving a non-linear FP
equation which is consistent with a non-BG microscopic
probability distribution in phase space [6,22–27]. So, the
parameters b and V that are present in the equations of
state can be expressed in terms of the microscopic param-
eters of the model as µ, f0, and λ. More precisely, the
entropy and internal energy were calculated as [9,11,12],

s = k

[

1 − 32/3

5

(

αλ2

kθ

)1/3
]

, (17)

u =
32/3

10
(αλ2)1/3kθ2/3, (18)

from which one obtains the phenomenological parameters
b = (3πf0λ

3)1/3, V = πf0λ
2/k, and c = k.

Hence, we have shown that the results summarized in
eq. (16), which have been derived without resorting to any
previous knowledge, are in best accordance with the re-
sults of refs. [11] and [12]. We stress that in these works,
a consistent thermodynamic framework was constructed
by neglecting thermal noise, provided one defines appro-
priately an effective temperature, as well as its associated
entropic form. As shown previously, the statistical defini-
tion of this entropy falls into the class of Tsallis entropy,
typical of non-extensive statistical mechanics, and it is in-
terpreted herein from the microscipic point of view, as a
measure of the uncertainty of finding a specific vortex in
an equilibrium position.
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[27] Schwämmle V., Nobre F. D. and Curado E. M. F.,

Eur. Phys. J. B, 70 (2009) 107.

20001-p6


