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Stochastic electrochemical reaction steps on nanosized electrodes
are non-Markovian when externally driven by an applied voltage.
We show that, compared to the Markovian case (when external
driving is absent), nanoscale electrochemical systems obey a super-
statistics characterized by a superposition of Tsallis’ g indices. The
distribution of Tsallis’ g indices along stochastic trajectories can be
calculated from the electrochemical master equation and normal
distributions from Boltzmann-Gibbs thermostatistics are recov-
ered in the thermodynamic limit (the infinite electrode size limit).
Although on the nanoscale the external control makes intricate
correlations between the microstates, in the superstatistical frame
one can still address the microstates as if they were uncorrelated.
The resulting superstatistical entropic form is additive in this frame
and Tsallis’ indices have on the time-average values {(q) < 1, which
is, indeed, an example of a superstatistical system where no ad
hoc distribution has to be assumed for the fluctuations; rather,
the distribution is directly calculated from a mesoscopic master
equation without freely adjustable parameters.

chemical master equation | electrochemistry | electrode kinetics |
Tsallis entropy | nonelectrodes

From a statistical point of view, electrochemical reaction events
at the nanoscale possess uncommon features. On isolated
nanoelectrodes, the electrode potential becomes a stochastic
variable, because its value is affected by redox processes taking
place at the interface. As a consequence (i) all electrochemical
reaction steps are faster at the nanoscale and (j7) all rare reaction
events are favored compared to macroscopic electrochemical
kinetics (1). These findings were substantiated with an electro-
chemical master equation. The decisive difference to the chemi-
cal master equation is that the kinetic rate constants k depend
on a fluctuating variable, and thus become time dependent.
An extended Gillespie algorithm allows the electrochemical mas-
ter equation to be solved, and simulations showed skewed and
leptokurtic distributions for the instantaneous values of the
electrode potential at the steady state, which were related to the
stochastic enhancement of the kinetics (1). Fluctuation enhanced
reaction rates are absent in purely chemical systems (assumed
isothermal), which are well described by normal distributions
coming from standard Boltzmann-Gibbs thermostatistics (2).
Because the increased rate constants at the nanoscale are caused
by the stochastic nature of the charge transfer processes involved,
it is natural to ask what might be the appropriate statistical frame-
work to describe nanoscale electrochemical systems. In this arti-
cle, we solve this question and we find the surprising result that
the microscopic reaction events are indeed governed statistically
by a generalized entropic form recently introduced in the litera-
ture (3-5), which constitutes a form of superstatistics (6-8): a
Tsallis” entropy with a distribution of entropic ¢ indices.

For a system in a nonequilibrium state, the following fluctuat-
ing, trajectory-dependent, nonequilibrium entropy has been
introduced by Seifert (9); see also ref. 10:

Straj (t) == lnp(x(t),t), [1]

where p(x(¢)t) is the probability of being in a point in phase
space x(f) at time ¢ on a stochastic trajectory R, obtained from
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the solution of the master equation. If x, =x(0) denotes a point
on the initial ensemble, this probability satisfies (9)

/p(xO,O)dxo =1 [2]

When averaging s,i(t) over all possible trajectories, the non-
equilibrium Gibbs entropy is obtained (9)

sg(t) = —/dxp(x,t) Inp(x.). [3]

The introduction of the trajectory-dependent entropy s.(f)
also allows Gibbs entropy for mesoscopic chemical systems to be
calculated (2, 11). The state of a chemical system is given by the
number of molecules N; of each chemical species i in the system
[i.e., by the vector N = (N4 ,Np..Ny) =x(t), with M different
chemical species that can fluctuate]. The dynamics of the
system is completely specified by the chemical master equation

dP(N,t)

g Z[W/»(N —yp)P(N=v,1) =

0 ,, W,(N)P(N2)], 4]

where P(N,¢) is the probability of having specific numbers of che-
mical species N at a specific time, W ,(N) the stochastic reaction
rate of reaction p and the elements of the vector v, = v,y — v, are
the stoichiometric numbers of reaction step p (where v,, and v,
are vectors containing the number of molecules of products and
of reactants, respectively, for each of the M fluctuating chemical
species involved in a reaction step p). Solving for the probability
distributions P(N.,¢) is in most cases an unfeasible task, but a tra-
jectory N(¢) can be readily calculated, e.g., with Gillespie’s First
Reaction Method (12): For each reaction p, a random number p,,
is drawn from the unit interval and a random time z,, is calculated

according to
1 1
7, =———In|—|. [5]
"w,IN) (Pp)

The reaction p; with the shortest waiting time z; = min{z,} is then
chosen to occur at time ¢ + 7;. Thus, at time ¢ + 7;, the trajectory
evolves from state N; = N(¢) to state N(z) + Vp = Nt +7) =
Nj; . Conversely, the probability that the reaction p; has not
yet occurred in the time interval between ¢ and ¢ + 7; is given

by (12, 13)

p,=e¢ "7 [6]
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A stochastic trajectory R is thus given by a series of discrete
changes in time in the number of particles

NoSN AN S NAN,, (71

Jj counting the individual reaction events from the known initial
state Ny at j = 0. The probability p; that no reaction p at all has
occurred after a time interval 7; is given by

p=1lp =1l 8]
p p

and it coincides with the probability of being in a point of such
trajectory during a time 7;. Note the difference between W] and
W’ the former is the stochastlc reaction rate after reaction event
j of reaction p, while the latter is the one for the reaction p;, which
is then chosen to advance at reaction event j + 1 at a later time
t+17;. The probability of residing on a trajectory of duration
t = »,7 like in Eq. 7 is given by

=p(No.0)[ [P =p
j

The trajectories start from initial conditions N, sampling the
initial ensemble and p(N,,0) is an initial condition for the prob-
ability distribution satisfying the master equation. We assume in
the rest of this paper that we are on the stationary state and this
initial distribution is already the stationary distribution.
Seifert’s entropy is obtained from Eq. 1 by using Eq. 9:

Z ln— [10]

() ) (No.O)] e [91
ip

Straj( ) = _lnp NO’

In chemical systems, the relationship between the latter entropy
and the physical trajectory-dependent entropy, Eq. 1, is given by

(11)

S([) = Straj + s07 [11]
where
M Q Nk
2 / “”‘ = Ingy [12]
k=A

is the internal entropy of state N due to its degeneracy. Here the
index k runs over the chemical species in the vector N, Q is the
reaction volume (or system size), and w; denote suitable normal-
izing volumes for each molecule, to match thermodynamics with a
Hamiltonian description (see appendix A in ref. 11). We can now
average over trajectory-dependent entropies by using Eq. 11 to
obtain Gibbs entropy, Eq. 3, for chemical systems, which can
be explicitly written as

ST yin[ ") — Sptxos00

8N R

R
_ zR:p(x(t),t) [mp (51: ot %m ﬂj [13]

where the latter sum runs over trajectories R starting on a specific
initial condition Nj.
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Results and Discussion

Uncorrelated Dynamics Under Open Circuit Conditions. We can con-
sider now electrochemical redox reaction processes taking place
on nanoelectrodes. The kinetic rate depends on the electrode
potential of the nanoelectrode. Because a reaction transfer event
changes the electrode potential of the nanoelectrode E, the
kinetic constant of the reaction is affected and, therefore, it
fluctuates. The mesoscopic state of an electrochemical system is
thus given by the number of molecules N; of each chemical
species i as in a chemical system and the electrode potential
E, a new mesoscopic fluctuating variable. We define now the vec-
tor # = (N4,Np,...Ny ,E) = (N,E) =x(¢) to describe a point in
phase space. In [1] we have shown that fluctuations in E lead to
fluctuations of the kinetic constant, which, in turn make all elec-
trochemical reaction steps to be faster compared to macroelec-
trodes. In the latter, the electrode potential does not fluctuate
and is constant and equal to the time-average of its instantaneous
realizations (E): The stochastic behavior of the electrode poten-
tial vanishes for macroelectrodes because for them the fluctua-
tions coming from single reaction events can be neglected. In
Fig. 14, the oxidation reaction step of a reversible redox reaction

M= M* +e” [14]

is depicted. This reaction takes place on a nanoparticle, which
plays here the role of the nanoelectrode, anchored to a metallic
support through an ohmic resistive spacer (e.g., a thiol or a poly-
mer electrolyte nanorod; see ref. 14). The system is in open circuit
conditions: The nanoparticle can exchange electrons with the
electrolyte through the oxidation or reduction steps of the above
reversible redox reaction. A stationary state obeying detailed
balance is attained after a transient. The probability that no
reaction p at all has occurred in the time interval between ¢
and ¢ + 7; is given again by Eq. 8 but now with

Wh(AN;) = WH(NLE;) = Wy (N))erPi, [15]
where E; is the electrode potential between successive instants at

\",; |F

which reaction events occur, labeled j and j + 1, ¢, for

reduction reactions and c, —% for oxidation reactlons
(o is the transfer coefficient, , the number of electrons trans-
ferred, F the Faraday constant, R the ideal gas constant, and T
the temperature). In this paper, we consider a =0.5 and
T =300 K. We also have

QkO —c,E° H ﬁ ij —m +1 . [16]

i=A m=

Wy (N;) =

Here E is the redox potential of the reaction, the preexponential
factor k) does not depend on the electrode potential but contains
possible concentrations of species that do not change in time dur-
ing the reaction. After the reaction event, the electrode potential
changes as

n,e
E, =E - A’

[17]

where e is the electron charge and C is the double layer capaci-
tance per unit area (4 = Qa3 being the area of the nanoelectrode
and a, the lattice constant). In the macroscopic limit, 4 — oo
and Eq. 17 yields E; | = E; (i.e., the electrode potential does
not fluctuate any longer).

In open circuit conditions, the Gibbs and Seifert entropies
have the same form as in chemical systems. In a reaction network
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composed of reversible reactions, as in Eq. 14, we can calculate
the total entropy production along a trajectory as follows:

W, (W)
+21 .”f i) , [18]

—P, j+1

o= 1

where —p; corresponds to a backward (forward) reaction step
provided that p; denotes a forward (backward) reaction step,
the latter leading from a point ./#/; to a point .4, in phase space.
For a long trajectory at the stationary state, the first term in the
right-hand side of Eq. 18 is negligible compared to the second one
and we obtain the trajectory fluctuation theorem (9, 11)

=e’, [19]

where (under appropriate renormalization) p(s) = [[;W7,(4;)
and p(-o) = []; _p( A1) are the probabilities of measuring
a positive or a negatlve entropy production, respectlvely (along a
single trajectory followed either in the forward or in the backward
directions).

Correlated Dynamics Under External (Potentiostatic) Control. A
different situation arises when the electrostatic potential of the
metallic support to which the nanoparticle is anchored is con-
trolled externally, as shown in Fig. 1B. The electrode potential
E of the nanoparticle remains a degree of freedom that can
fluctuate because a series resistance R,, which for simplicity we
assume to be ohmic, appears through the resistive spacer anchor-
ing the nanoparticle. If z; denotes, as before, the time spent
between reaction events j and j+ 1, the electrode potential
changes now as (1)

ne U- E

B =Ei-Ci T Rea o (201
where U is the externally applied potential of the support. The
external control renders the process non-Markovian. Thus, the
last term makes explicit that E is driven toward the external vol-
tage U through the control, which has profound consequences on
the stochastic dynamics. In [1], we showed that the waiting time
for each reaction p now obeys

A B

M- W(E) M M- W(E) M

Fig. 1. (A) Nanoparticle anchored to a metallic support under open circuit
conditions. A reversible redox reaction takes place on the nanoparticle
at a stochastic rate that depends on the surface potential £ of the nanopar-
ticle. (B) The same system under an externally applied voltage U. The resistive
spacer anchoring the nanoparticle behaves now as an ohmic series
resistance Re.
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CI,(U - Ej)
R,CAW),

v-5"| )

T In|1 In{—)|. [21]

a (U - E) )

We can solve this latter equation for the probability that reaction

p has not yet occurred in a time interval 7; (after which the next

reaction p; with the minimal waiting time 7; will occur). We have
— )W) )

o o=

(the tilde denotes here the probability of an event in the new
experimental setup and is introduced to describe the probability
of correlated events through the external driving). Here we have
defined

[22]

i Cp(U—E])
% =1- R.CAW, 23]

which can take any real value. If ¢, =1, then p, =p), =
exp(—W)1;) and we recover the behavior found in chemical
systems or electrochemical systems under open circuit conditions
(ie., Eq. 8). However, if ¢, > 1 and 7; — oo, Eq. 22 implies

= ]. 2
P

This surprising result means that, because of the external poten-
tiostatic control, it can happen that a specific reaction never
occurs from a specific point in phase space (specified by the vec-
tor N) (i.e., there is a finite probability for a reaction not having
occurred over an infinite time period). When, in contrast, ¢, < 1
and 7; — oo, the decay of the probability D), to 0 is faster than in
the exponential case ¢, = 1 and, therefore, such a reaction will
also occur faster. Of course, because the reactions that are faster
are the ones selected to occur, there will be regions in phase space
that will never be accessed (usually the ones for which ¢, > 1),
and the ones that are accessed will be privileged by the stochastic
dynamics (the ones with ¢, < 1). The external driving deforms
the accessibility of points in phase space and, as a result, the
mesoscopic fluctuations accelerate the dynamics in the accessible
parts in phase space and create unaccessible regions.

s = o0) = exp

New Entropy Function and Its Universality Class. By using Eq. 22 and

p’,, = exp(— ,,1) we obtain Seifert’s entropy on a trajectory as
1
Stra]( ) lnp(N07 + Z lin = lnp(NO’ + Z ln{qi, p/ .
Jjp P r
[25]

In the last expression, we have introduced the Tsallis’ deformed
g-logarithm function

x'71 -1

l-q

ln{q} (x) = [26]

We observe that, if one accepts Seifert’s form for the entropy
on each segment of a trajectory in the correlated frame (as it
should be the case because Seifert’s entropy applies also to non-
Markovian processes), it has the form of a Tsallis’ microcanonical
entropy in the uncorrelated frame. Tsallis’ microcanonical entropy
arises naturally on fractal phase spaces (see equation 16 in ref. §,
note that I' there is equal to 1/p), here), where the minimum num-
ber of available microstates is reduced compared to a situation
described by Boltzmann entropy, which describes a situation
where the whole available phase space is densely filled with a

PNAS | December 6, 2011 | vol. 108 | no.49 | 19537

PHYSICS



*
/|
ay

uniform distribution. In ref. 8, it was found that fractal phase
spaces are well described in the microcanonical ensemble by
Tsallis” entropy with an entropic index 0 < g < 1, which is fully
consistent with the above statements made on the accessibility
in phase space of electrochemical systems.

Recently, a rigorous classification of entropy functionals has
been given in terms of umbral calculus and universal formal
groups by Tempesta (15). Such classification has profound and
intriguing connections with number theory and Zeta Riemann
functions. According to ref. 15, entropic forms can be classified
under universality classes in terms of the so-called formal group
exponential defined over the polynomial ring Qc,c5,...] by

) +1
Gly) = Y kyk—+ T [27]
k=0

with ¢y = 1. Because Seifert’s entropy is compatible on ensemble
averaging with the Gibbs entropy, both fall, after normalization,
in the universality class (15)

Gy) =y. 28]

Following the treatment given in ref. 15, we can calculate the
universality class of our entropy Eq. 25. We find that it is given
by Eq. 27 with

1 1—qg)k
“:%ZLﬁa [29]

P

with 4 =}, ;1. When all segments and all reactions in the tra-
jectory have the same index g, we obtain from Eqs. 27 and 29

el-ay _ 1
GO =" [30]

which coincides with the Tsallis’ universality class (15).
Averaging Eq. 25 over trajectories, we can derive the corre-
sponding ensemble entropy, which reads

srs(t) = ;p(x(t),t) {m% + Y Ing, IH . Bl
i ’

an entropic form which corresponds indeed to a generalized
Tsallis’ entropy arising from a distribution of g indices (see equa-
tion 7 in ref. 5). Such an entropy is consistent with a wide class
of superstatistics (6). The distribution of ¢, indices for each ran-
dom jump event from time j is given explicitly by Eq. 23. This
result is the most important one of our paper, and it constitutes
an example of a superstatistical system where the distribution of
g indices can be a priori known.

The values of ¢}, are usually lower than one, and from Eq. 22
we see that this fact implies that all reaction events are enhanced
on the average, as we found in ref. 1 [the effect () mentioned
in the Introduction]. When the system size A or the resistance
R, tend to infinity, all g, tend to one and we recover the Gibbs’
entropy, Eq. 13, from Tsallis’ generalized entropy, Eq. 31. In such
limits, standard Boltzmann—Gibbs thermostatistics (i.e., extensiv-
ity of the uncorrelated frame) is regained. Eq. 31 describes a
genuine nanoscale situation out of the thermodynamic limit,
under a external control which correlates the events in time.

Extended Fluctuation Theorem. By keeping all the definitions intro-
duced above for stochastic rate constants, we can derive an
extended fluctuation theorem for a long trajectory around the
stationary state by using Egs. 18, 20, and 23 as

19538 | www.pnas.org/cgi/doi/10.1073/pnas.1109844108

Z(l_qu)Wf),Tf
—e % =e e =e (1 + At + ), [32]

which has the form of a superstatistical fluctuation theorem (16).
Here we have defined the time-averaged quantity

Y -g) Wy

=t [33]

whose inverse gives a characteristic time constant for the effect
of the superposition of Tsallis’ indices to be significant on the
entropy production along the trajectory. Most importantly, be-
cause W/, and 7; are both positive and ¢, < 1, the exponential
factor depending on all these quantities is larger than one. The
probability of observing a trajectory with negative entropy pro-
duction is higher in mesoscopic electrochemical systems com-
pared to a situation where one can neglect the non-Markovian
fluctuations of the electrode potential. Rare events are thus
enhanced through fluctuations, proving statistically our statement
(i) in the Introduction.

The quantity & is in general an observable. We consider the
reaction events coming from a single irreversible oxidation reac-
tion (for a reduction reaction the treatment is the same)

M- M +e. [34]

We assume that there are no fluctuating numbers of chemical
species (the reservoirs keep constant M and M) and only the
electrode potential fluctuates because electrons are transferred
to the electrode. The electrochemical master equation can be
simulated following the algorithm in ref. 1. After hundreds of
thousands of iterations, a stationary state is reached. In Fig. 2, the
distribution of instantaneous values of ¢, indices in time is shown
for a single trajectory around the stationary state. These histo-
grams do not change when longer trajectories are considered,
after normalization to the total number of counts and, therefore,
they correspond to stationary probability distributions. The
distributions have a well-defined time-averaged value (g) ~q,,,
and we can express the observable & as

@ (1 =gy W) =20 ),

[35]

which solely depends on the time average of the electrode poten-

tial (E) at the stationary state and can therefore be directly

obtained from an experimental time series. Possible electrode
4

12§10

Q=10,000

10}
Q=15,000

No. of counts
()]

or
©

0 . L .

0.5 0.6 0.7 0.9 1 11 1.2
Fig.2. Histograms for the distributions of instantaneous values of ¢, indices
for one irreversible oxidation reaction. Results shown for different system

sizes, with ag = 0.27 nm indicated in the figure. Other parameter values:
R.A=0.3Qcm?, C=0.05Fm=2,k=10" mols"'m=2, U=03V.
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configurations are discussed in ref. 14. A suitable irreversible
electron transfer reaction is, for example, the reduction of per-
oxodisulfate and & is obtained from a measurement of the total
faradaic current and the determination of R, and c,,. The value of
the index g,,, is thus entirely dependent only on the features of the
stationary state. We observe that almost all ¢, < 1 and, therefore,
we have g =q,, lower than unity: All reaction events are en-
hanced on the average. As the system size increases, the dis-
tribution of instantaneous values tends to lump around g =1
indicating the passage to Boltzmann—Gibbs thermostatistics and
normal distributions. For smaller systems, the distribution gets
broader and displaced to values of g lower than one. Note how-
ever, that there is also a nontrivial dependence of the shape of
the distribution on R,; thus, we recover normal distributions
({g) = 1) for three different conditions: (i) under galvanostatic
(i.e., constant current) conditions (U — o, R, = o, U/R, = ct);
(i) for R, =0, U = cnst; and (i) under open circuit condi-
tions (14).

The characteristic timescales between two microscopic events
at which values of ¢ < 1 are observed fall in the interval 2.5-5.5 ps
for the system with Q = 5,000 and 10-65 ns for the system with
Q = 15,000 in Fig. 2. These are the same orders of magnitude as
the time intervals found in simulations of purely chemical systems
(i.e., in the absence of correlations) and, therefore, the phenom-
enon of the superposition of Tsallis’ indices predicted in our
paper is a mesoscopic observable effect at roughly the same time-
scales as when the superposition is absent.

We see then that non-Markovian linear stochastic processes
as found in nanoscale electrochemical systems lead to supersta-
tistical behavior. There is no need to introduce nonlinear Fokker—
Planck equations (17), which are sometimes not well justified
from the nature of stochastic processes, to generate superstatis-
tical behavior. A chemical master equation with fluctuating
time-dependent reaction rate constants leads in a straightforward
manner to superstatistics.

Conclusions

In this paper, we have shown that nanoscale electrochemical
systems obey in general a superstatistics characterized by a
superposition of Tsallis’ entropic indices. These systems have a
fluctuating electrode potential that is subject to a potentiostatic
control. The electrode potential constitutes, therefore, a slowly
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varying external driving force. The (mesoscopic) electrochemical
master equation allows for a derivation of an analytical expres-
sion for an observable quantity which captures the effects of
the Tsallis’ distributions displayed by the mesoscopic dynamics.
The distribution of entropic indices ¢, can be calculated and
there are no freely adjustable parameters. Although this super-
statistics is relevant on the mesoscopic scale, it reduces to stan-
dard Boltzmann—Gibbs thermostatistics in the large system limit
(because there, the stochastic correlations caused by the driving
are negligible). In Tsallis’ statistics, the averaging is always per-
formed over the uncorrelated events, and the complexity is
removed by means of the deformation of the uncorrelated events
through the index g,. The idea of using the uncorrelated events
is central to Tsallis’ formalism because in many complex systems it
is not always possible to know what causes the correlations.
Sometimes, a time-dependent driving created by the system itself
superimposes to the dynamics governed by a master equation. In
mesoscopic electrochemical systems, the correlations can be
explicitly calculated and the way the driving creates superstatistics
is elucidated.

We have also derived an extended version of the fluctuation
theorem for stochastic trajectories which generalizes Seifert’s
fluctuation theorem to mesoscopic electrochemical systems. We
observe that because the existence of correlations, there is a high-
er probability of observing trajectories with a negative entropy
production compared to a dynamics where these correlations
are not present.

In fact, the results seem to be of much wider reach. We have
corroborated that the superstatistical properties are linked to the
exponential dependence of the stochastic rate constants on the
fluctuating electrode potential. This observation suggests that
all systems described by mesoscopic master equations in which
the stochastic reaction rates W, are proportional to the Boltz-
mann factor of a fluctuating quantity—which is slowly driven
externally compared to the timescale of the fluctuations—obey
a superstatistics characterized by a superposition of Tsallis’
indices.
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